Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2450:599–615. doi: 10.1007/978-1-0716-2172-1_32

Using RNA-Seq for Transcriptome Profiling of Botrylloides sp. Regeneration.

Michael Meier, Megan J Wilson
PMCID: PMC9761539  PMID: 35359331

Abstract

The decrease in sequencing costs and technology improvements has led to the adoption of RNA-sequencing to profile transcriptomes from further non-traditional regeneration model organisms such as the colonial ascidian Botrylloides leachii. The relatively unbiased way in which transcripts are identified and quantified makes this technique suitable to detect large-scale changes in expression, and the identification of novel transcripts and isoforms. Of particular interest to many researchers is the discovery of differentially expressed transcripts across different treatment conditions or stages of regeneration. This protocol describes a workflow starting from processing raw sequencing reads, mapping reads, assembly of transcripts, and measuring their abundance, creating lists of differentially expressed genes and their biological interpretation using gene ontologies. All programs used in this protocol are open-source software tools and freely available.


Full text of this article can be found in Bookshelf.

References

  1. Zondag LE, Rutherford K, Gemmell NJ, Wilson MJ (2016) Uncovering the pathways underlying whole body regeneration in a chordate model, Botrylloides leachi using de novo transcriptome analysis. BMC Genomics 17:114 doi: 10.1186/s12864-016-2435-6. [DOI] [PMC free article] [PubMed]
  2. Zondag L, Clarke RM, Wilson MJ (2019) Histone deacetylase activity is required for Botrylloides leachii whole-body regeneration. J Exp Biol 222:jeb203620 doi: 10.1242/jeb.203620. [DOI] [PubMed]
  3. Ballarin L, Zaniolo G (2007) Colony specificity in Botrylloides leachi. II. Cellular aspects of the non-fusion reaction. Invert Surviv J 4:38–44
  4. Blanchoud S, Rinkevich B, Wilson MJ (2018) Whole-body regeneration in the colonial tunicate Botrylloides leachii. Results Probl Cell Differ 65:337–355 doi: 10.1007/978-3-319-92486-1_16. [DOI] [PubMed]
  5. Paz G, Rinkevich B (2002) Morphological consequences for multi-partner chimerism in Botrylloides, a colonial urochordate. Dev Comp Immunol 26:615–622 doi: 10.1016/s0145-305x(02)00022-8. [DOI] [PubMed]
  6. Burighel P, Caicci F, Zaniolo G, Gasparini F, Degasperi V, Manni L (2008) Does hair cell differentiation predate the vertebrate appearance? Brain Res Bull 75:331–334 doi: 10.1016/j.brainresbull.2007.10.012. [DOI] [PubMed]
  7. Hirose E, Saito Y, Watanabe H (1997) Subcuticular rejection: an advanced mode of the allogeneic rejection in the compound ascidians Botrylloides simodensis and B. fuscus. Biol Bull 192:53–61 doi: 10.2307/1542575. [DOI] [PubMed]
  8. Blanchoud S, Rutherford K, Zondag L, Gemmell NJ, De Wilson MJ (2018) Novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Sci Rep 8:5518 doi: 10.1038/s41598-018-23749-w. [DOI] [PMC free article] [PubMed]
  9. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628 doi: 10.1038/nmeth.1226. [DOI] [PubMed]
  10. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550 doi: 10.1186/s13059-014-0550-8. [DOI] [PMC free article] [PubMed]
  11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21 doi: 10.1093/bioinformatics/bts635. [DOI] [PMC free article] [PubMed]
  12. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria. https://www.R-project.org/
  13. Klopfenstein DV, Zhang L, Pedersen BS, Ramirez F, Warwick Vesztrocy A, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, Dampier W, Dessimoz C, Flick P, Tang H (2018) GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep 8:10872 doi: 10.1038/s41598-018-28948-z. [DOI] [PMC free article] [PubMed]
  14. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652 doi: 10.1038/nbt.1883. [DOI] [PMC free article] [PubMed]
  15. Xie YL, Wu GX, Tang JB, Luo RB, Patterson J, Liu SL, Huang WH, He GZ, Gu SC, Li SK, Zhou X, Lam TW, Li YR, Xu X, Wong GKS, Wang J (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666 doi: 10.1093/bioinformatics/btu077. [DOI] [PubMed]
  16. Gruning B, Dale R, Sjodin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Koster J, Bioconda T (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods 15:475–476 doi: 10.1038/s41592-018-0046-7. [DOI] [PMC free article] [PubMed]

RESOURCES