Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2022 Oct 27;54(6):1074–1078. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2022.06.003

CCL28-CCR10通路在类风湿关节炎单核细胞迁移中的作用

Role of the CCL28-CCR10 pathway in monocyte migration in rheumatoid arthritis

Fang CHENG 1,*, Shao-ying YANG 2, Xing-xing FANG 3, Xuan WANG 3, Fu-tao ZHAO 1,*
PMCID: PMC9761822  PMID: 36533335

Abstract

Objective

To examine the expression of chemokine receptor CCR10 on monocytes/macrophages in the joints of patients with rheumatoid arthritis (RA), and to investigate the role of chemokine CCL28 and its receptor CCR10 in the migration of RA monocytes and its mechanism.

Methods

The expression of CCR10 in synovial tissues from 8 RA patients, 4 osteoarthritis (OA) patients, and 4 normal controls was analyzed by immunohistochemistry, and cell staining was scored on a 0-5 scales. Flow cytometry was used to measure the percentage of CCR10 positive cells in CD14+ monocytes from peripheral blood of 26 RA patients and 20 healthy controls, as well as from synovial fluid of 15 RA patients. The chemotactic migration of monocytes from RA patients and healthy controls in response to CCL28 was evaluated using an in vitro Transwell system. Western blotting was conducted to assess phosphorylation of the extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) pathways in RA monocytes upon CCL28 treatment.

Results

CCR10 was predominantly expressed in RA synovial lining cells and sublining macrophages, endothelial cells, and lymphocytes. CCR10 expression was significantly increased on lining cells and sublining macrophages in RA synovial tissue compared with OA and normal synovial tissue (both P < 0.01). The patients with RA had markedly elevated expression of CCR10 on peripheral blood CD14+ monocytes compared with the healthy controls [(15.6±3.0)% vs. (7.7±3.8)%, P < 0.01]. CCR10 expression on synovial fluid monocytes from the RA patients was (32.0±15.0)%, which was significantly higher than that on RA peripheral blood monocytes (P < 0.01). In vitro, CCL28 caused significant migration of CD14+ monocytes from peripheral blood of the RA patients and the healthy controls at concentrations ranging from 10-100 μg/L (all P < 0.01). The presence of neutralizing antibody to CCR10 greatly suppressed CCL28-driven chemotaxis of RA monocytes (P < 0.01). Stimulation of RA monocytes with CCL28 induced a remarkable increase in phosphorylation of ERK and Akt (both P < 0.05). ERK inhibitor (U0126) and phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) strongly reduced the migration of RA monocytes in response to CCL28 (both P < 0.01).

Conclusion

RA patients had increased CCR10 expression on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages. CCL28 ligation to CCR10 promoted RA monocyte migration through activation of the ERK and PI3K/Akt signaling pathways. The CCL28-CCR10 pathway could participate in monocyte recruitment into RA joints, thereby contributing to synovial inflammation and bone destruction.

Keywords: Rheumatoid arthritis, Monocytes, Chemokine CCL28, Chemokine receptor CCR10


类风湿关节炎(rheumatoid arthritis,RA)是一种以慢性侵蚀性多关节炎为主要表现的全身性自身免疫性疾病,基本病理改变为关节滑膜炎、血管翳形成,并出现关节软骨和骨破坏,最终导致关节畸形和功能丧失[1]。以往研究表明,RA关节中存在多种免疫细胞,包括T淋巴细胞、B淋巴细胞、单核/巨噬细胞、树突状细胞等,这些细胞发挥着重要的致病作用[2]。趋化因子分为CXC、CC、C、CX3C四类,通过与相应受体的相互作用诱导细胞迁移,在免疫细胞向RA关节募集的过程中起着关键作用,部分趋化因子还参与滑膜血管新生,促进破骨细胞分化和骨吸收,刺激滑膜成纤维细胞增生[3]

CCL28,又称黏膜相关上皮趋化因子(mucosae-associated epithelial chemokine,MEC),是2000年发现的CC趋化因子,与CCL27同源性最强,其受体为CCR10和CCR3[4-5]。CCL28可以促使表达CCR10的T、B淋巴细胞以及表达CCR3的嗜酸性粒细胞归巢迁移至特定组织[6]。近年研究发现,RA患者滑液和滑膜组织中CCL28的表达增加,CCL28通过CCR10趋化血管内皮细胞、辅助性T细胞22(helper T cell 22,Th22)进入关节,进而参与RA的发病[7-8]。本研究观察RA患者单核/巨噬细胞的CCR10表达以及CCL28对其的趋化效应,探讨CCL28-CCR10通路在RA单核细胞迁移中的作用及机制。

1. 资料与方法

1.1. 研究对象

RA患者26例,来自同济大学附属同济医院和上海交通大学医学院附属第九人民医院风湿免疫科的住院病例,其中男5例,女21例,平均年龄(62.2±13.3)岁,诊断均符合2010年美国风湿病学会(American College of Rheumatology,ACR)修订的RA分类标准[9],关节疾病活动度评分(disease activity score 28,DAS28)>3.2,并排除其他自身免疫性疾病、感染和恶性肿瘤。健康对照者20例,男4例,女16例,平均年龄(58.7±10.5)岁。RA患者和健康对照的性别、年龄构成差异无统计学意义。滑膜标本来源于同济大学附属同济医院骨科行手术治疗的8例RA患者、4例骨关节炎(osteoarthritis,OA)患者和4例外伤患者(正常对照)。本研究经同济大学附属同济医院伦理委员会批准(KYSB-2013-006),所有研究对象均签署知情同意书。

1.2. 免疫组织化学染色检测滑膜组织CCR10表达

滑膜组织经10%(体积分数)中性甲醛溶液固定,石蜡包埋,制备切片。切片脱蜡至水,以磷酸盐缓冲液(phosphate buffered saline,PBS)漂洗3次,置于pH 6.0柠檬酸盐缓冲液微波高温修复抗原,PBS漂洗,置于Tris缓冲盐溶液(Tris buffered saline,TBS),3%(体积分数)过氧化氢室温孵育20 min阻断内源性过氧化物酶,蒸馏水漂洗,置TBS中10 min,加兔抗人CCR10多克隆抗体(1 ∶500,美国GeneTex公司)37 ℃孵育1 h,PBS漂洗,加EnVision二抗(美国Agilent Dako公司)工作液37 ℃孵育30 min,PBS漂洗,二氨基联苯胺(diaminobenzidine,DAB)显色,苏木素复染,脱水、透明、封片。以PBS代替一抗作为阴性对照,镜下细胞质呈棕黄色为阳性细胞。对组织切片衬里层细胞和衬里下层巨噬细胞染色进行评分(0~5分)[7]:阳性细胞百分数0%为0分,1%~10%为1分,11%~49%为2分,50%为3分,51%~99%为4分,100%为5分。

1.3. 流式细胞术检测单核细胞CCR10表达

收集所有RA患者和健康对照者外周血以及15例RA患者滑液,肝素抗凝,Ficoll-Hypaque密度梯度离心法分离单个核细胞,PBS洗涤,加入抗人CD14-FITC、CCR10-PE单克隆抗体或同型对照抗体(美国Biolegend公司),4 ℃避光孵育30 min,洗涤后加PBS重悬,上流式细胞仪(美国BD公司)检测,FlowJo软件(V7.6.1)分析结果。

1.4. Transwell迁移实验分析CCL28对单核细胞的趋化及信号通路

用含1%(体积分数)牛血清蛋白(bovine serum albumin,BSA)的RPMI 1640培养基(美国Hyclone公司)重悬外周血单个核细胞(peripheral blood mononuclear cells,PBMC)和配制不同浓度重组人CCL28(美国PeproTech公司),24孔Transwell培养板(孔径5 μm)下室底部涂覆Sigmacote(美国Sigma-Aldrich公司),分别加入浓度为0、0.1、1、10、50、100 μg/L的CCL28,上室加入PBMC(l×106/孔),置37 ℃培养箱中孵育1 h,收集下室的迁移细胞,CD14染色后用流式细胞仪计数单核细胞的数量,实验重复3次。

PBMC分别与抗人CCR10单克隆抗体(1 mg/L,美国Abcam公司)或IgG对照抗体、细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)抑制剂(U0126,10 μmol/L,美国Merck Millipore公司)、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)抑制剂(LY294002,10 μmol/L,美国Cell Signaling Technology公司)或二甲基亚砜(dimethyl sulfoxide,DMSO)预孵育45 min,然后将细胞加入Transwell板上室,CCL28(10 μg/L)加入下室,置37 ℃培养箱孵育1 h,流式细胞术检测迁移至下室的CD14+单核细胞数量,实验重复4次。

1.5. Western blotting检测CCL28干预后单核细胞ERK、Akt蛋白表达及磷酸化

PBMC重悬于RPMI 1640培养基,接种培养板,置37 ℃培养箱中孵育45 min使细胞贴壁,去除非贴壁细胞,加入CCL28(10 μg/L)处理0、5、15、45 min,收集贴壁细胞,流式细胞术鉴定CD14+单核细胞>90%。提取细胞总蛋白并进行蛋白定量,10%(质量分数)SDS-PAGE电泳分离蛋白(40 μg/孔),将蛋白转移至PVDF膜,置于5%(质量分数)脱脂奶粉室温封闭1 h,加入兔抗人ERK、p-ERK、蛋白激酶B(protein kinase B,Akt)、p-Akt和甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphatedehydrogenase,GAPDH)抗体(1 ∶1 000,美国Cell Signaling Technology公司)4 ℃孵育过夜,TBS/Tween20溶液洗膜3次,加相应二抗室温孵育1 h,洗涤后ECL显色,图像分析系统灰度扫描,实验重复3次。

1.6. 统计学分析

采用SPSS 22.0统计软件进行分析,正态分布的计量资料以均数±标准差表示,两组间比较,方差齐性采用独立样本t检验,方差不齐采用Mann-Whitney U检验;多组间比较,方差齐性采用单因素方差分析和两两比较的Dunnet t检验,方差不齐采用Kruskal-Wallis H检验和两两比较的Nemenyi检验;P < 0.05为差异有统计学意义。

2. 结果

2.1. 滑膜组织CCR10的表达

CCR10表达在RA滑膜衬里层细胞以及衬里下层的巨噬细胞、血管内皮细胞、淋巴细胞。RA患者滑膜衬里层细胞和衬里下层巨噬细胞的CCR10染色评分为(2.48±0.14)分,明显高于OA患者的(1.83±0.13)分和正常对照者的(0.96±0.16)分,P均 < 0.01,见图 1

图 1.

滑膜组织中CCR10的表达(免疫组织化学染色)

The expression of CCR10 in synovial tissues (immunohistochemical staining)

A, rheumatoid arthritis; B, osteoarthritis; C, normal controls.

图 1

2.2. 外周血和滑液单核细胞CCR10表达水平

RA患者外周血CD14+单核细胞表达CCR10的比例明显高于健康对照者外周血[(15.6±3.0)% vs. (7.7±3.8)%,P < 0.01];RA患者滑液CD14+单核细胞表达CCR10的比例为(32.0±15.0)%,明显高于RA患者外周血(P < 0.01),见图 2

图 2.

外周血和滑液单核细胞CCR10表达水平比较

CCR10 expression on monocytes in peripheral blood and synovial fluid

HC, healthy controls; RA, rheumatoid arthritis; PB, peripheral blood; SF, synovial fluid; PE, phycoerythrin.

图 2

2.3. CCL28对单核细胞的趋化作用

CCL28的浓度为10、50、100 μg/L时,能够诱导RA患者外周血CD14+单核细胞定向迁移(P均 < 0.01),10 μg/L CCL28的趋化活性最强,趋化指数为5.3±0.5(图 3)。同样,CCL28也能诱导健康对照者外周血CD14+单核细胞迁移,浓度为10 μg/L时,健康对照者单核细胞的趋化指数最高(5.0±0.4),且与RA患者单核细胞的差异无统计学意义(P>0.05)。

图 3.

CCL28对单核细胞的趋化作用

The chemotactic migration of monocytes in response to CCL28

* P < 0.01, vs. PBS. PBS, phosphate buffered saline.

图 3

2.4. CCL28干预后单核细胞ERK、Akt蛋白表达及磷酸化水平

RA患者外周血单核细胞经CCL28处理5 min,ERK、Akt蛋白磷酸化水平均明显升高(P < 0.05、P < 0.01);RA患者外周血单核细胞经CCL28处理15、45 min,ERK、Akt蛋白磷酸化水平与未处理组相比差异无统计学意义(P>0.05),见图 4

图 4.

CCL28干预后单核细胞ERK、Akt信号通路磷酸化水平

Phosphorylation of the ERK and Akt signaling pathways in monocytes after CCL28 stimulation

* P < 0.05, ** P < 0.01, vs. CCL28 at 0 min. ERK, extracellular signal-regulated kinase; Akt, protein kinase B; GAPDH, glyceraldehyde-3-phosphatedehydrogenase; p-ERK and p-Akt, phosphorylation products of ERK and Akt, respectively.

图 4

2.5. 抑制CCR10、ERK、PI3K/Akt对CCL28趋化单核细胞的影响

抗CCR10单抗、ERK抑制剂(U0126)及PI3K抑制剂(LY294002)明显降低CCL28诱导的RA患者外周血CD14+单核细胞迁移(P均 < 0.01),降幅分别为39.4%、49.4%、32.6%,见图 5

图 5.

抑制CCR10、ERK、PI3K/Akt对CCL28趋化单核细胞的影响

Effects of inhibiting CCR10, ERK and PI3K/Akt on CCL28-driven monocyte chemotaxis

A, phosphate buffered saline; B, control IgG; C, anti-CCR10 antibody (1 mg/L); D, dimethyl sulfoxide; E, U0126 (ERK inhibitor, 10 μmol/L); F, LY294002 (PI3K inhibitor, 10 μmol/L). Mononuclear cells were pretreated with A-F for 45 min and then incubated for 1 h in a Transwell chamber without or with CCL28 (10 μg/L). * P < 0.01, vs. control IgG; # P < 0.01, vs. dimethyl sulfoxide.

图 5

3. 讨论

单核/巨噬细胞在RA的发病机制中具有重要作用,巨噬细胞主要来源于循环中的单核细胞,是RA滑膜中数量最多的免疫细胞[2, 10]。活化的单核/巨噬细胞既能够产生多种促炎细胞因子、趋化因子和基质金属蛋白酶,也可以分化为破骨细胞,其数量与RA疾病活动和治疗效果相关。经典激活巨噬细胞(M1)分泌促炎细胞因子,参与关节破坏;替代激活巨噬细胞(M2)调控炎症,促进组织重塑和修复。既往研究显示,RA外周血、滑液和滑膜组织表达趋化因子CCL2、CCL3、CCL5等,其单核/巨噬细胞也表达相应的趋化因子受体CCR1、CCR2、CCR5等,从而介导循环单核细胞迁移到滑膜组织[3]。本研究探讨了趋化因子CCL28及其受体CCR10是否参与单核细胞向RA关节的募集。

CCL28通常表达在多种黏膜组织的上皮细胞,如肠道、气管、乳腺、唾液腺,其受体CCR10主要表达于T淋巴细胞、IgA抗体分泌细胞,它们在调节黏膜免疫应答中发挥重要作用[6]。促炎细胞因子能够促进黏膜上皮产生CCL28,炎症黏膜组织(如气管、鼻和肠道)中CCL28表达均增加。然而,CCL28在不同肿瘤的表达有差异,如口腔鳞状细胞癌CCL28表达减少[11],卵巢癌CCL28表达增加[12]。另有研究报道,CCL28在RA患者血清、滑液及滑膜组织中表达上调,主要由巨噬细胞和血管内皮细胞产生[7]。本研究结果显示,RA患者滑膜组织异常高表达CCR10,滑膜衬里层细胞及衬里下层的巨噬细胞、血管内皮细胞和淋巴细胞均可见CCR10表达,这与Chen等[7]的研究结果相似,且Th22细胞固有表达CCR10并在RA滑膜组织大量浸润[8]。进一步分析发现,RA患者外周血单核细胞CCR10的表达较健康对照明显升高,RA滑液单核细胞表达CCR10又明显高于外周血。以上研究结果提示CCL28-CCR10通路可能驱动循环单核细胞迁移进入RA关节。

本研究采用Transwell迁移实验证实,在体外一定浓度的CCL28能够趋化RA患者和健康对照者外周血单核细胞,以10 μg/L CCL28的趋化活性最强,这与RA患者滑液中CCL28的浓度相似[7],而且抗CCR10单抗阻断CCR10可以明显抑制CCL28对RA外周血单核细胞的趋化效应,表明CCL28-CCR10通路在RA单核细胞定向迁移的过程中起重要作用。此外,也有研究发现RA中CCL28与血管内皮细胞上的CCR10结合可以介导内皮细胞迁移,促进新生血管的形成[7]。Miyazaki等[8]报道RA滑膜CCL28通过趋化表达CCR10的Th22细胞,产生大量白介素-22,继而刺激破骨细胞的分化。可见,CCL28-CCR10通路直接或间接参与了RA发病的多个环节。

有研究证明在血管内皮细胞,CCL28-CCR10信号促进内皮细胞趋化和血管新生依赖于ERK通路的激活[7]。另有研究报道在肝癌细胞,CCL28活化的CCR10增加PI3K/Akt蛋白磷酸化,导致细胞增殖[13]。据此,本研究分析了CCL28趋化RA单核细胞的信号转导机制,结果显示CCL28明显上调RA患者外周血单核细胞ERK和Akt蛋白磷酸化水平,并且抑制ERK、PI3K能够有效降低CCL28诱导的RA外周血单核细胞迁移,表明CCL28通过激活ERK和PI3K/Akt信号通路促使RA单核细胞迁移。

总之,本研究结果显示RA外周血和滑液单核细胞、滑膜巨噬细胞高表达CCR10,CCL28与CCR10相互作用并通过激活ERK、PI3K/Akt信号通路诱导循环单核细胞迁移,提示CCL28-CCR10通路可能趋化单核细胞向RA关节募集,从而促进滑膜炎症和骨破坏。CCL28-CCR10通路在RA发病机制中的多重作用有待进一步深入研究,该通路可能为RA的治疗提供新靶点。

Funding Statement

国家自然科学基金(81302562)

Supported by the National Natural Science Foundation of China (81302562)

Contributor Information

程 昉 (Fang CHENG), Email: chengfangsmmu@126.com.

赵 福涛 (Fu-tao ZHAO), Email: ftzhao@moisten.org.

References

  • 1.Sparks JA. Rheumatoid arthritis. Ann Intern Med. 2019;170(1):ITC1–ITC16. doi: 10.7326/AITC201901010. [DOI] [PubMed] [Google Scholar]
  • 2.Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 2022;23(2):905. doi: 10.3390/ijms23020905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Szekanecz Z, Koch AE. Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol. 2016;12(1):5–13. doi: 10.1038/nrrheum.2015.157. [DOI] [PubMed] [Google Scholar]
  • 4.Pan J, Kunkel EJ, Gosslar U, et al. A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol. 2000;165(6):2943–2949. doi: 10.4049/jimmunol.165.6.2943. [DOI] [PubMed] [Google Scholar]
  • 5.Wang W, Soto H, Oldham ER, et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2) J Biol Chem. 2000;275(29):22313–22323. doi: 10.1074/jbc.M001461200. [DOI] [PubMed] [Google Scholar]
  • 6.Mohan T, Deng L, Wang BZ. CCL28 chemokine: An anchoring point bridging innate and adaptive immunity. Int Immuno-pharmacol. 2017;51:165–170. doi: 10.1016/j.intimp.2017.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Chen Z, Kim SJ, Essani AB, et al. Characterising the expression and function of CCL28 and its corresponding receptor, CCR10, in RA pathogenesis. Ann Rheum Dis. 2015;74(10):1898–1906. doi: 10.1136/annrheumdis-2013-204530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Miyazaki Y, Nakayamada S, Kubo S, et al. Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis. Front Immunol. 2018;9:2901. doi: 10.3389/fimmu.2018.02901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–2581. doi: 10.1002/art.27584. [DOI] [PubMed] [Google Scholar]
  • 10.Rana AK, Li Y, Dang Q, et al. Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol. 2018;65:348–359. doi: 10.1016/j.intimp.2018.10.016. [DOI] [PubMed] [Google Scholar]
  • 11.Park J, Zhang X, Lee SK, et al. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J Clin Invest. 2019;129(12):5381–5399. doi: 10.1172/JCI125336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Facciabene A, Peng X, Hagemann IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475(7355):226–230. doi: 10.1038/nature10169. [DOI] [PubMed] [Google Scholar]
  • 13.Wu Q, Chen JX, Chen Y, et al. The chemokine receptor CCR10 promotes inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway activation. Cell Death Dis. 2018;9(2):232. doi: 10.1038/s41419-018-0267-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES