Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2450:51–67. doi: 10.1007/978-1-0716-2172-1_3

Studying Protista WBR and Repair Using Physarum polycephalum.

Megan M Sperry, Nirosha J Murugan, Michael Levin
PMCID: PMC9761523  PMID: 35359302

Abstract

Physarum polycephalum is a protist slime mould that exhibits a high degree of responsiveness to its environment through a complex network of tubes and cytoskeletal components that coordinate behavior across its unicellular, multinucleated body. Physarum has been used to study decision making, problem solving, and mechanosensation in aneural biological systems. The robust generative and repair capacities of Physarum also enable the study of whole-body regeneration within a relatively simple model system. Here we describe methods for growing, imaging, quantifying, and sampling Physarum that are adapted for investigating regeneration and repair.


Full text of this article can be found in Bookshelf.

References

  1. Alim K, Andrew N, Pringle A, Brenner MP (2017) Mechanism of signal propagation in Physarum polycephalum. Proc Natl Acad Sci U S A 114:5136–5141. https://doi.org/10.1073/pnas.1618114114 doi: 10.1073/pnas.1618114114. [DOI] [PMC free article] [PubMed]
  2. Vallverdú J, Castro O, Mayne R et al (2018) Slime mould: the fundamental mechanisms of biological cognition. Biosystems 165:57–70. https://doi.org/10.1016/j.biosystems.2017.12.011 doi: 10.1016/j.biosystems.2017.12.011. [DOI] [PubMed]
  3. Whiting JGH, Jones J, Bull L et al (2016) Towards a Physarum learning chip. Sci Rep 6:1–14. https://doi.org/10.1038/srep19948 doi: 10.1038/srep19948. [DOI] [PMC free article] [PubMed]
  4. Murugan NJ, Kaltman DH, Jin H et al (2020) Mechanosensation mediates long-range spatial decision-making in an aneural organism. Adv Mater 33(34):e2008161. https://doi.org/10.1101/2020.03.20.985523 doi: 10.1101/2020.03.20.985523. [DOI] [PubMed]
  5. Iwayama K, Zhu L, Hirata Y et al (2016) Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics. Bioinspir Biomim 11:036001. https://doi.org/10.1088/1748-3190/11/3/036001 doi: 10.1088/1748-3190/11/3/036001. [DOI] [PubMed]
  6. Reid CR, Latty T, Dussutour A, Beekman M (2012) Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proc Natl Acad Sci U S A 109:17490–17494. https://doi.org/10.1073/pnas.1215037109 doi: 10.1073/pnas.1215037109. [DOI] [PMC free article] [PubMed]
  7. Tsuda S, Jones J (2011) The emergence of synchronization behavior in Physarum polycephalum and its particle approximation. Biosystems 103:331–341. https://doi.org/10.1016/j.biosystems.2010.11.001 doi: 10.1016/j.biosystems.2010.11.001. [DOI] [PubMed]
  8. Doerhoefer S, Khodyreva S, Safronov IV et al (1998) Molecular constituents of the replication apparatus in the plasmodium of Physarum polycephalum: identification by photoaffinity labelling. Microbiology 144:3181–3193. https://doi.org/10.1099/00221287-144-11-3181 doi: 10.1099/00221287-144-11-3181. [DOI] [PubMed]
  9. Vogel D, Dussutour A (2018) Brainless learners. In: Adams DS, Levin M (eds) Ahead of the curve, vol 2. IOP Publishing, Bristol, pp 6-2–6-12
  10. Dove W, Rusch H (2017) Growth and differentiation in Physarum Polycephalum. Princeton University Press, Princeton, New Jersey
  11. Schaap P, Barrantes I, Minx P et al (2016) The physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosine kinase signaling. Genome Biol Evol 8:109–125. https://doi.org/10.1093/gbe/evv237 doi: 10.1093/gbe/evv237. [DOI] [PMC free article] [PubMed]
  12. Lobo D, Solano M, Bubenik GA, Levin M (2014) A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 11:20130918. https://doi.org/10.1098/rsif.2013.0918 doi: 10.1098/rsif.2013.0918. [DOI] [PMC free article] [PubMed]
  13. Levin M (2012) Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 109:243–261. https://doi.org/10.1016/j.biosystems.2012.04.005 doi: 10.1016/j.biosystems.2012.04.005. [DOI] [PMC free article] [PubMed]
  14. Jones J (2015) From pattern formation to material computation: multi-agent modelling of Physarum Polycephalum, vol 15. Springer, Berlin
  15. Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Dev 143:1442–1451. https://doi.org/10.1242/dev.134668 doi: 10.1242/dev.134668. [DOI] [PubMed]
  16. Takamatsu A, Takaba E, Takizawa G (2009) Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model. J Theor Biol 256:29–44. https://doi.org/10.1016/j.jtbi.2008.09.010 doi: 10.1016/j.jtbi.2008.09.010. [DOI] [PubMed]
  17. Zhu L, Kim SJ, Hara M, Aono M (2018) Remarkable problem-solving ability of unicellular amoeboid organism and its mechanism. R Soc Open Sci 5:180396. https://doi.org/10.1098/rsos.180396 doi: 10.1098/rsos.180396. [DOI] [PMC free article] [PubMed]
  18. Nakagaki T, Yamada H, Tóth A (2000) Maze-solving by an amoeboid organism. Nature 407:470 doi: 10.1038/35035159. [DOI] [PubMed]
  19. Bonifaci V, Mehlhorn K, Varma G (2012) Physarum can compute shortest paths. J Theor Biol 309:121–133. https://doi.org/10.1016/j.jtbi.2012.06.017 doi: 10.1016/j.jtbi.2012.06.017. [DOI] [PubMed]
  20. Golderer G, Werner ER, Leitner S et al (2001) Nitric oxide synthase is induced in sporulation of physarum polycephalum. Genes Dev 15:1299–1309. https://doi.org/10.1101/gad.890501 doi: 10.1101/gad.890501. [DOI] [PMC free article] [PubMed]
  21. Boisseau RP, Vogel D, Dussutour A (2016) Habituation in non-neural organisms: evidence from slime moulds. Proc R Soc B Biol Sci 283:2–8. https://doi.org/10.1098/rspb.2016.0446 doi: 10.1098/rspb.2016.0446. [DOI] [PMC free article] [PubMed]
  22. Fricker MD, Akita D, Heaton LLM et al (2017) Automated analysis of Physarum network structure and dynamics. J Phys D Appl Phys 50:1–15. https://doi.org/10.1088/1361-6463/aa72b9 doi: 10.1088/1361-6463/aa72b9. [DOI]
  23. Nakagawa CC, Jones EP, Miller DL (1998) Mitochondrial DNA rearrangements associated with mF plasmid integration and plasmodial longevity in Physarum polycephalum. Curr Genet 33:178–187. https://doi.org/10.1007/s002940050325 doi: 10.1007/s002940050325. [DOI] [PubMed]
  24. Nakagaki T, Umemura S, Kakiuchi Y, Ueda T (1996) Action Spectrum for sporulation and Photoavoidance in the plasmodium of Physarum polycephalum, as modified differentially by temperature and starvation. Photochem Photobiol 64:859–862 doi: 10.1111/j.1751-1097.1996.tb01847.x. [DOI] [PubMed]

RESOURCES