Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2450:437–465. doi: 10.1007/978-1-0716-2172-1_23

Manipulation of Gene Activity in the Regenerative Model Sea Anemone, Nematostella vectensis.

Eric M Hill, Cheng-Yi Chen, Florencia Del Viso, Lacey R Ellington, Shuonan He, Ahmet Karabulut, Ariel Paulson, Matthew C Gibson
PMCID: PMC9761902  PMID: 35359322

Abstract

With a surprisingly complex genome and an ever-expanding genetic toolkit, the sea anemone Nematostella vectensis has become a powerful model system for the study of both development and whole-body regeneration. Here we provide the most current protocols for short-hairpin RNA (shRNA )-mediated gene knockdown and CRISPR/Cas9-targeted mutagenesis in this system. We further show that a simple Klenow reaction followed by in vitro transcription allows for the production of gene-specific shRNAs and single guide RNAs (sgRNAs) in a fast, affordable, and readily scalable manner. Together, shRNA knockdown and CRISPR/Cas9-targeted mutagenesis allow for rapid screens of gene function as well as the production of stable mutant lines that enable functional genetic analysis throughout the Nematostella life cycle.


Full text of this article can be found in Bookshelf.

References

  1. Technau U, Genikhovich G, Kraus JEM (2015) Cnidaria. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 1. Springer-Verlag, Wien, pp 115–163
  2. Genikhovich G, Technau U (2017) On the evolution of bilaterality. Development 144:3392–3404 doi: 10.1242/dev.141507. [DOI] [PubMed]
  3. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138:1447–1458 doi: 10.1242/dev.048959. [DOI] [PMC free article] [PubMed]
  4. Layden MJ, Rentzsch F, Röttinger E (2016) The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. Wiley Interdiscip Rev. Dev Biol 5:408–428 doi: 10.1002/wdev.222. [DOI] [PMC free article] [PubMed]
  5. Warner JF, Guerlais V, Amiel AR et al (2018) NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 145:dev162867 doi: 10.1242/dev.162867. [DOI] [PubMed]
  6. Amiel AR, Johnston HT, Nedoncelle K et al (2015) Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone. Nematostella vectensis. Int J Mol Sci 16(28449–28):471 doi: 10.3390/ijms161226100. [DOI] [PMC free article] [PubMed]
  7. Bossert PE, Dunn MP, Thomsen GH (2013) A staging system for the regeneration of a polyp from the aboral physa of the anthozoan Cnidarian Nematostella vectensis. Dev Dyn 242:1320–1331 doi: 10.1002/dvdy.24021. [DOI] [PMC free article] [PubMed]
  8. Passamaneck YJ, Martindale MQ (2012) Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol 12:34 doi: 10.1186/1471-213X-12-34. [DOI] [PMC free article] [PubMed]
  9. Bossert P, Thomsen GH (2017) Inducing Complete Polyp Regeneration from the Aboral Physa of the Starlet Sea Anemone Nematostella vectensis. J Vis Exp 119:e54626 doi: 10.3791/54626. [DOI] [PMC free article] [PubMed]
  10. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25:161–170 doi: 10.1016/j.tree.2009.08.005. [DOI] [PubMed]
  11. He S, del Viso F, Chen C-Y et al (2018) An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science 361:1377–1380 doi: 10.1126/science.aar8384. [DOI] [PubMed]
  12. Moran Y, Fredman D, Praher D et al (2014) Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res 24:651–663 doi: 10.1101/gr.162503.113. [DOI] [PMC free article] [PubMed]
  13. Moran Y, Agron M, Praher D et al (2017) The evolutionary origin of plant and animal microRNAs. Nat Ecol Evol 1:0027 doi: 10.1038/s41559-016-0027. [DOI] [PMC free article] [PubMed]
  14. Karabulut A, He S, Chen C-Y et al (2019) Electroporation of short hairpin RNAs for rapid and efficient gene knockdown in the starlet sea anemone, Nematostella vectensis. Dev Biol 448:7–15 doi: 10.1016/j.ydbio.2019.01.005. [DOI] [PubMed]
  15. Ikmi A, McKinney SA, Delventhal KM et al (2014) TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun 5:5486 doi: 10.1038/ncomms6486. [DOI] [PubMed]
  16. Moreno-Mateos MA, Vejnar CE, Beaudoin J-D et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12:982–988 doi: 10.1038/nmeth.3543. [DOI] [PMC free article] [PubMed]
  17. Vejnar CE, Moreno-Mateos MA, Cifuentes D et al (2016) Optimized CRISPR-Cas9 system for genome editing in zebrafish. Cold Spring Harb Protoc 2016(10). https://doi.org/10.1101/pdb.prot086850 doi: 10.1101/pdb.prot086850. [DOI] [PubMed]
  18. Jao L-E, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110(13904–13):909 doi: 10.1073/pnas.1308335110. [DOI] [PMC free article] [PubMed]
  19. Sunagar K, Columbus-Shenkar YY, Fridrich A et al (2018) Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone. BMC Biol 16:108 doi: 10.1186/s12915-018-0578-4. [DOI] [PMC free article] [PubMed]
  20. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237 doi: 10.1242/dev.117.4.1223. [DOI] [PubMed]
  21. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the drosophila genome. Cell 59:499–509 doi: 10.1016/0092-8674(89)90033-0. [DOI] [PubMed]
  22. Dang DT, Perrimon N (1992) Use of a yeast site-specific recombinase to generate embryonic mosaics in Drosophila. Dev Genet 13:367–375 doi: 10.1002/dvg.1020130507. [DOI] [PubMed]
  23. Lakso M, Sauer B, Mosinger B et al (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6232–6236 doi: 10.1073/pnas.89.14.6232. [DOI] [PMC free article] [PubMed]
  24. Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865 doi: 10.1073/pnas.89.15.6861. [DOI] [PMC free article] [PubMed]
  25. Quiroga-Artigas G, Duscher A, Lundquist K et al (2020) Gene knockdown via electroporation of short hairpin RNAs in embryos of the marine hydroid Hydractinia symbiolongicarpus. Sci Rep 10:12806 doi: 10.1038/s41598-020-69489-8. [DOI] [PMC free article] [PubMed]
  26. Genikhovich G, Technau U (2009) Induction of spawning in the starlet sea anemone Nematostella vectensis, in vitro fertilization of gametes, and dejellying of zygotes. Cold Spring Harb Protoc 2009(9). https://doi.org/10.1101/pdb.prot5281 doi: 10.1101/pdb.prot5281. [DOI] [PubMed]
  27. Putnam NH, Srivastava M, Hellsten U et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94 doi: 10.1126/science.1139158. [DOI] [PubMed]
  28. Brummelkamp TR, Bernards R, Agami R (2002) A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. Science 296:550–553 doi: 10.1126/science.1068999. [DOI] [PubMed]
  29. Kraus Y, Aman A, Technau U et al (2016) Pre-bilaterian origin of the blastoporal axial organizer. Nat Commun 7:11694 doi: 10.1038/ncomms11694. [DOI] [PMC free article] [PubMed]

RESOURCES