Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2450:565–581. doi: 10.1007/978-1-0716-2172-1_30

Single-Cell Transcriptomic Analysis in the Regenerating Cnidarian Nematostella vectensis.

Flora Plessier, Sandrine Schmutz, Sophie Novault, Heather Marlow
PMCID: PMC9761532  PMID: 35359329

Abstract

Cnidarians have historically served as excellent laboratory models for regenerative development given their capacity to regrow large portions of the adult organism. This capacity is notably absent or poorly developed in the powerful genetic laboratory models Drosophila, C. elegans, and mouse. Increasingly, development of genetic and genomic resources and the application of next-generation sequencing-based techniques in cnidarian systems has further expanded the potential of cnidarian regenerative models. Here, we present a workflow for the characterization of the regenerative response in the sea anemone Nematostella vectensis utilizing fluorescence-activated cell sorting and a plate-based single-cell RNA-sequencing pipeline. This approach can characterize the transcriptional response during regeneration in distinct populations of cells, thus providing a quantitative view of a whole organism process at cellular resolution.


Full text of this article can be found in Bookshelf.

References

  1. Amiel AR, Johnston HT, Nedoncelle K et al (2015) Characterization of morphological and cellular events underlying oral regeneration in the sea anemone, Nematostella vectensis. Int J Mol Sci 16:28449–28471 doi: 10.3390/ijms161226100. [DOI] [PMC free article] [PubMed]
  2. Bradshaw B, Thompson K, Frank U (2015) Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata. eLife 4:e05506 doi: 10.7554/eLife.05506. [DOI] [PMC free article] [PubMed]
  3. Vogg MC, Galliot B, Tsiairis CD (2019) Model systems for regeneration: Hydra. Development 146(21):dev177212 doi: 10.1242/dev.177212. [DOI] [PubMed]
  4. Layden MJ, Rentzsch F, Röttinger E (2016) The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. Wiley Interdiscip Rev Dev Biol 5:408–428 doi: 10.1002/wdev.222. [DOI] [PMC free article] [PubMed]
  5. Rentzsch F, Juliano C, Galliot B (2019) Modern genomic tools reveal the structural and cellular diversity of cnidarian nervous systems. Curr Opin Neurobiol 56:87–96 doi: 10.1016/j.conb.2018.12.004. [DOI] [PubMed]
  6. Rentzsch F, Technau U (2016) Genomics and development of Nematostella vectensis and other anthozoans. Curr Opin Genet Dev 39:63–70 doi: 10.1016/j.gde.2016.05.024. [DOI] [PubMed]
  7. Amiel AR, Foucher K, Ferreira S et al (2019) Synergic coordination of stem cells is required to induce a regenerative response in anthozoan cnidarians. bioRxiv 2019.12.31.891804
  8. Schaffer AA, Bazarsky M, Levy K et al (2016) A transcriptional time-course analysis of oral vs. aboral whole-body regeneration in the Sea anemone Nematostella vectensis. BMC Genomics 17:718 doi: 10.1186/s12864-016-3027-1. [DOI] [PMC free article] [PubMed]
  9. Warner JF, Guerlais V, Amiel AR et al (2018) NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 145(10):dev162867 doi: 10.1242/dev.162867. [DOI] [PubMed]
  10. Warner JF, Amiel AR, Johnston H et al (2019) Regeneration is a partial redeployment of the embryonic gene network. bioRxiv:658930
  11. Watanabe H, Hoang VT, Mättner R et al (2009) Immortality and the base of multicellular life: lessons from cnidarian stem cells. Semin Cell Dev Biol 20:1114–1125 doi: 10.1016/j.semcdb.2009.09.008. [DOI] [PubMed]
  12. Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620 doi: 10.1016/j.molcel.2015.04.005. [DOI] [PubMed]
  13. Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4 doi: 10.1016/j.molcel.2017.01.023. [DOI] [PubMed]
  14. Sebé-Pedrós A, Saudemont B, Chomsky E et al (2018) Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173:1520–1534.e20 doi: 10.1016/j.cell.2018.05.019. [DOI] [PubMed]
  15. Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779 doi: 10.1126/science.1247651. [DOI] [PMC free article] [PubMed]
  16. Kivioja T, Vähärautio A, Karlsson K et al (2012) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9:72–74 doi: 10.1038/nmeth.1778. [DOI] [PubMed]
  17. Baran Y, Bercovich A, Sebe-Pedros A et al (2019) MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol 20(1):206 doi: 10.1186/s13059-019-1812-2. [DOI] [PMC free article] [PubMed]
  18. Stuart T, Butler A, Hoffman P et al (2019) Comprehensive integration of single-cell data. Cell 177:1888–1902.e21 doi: 10.1016/j.cell.2019.05.031. [DOI] [PMC free article] [PubMed]
  19. Kiselev VY, Kirschner K, Schaub MT et al (2017) SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 14:483–486 doi: 10.1038/nmeth.4236. [DOI] [PMC free article] [PubMed]
  20. Keren-Shaul H, Kenigsberg E, Jaitin DA et al (2019) MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protoc 14:1841–1862 doi: 10.1038/s41596-019-0164-4. [DOI] [PubMed]
  21. Putnam NH, Srivastava M, Hellsten U et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94 doi: 10.1126/science.1139158. [DOI] [PubMed]
  22. Satija R, Farrell JA, Gennert D et al (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502 doi: 10.1038/nbt.3192. [DOI] [PMC free article] [PubMed]
  23. Rodrigues OR, Monard S (2016) A rapid method to verify single-cell deposition setup for cell sorters. Cytometry A 89:594–600 doi: 10.1002/cyto.a.22865. [DOI] [PubMed]

RESOURCES