Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2533:127–145. doi: 10.1007/978-1-0716-2501-9_8

Tethered MNase Structure Probing as Versatile Technique for Analyzing RNPs Using Tagging Cassettes for Homologous Recombination in Saccharomyces cerevisiae.

Fabian Teubl, Katrin Schwank, Uli Ohmayer, Joachim Griesenbeck, Herbert Tschochner, Philipp Milkereit
PMCID: PMC9761527  PMID: 35796986

Abstract

Micrococcal nuclease (MNase) originating from Staphylococcus aureus is a calcium dependent ribo- and desoxyribonuclease which has endo- and exonucleolytic activity of low sequence preference. MNase is widely used to analyze nucleosome positions in chromatin by probing the enzyme's DNA accessibility in limited digestion reactions. Probing reactions can be performed in a global way by addition of exogenous MNase , or locally by "chromatin endogenous cleavage " (ChEC ) reactions using MNase fusion proteins . The latter approach has recently been adopted for the analysis of local RNA environments of MNase fusion proteins which are incorporated in vivo at specific sites of ribonucleoprotein (RNP ) complexes. In this case, ex vivo activation of MNase by addition of calcium leads to RNA cleavages in proximity to the tethered anchor protein thus providing information about the folding state of its RNA environment.Here, we describe a set of plasmids that can be used as template for PCR-based MNase tagging of genes by homologous recombination in S. cerevisiae . The templates enable both N- and C-terminal tagging with MNase in combination with linker regions of different lengths and properties. In addition, an affinity tag is included in the recombination cassettes which can be used for purification of the particle of interest before or after induction of MNase cleavages in the surrounding RNA or DNA. A step-by-step protocol is provided for tagging of a gene of interest, followed by affinity purification of the resulting fusion protein together with associated RNA and subsequent induction of local MNase cleavages.


Full text of this article can be found in Bookshelf.

References

  1. Even-Faitelson L, Hassan-Zadeh V, Baghestani Z, Bazett-Jones DP (2016) Coming to terms with chromatin structure. Chromosoma 125:95–110. https://doi.org/10.1007/s00412-015-0534-9 doi: 10.1007/s00412-015-0534-9. [DOI] [PubMed]
  2. Herschlag D (2009) Biophysical, chemical, and functional probes of RNA structure, interactions and folding. Methods Enzymol 468:xv doi: 10.1016/S0076-6879(09)68020-4. [DOI] [PubMed]
  3. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20:295–304. https://doi.org/10.1016/j.sbi.2010.04.001 doi: 10.1016/j.sbi.2010.04.001. [DOI] [PMC free article] [PubMed]
  4. Wu C, Allis CD (2012) Nucleosomes, histones & chromatin. Part B. In: Methods in enzymology, vol 513, 1st edn. Elsevier/Academic Press, Amsterdam/Boston. http://search.ebscohost.com/login.aspx?direct=true & scope=site & db=nlebk & db=nlabk & AN=478429 doi: 10.1016/B978-0-12-391938-0.09995-X. [DOI] [PubMed]
  5. Anfinsen CB, Cuatrecasas P, Taniuchi H (1971) 8 Staphylococcal nuclease, chemical properties and catalysis. In: Hydrolysis, vol 4. Elsevier, pp 177–204
  6. Chung H-R, Dunkel I, Heise F, Linke C, Krobitsch S, Ehrenhofer-Murray AE, Sperling SR, Vingron M (2010) The effect of micrococcal nuclease digestion on nucleosome positioning data. PLoS One 5:e15754. https://doi.org/10.1371/journal.pone.0015754 doi: 10.1371/journal.pone.0015754. [DOI] [PMC free article] [PubMed]
  7. Dingwall C, Lomonossoff GP, Laskey RA (1981) High sequence specificity of micrococcal nuclease. Nucleic Acids Res 9:2659–2673. https://doi.org/10.1093/nar/9.12.2659 doi: 10.1093/nar/9.12.2659. [DOI] [PMC free article] [PubMed]
  8. Reeves R (1984) Transcriptionally active chromatin. Biochim Biophys Acta 782:343–393. https://doi.org/10.1016/0167-4781(84)90044-7 doi: 10.1016/0167-4781(84)90044-7. [DOI] [PubMed]
  9. Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7:33. https://doi.org/10.1186/1756-8935-7-33 doi: 10.1186/1756-8935-7-33. [DOI] [PMC free article] [PubMed]
  10. Teif VB (2016) Nucleosome positioning: resources and tools online. Brief Bioinformatics 17:745–757. https://doi.org/10.1093/bib/bbv086 doi: 10.1093/bib/bbv086. [DOI] [PubMed]
  11. Schmid M, Durussel T, Laemmli UK (2004) ChIC and ChEC; genomic mapping of chromatin proteins. Mol Cell 16:147–157. https://doi.org/10.1016/j.molcel.2004.09.007 doi: 10.1016/j.molcel.2004.09.007. [DOI] [PubMed]
  12. Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S (2015) ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo. Nat Commun 6:8733. https://doi.org/10.1038/ncomms9733 doi: 10.1038/ncomms9733. [DOI] [PMC free article] [PubMed]
  13. Babl V, Stöckl U, Tschochner H, Milkereit P, Griesenbeck J (2015) Chromatin endogenous cleavage (ChEC) as a method to quantify protein interaction with genomic DNA in Saccharomyces cerevisiae. Methods Mol Biol 1334:219–232. https://doi.org/10.1007/978-1-4939-2877-4_14 doi: 10.1007/978-1-4939-2877-4_14. [DOI] [PubMed]
  14. Grünberg S, Zentner GE (2017) Genome-wide mapping of protein-DNA interactions with ChEC-seq in Saccharomyces cerevisiae. J Vis Exp (124):55836. https://doi.org/10.3791/55836 doi: 10.3791/55836. [DOI] [PMC free article] [PubMed]
  15. Skene PJ, Henikoff S (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. elife 6:e21856. https://doi.org/10.7554/eLife.21856 doi: 10.7554/eLife.21856. [DOI] [PMC free article] [PubMed]
  16. Hainer SJ, Fazzio TG (2019) High-resolution chromatin profiling using CUT & RUN. Curr Protoc Mol Biol 126:e85. https://doi.org/10.1002/cpmb.85 doi: 10.1002/cpmb.85. [DOI] [PMC free article] [PubMed]
  17. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680. https://doi.org/10.1038/nrg2641 doi: 10.1038/nrg2641. [DOI] [PMC free article] [PubMed]
  18. Aughey GN, Cheetham SW, Southall TD (2019) DamID as a versatile tool for understanding gene regulation. Development 146:dev173666. https://doi.org/10.1242/dev.173666 doi: 10.1242/dev.173666. [DOI] [PMC free article] [PubMed]
  19. Ohmayer U, Perez-Fernandez J, Hierlmeier T, Pöll G, Williams L, Griesenbeck J, Tschochner H, Milkereit P (2012) Local tertiary structure probing of ribonucleoprotein particles by nuclease fusion proteins. PLoS One 7:e42449. https://doi.org/10.1371/journal.pone.0042449 doi: 10.1371/journal.pone.0042449. [DOI] [PMC free article] [PubMed]
  20. Pöll G, Müller C, Bodden M, Teubl F, Eichner N, Lehmann G, Griesenbeck J, Tschochner H, Milkereit P (2017) Structural transitions during large ribosomal subunit maturation analyzed by tethered nuclease structure probing in S. cerevisiae. PLoS One 12:e0179405. https://doi.org/10.1371/journal.pone.0179405 doi: 10.1371/journal.pone.0179405. [DOI] [PMC free article] [PubMed]
  21. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Séraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229. https://doi.org/10.1006/meth.2001.1183 doi: 10.1006/meth.2001.1183. [DOI] [PubMed]
  22. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14:529–532 doi: 10.1093/protein/14.8.529. [DOI] [PubMed]
  23. Griesenbeck J, Wittner M, Charton R, Conconi A (2012) Chromatin endogenous cleavage and psoralen crosslinking assays to analyze rRNA gene chromatin in vivo. Methods Mol Biol 809:291–301. https://doi.org/10.1007/978-1-61779-376-9_20 doi: 10.1007/978-1-61779-376-9_20. [DOI] [PubMed]
  24. Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J (2008) Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 22:1190–1204. https://doi.org/10.1101/gad.466908 doi: 10.1101/gad.466908. [DOI] [PMC free article] [PubMed]
  25. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972. https://doi.org/10.1002/(SICI)1097-0061(199907) 15:10B<963:AID-YEA399>3.0.CO;2-W doi: 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W. [DOI] [PubMed]
  26. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  27. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962. https://doi.org/10.1002/yea.1142 doi: 10.1002/yea.1142. [DOI] [PubMed]
  28. Schneider BL, Seufert W, Steiner B, Yang QH, Futcher AB (1995) Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11:1265–1274. https://doi.org/10.1002/yea.320111306 doi: 10.1002/yea.320111306. [DOI] [PubMed]
  29. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318 doi: 10.1038/nmeth.1318. [DOI] [PubMed]
  30. Hill RE, Eaton-Rye JJ (2014) Plasmid construction by SLIC or sequence and ligation-independent cloning. Methods Mol Biol 1116:25–36. https://doi.org/10.1007/978-1-62703-764-8_2 doi: 10.1007/978-1-62703-764-8_2. [DOI] [PubMed]

RESOURCES