Abstract
RNA molecules and their expression dynamics play essential roles in the establishment of complex cellular phenotypes and/or in the rapid cellular adaption to environmental changes. Accordingly, analyzing RNA expression remains an important step to understand the molecular basis controlling the formation of cellular phenotypes, cellular homeostasis or disease progression. Steady-state RNA levels in the cells are controlled by the sum of highly dynamic molecular processes contributing to RNA expression and can be classified in transcription, maturation and degradation. The main goal of analyzing RNA dynamics is to disentangle the individual contribution of these molecular processes to the life cycle of a given RNA under different physiological conditions. In the recent years, the use of nonradioactive nucleotide/nucleoside analogs and improved chemistry, in combination with time-dependent and high-throughput analysis, have greatly expanded our understanding of RNA metabolism across various cell types, organisms, and growth conditions.In this chapter, we describe a step-by-step protocol allowing pulse labeling of RNA with the nonradioactive nucleotide analog, 4-thiouracil , in the eukaryotic model organism Saccharomyces cerevisiae and the model archaeon Haloferax volcanii .
Full text of this article can be found in Bookshelf.
References
- Elliott D, Ladomery M (2016) Molecular biology of RNA. Oxford University Press, Oxford
- Cech T, Steitz JA, Atkins JF (2019) RNA worlds: new tools for deep exploration. Cold Spring Harbor Laboratory Press, New York
- Hartmann RK, Bindereif A, Schön A, Westhof E (2015) Handbook of RNA biochemistry. Wiley, Hoboken, New Jersey
- Duggan DJ, Bittner M, Chen Y et al (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14. https://doi.org/10.1038/4434 doi: 10.1038/4434. [DOI] [PubMed]
- Southern E, Mir K, Shchepinov M (1999) Molecular interactions on microarrays. Nat Genet 21:5–9. https://doi.org/10.1038/4429 doi: 10.1038/4429. [DOI] [PubMed]
- Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. Trends Genet 7:314–317. https://doi.org/10.1016/0168-9525(91)90420-U doi: 10.1016/0168-9525(91)90420-U. [DOI] [PubMed]
- McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11. https://doi.org/10.1016/j.cbpa.2012.12.008 doi: 10.1016/j.cbpa.2012.12.008. [DOI] [PubMed]
- Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484 doi: 10.1038/nrg2484. [DOI] [PMC free article] [PubMed]
- Duffy EE, Schofield JA, Simon MD (2019) Gaining insight into transcriptome-wide RNA population dynamics through the chemistry of 4-thiouridine. Wiley Interdiscip Rev RNA 10:e1513. https://doi.org/10.1002/wrna.1513 doi: 10.1002/wrna.1513. [DOI] [PMC free article] [PubMed]
- Barrass JD, Reid JEA, Huang Y et al (2015) Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol 16:282. https://doi.org/10.1186/s13059-015-0848-1 doi: 10.1186/s13059-015-0848-1. [DOI] [PMC free article] [PubMed]
- Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–581. https://doi.org/10.1038/190576a0 doi: 10.1038/190576a0. [DOI] [PubMed]
- Kos M, Tollervey D (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 37:809–820. https://doi.org/10.1016/j.molcel.2010.02.024 doi: 10.1016/j.molcel.2010.02.024. [DOI] [PMC free article] [PubMed]
- Udem SA, Warner JR (1972) Ribosomal RNA synthesis in Saccharomyces cerevisiae. J Mol Biol 65:227–242. https://doi.org/10.1016/0022-2836(72)90279-3 doi: 10.1016/0022-2836(72)90279-3. [DOI] [PubMed]
- Udem SA, Warner JR (1973) The cytoplasmic maturation of a ribosomal precursor ribonucleic acid in yeast. J Biol Chem 248:1412–1416 [PubMed]
- Retèl J, Planta RJ (1967) Ribosomal precursor RNA in Saccharomyces carlsbergensis. Eur J Biochem 3:248–258. https://doi.org/10.1111/j.1432-1033.1967.tb19524.x doi: 10.1111/j.1432-1033.1967.tb19524.x. [DOI] [PubMed]
- Smitt WWS, Vlak JM, Schiphof R, Rozijn TH (1972) Precursors of ribosomal RNA in yeast nucleus: biosynthesis and relation to cytoplasmic ribosomal RNA. Exp Cell Res 71:33–40. https://doi.org/10.1016/0014-4827(72)90259-5 doi: 10.1016/0014-4827(72)90259-5. [DOI] [PubMed]
- Trapman J, Retèl J, Planta RJ (1975) Ribosomal precursor particles from yeast. Exp Cell Res 90:95–104. https://doi.org/10.1016/0014-4827(75)90361-4 doi: 10.1016/0014-4827(75)90361-4. [DOI] [PubMed]
- Trapman J, Planta RJ (1975) Detailed analysis of the ribosomal RNA synthesis in yeast. Biochim Biophys Acta 414:115–125. https://doi.org/10.1016/0005-2787(75)90214-2 doi: 10.1016/0005-2787(75)90214-2. [DOI] [PubMed]
- Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. Springer-Verlag Wien, Wien
- Melvin WT, Milne HB, Slater AA et al (1978) Incorporation of 6-Thioguanosine and 4-Thiouridine into RNA. Eur J Biochem 92:373–379. https://doi.org/10.1111/j.1432-1033.1978.tb12756.x doi: 10.1111/j.1432-1033.1978.tb12756.x. [DOI] [PubMed]
- Muthmann N, Hartstock K, Rentmeister A (2019) Chemo-enzymatic treatment of RNA to facilitate analyses. Wiley Interdiscip Rev RNA 0:e1561. https://doi.org/10.1002/wrna.1561 doi: 10.1002/wrna.1561. [DOI] [PubMed]
- Hendriks G-J, Jung LA, Larsson AJM et al (2019) NASC-seq monitors RNA synthesis in single cells. Nat Commun 10:3138–3138. https://doi.org/10.1038/s41467-019-11028-9 doi: 10.1038/s41467-019-11028-9. [DOI] [PMC free article] [PubMed]
- Bao X, Guo X, Yin M et al (2018) Capturing the interactome of newly transcribed RNA. Nat Methods 15:213 doi: 10.1038/nmeth.4595. [DOI] [PMC free article] [PubMed]
- Huang R, Han M, Meng L, Chen X (2018) Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc Natl Acad Sci U S A 115:E3879. https://doi.org/10.1073/pnas.1718406115 doi: 10.1073/pnas.1718406115. [DOI] [PMC free article] [PubMed]
- Kiefer L, Schofield JA, Simon MD (2018) Expanding the nucleoside recoding toolkit: revealing RNA population dynamics with 6-Thioguanosine. J Am Chem Soc 140:14567–14570. https://doi.org/10.1021/jacs.8b08554 doi: 10.1021/jacs.8b08554. [DOI] [PMC free article] [PubMed]
- Schofield JA, Duffy EE, Kiefer L et al (2018) TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat Methods 15:221–225. https://doi.org/10.1038/nmeth.4582 doi: 10.1038/nmeth.4582. [DOI] [PMC free article] [PubMed]
- Herzog VA, Reichholf B, Neumann T et al (2017) Thiol-linked alkylation of RNA to assess expression dynamics. Nat Methods 14:1198 doi: 10.1038/nmeth.4435. [DOI] [PMC free article] [PubMed]
- Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and MicroRNA target sites by PAR-CLIP. Cell 141:129–141. https://doi.org/10.1016/j.cell.2010.03.009 doi: 10.1016/j.cell.2010.03.009. [DOI] [PMC free article] [PubMed]
- Swiatkowska A, Wlotzka W, Tuck A et al (2012) Kinetic analysis of pre-ribosome structure in vivo. RNA 18:2187–2200. https://doi.org/10.1261/rna.034751.112 doi: 10.1261/rna.034751.112. [DOI] [PMC free article] [PubMed]
- Hulscher RM, Bohon J, Rappé MC et al (2016) Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting. Methods 103:49–56. https://doi.org/10.1016/j.ymeth.2016.03.012 doi: 10.1016/j.ymeth.2016.03.012. [DOI] [PMC free article] [PubMed]
- Granneman S, Petfalski E, Swiatkowska A, Tollervey D (2010) Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA–protein cross-linking. EMBO J 29:2026–2036. https://doi.org/10.1038/emboj.2010.86 doi: 10.1038/emboj.2010.86. [DOI] [PMC free article] [PubMed]
- Duffy EE, Rutenberg-Schoenberg M, Stark CD et al (2015) Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol Cell 59:858–866. https://doi.org/10.1016/j.molcel.2015.07.023 doi: 10.1016/j.molcel.2015.07.023. [DOI] [PMC free article] [PubMed]
- Ascano M, Hafner M, Cekan P et al (2012) Identification of RNA–protein interaction networks using PAR-CLIP. WIREs RNA 3:159–177. https://doi.org/10.1002/wrna.1103 doi: 10.1002/wrna.1103. [DOI] [PMC free article] [PubMed]
- Trendel J, Schwarzl T, Horos R et al (2019) The human RNA-binding proteome and its dynamics during translational arrest. Cell 176:391–403.e19. https://doi.org/10.1016/j.cell.2018.11.004 doi: 10.1016/j.cell.2018.11.004. [DOI] [PubMed]
- Allers T, Ngo H-P, Mevarech M, Lloyd RG (2004) Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70:943–953. https://doi.org/10.1128/AEM.70.2.943-953.2004 doi: 10.1128/AEM.70.2.943-953.2004. [DOI] [PMC free article] [PubMed]
- Knüppel R, Kuttenberger C, Ferreira-Cerca S (2017) Towards time-resolved analysis of RNA metabolism in archaea using 4-thiouracil. Front Microbiol 8:286. https://doi.org/10.3389/fmicb.2017.00286 doi: 10.3389/fmicb.2017.00286. [DOI] [PMC free article] [PubMed]
- Barrass JD, Beggs JD (2019) Extremely rapid and specific metabolic labelling of RNA in vivo with 4-Thiouracil (Ers4tU). J Vis Exp. https://doi.org/10.3791/59952 doi: 10.3791/59952. [DOI] [PubMed]
- Burger K, Mühl B, Kellner M et al (2013) 4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol 10:1623–1630. https://doi.org/10.4161/rna.26214 doi: 10.4161/rna.26214. [DOI] [PMC free article] [PubMed]
- Boissier F, Schmidt CM, Linnemann J et al (2017) Pwp2 mediates UTP-B assembly via two structurally independent domains. Sci Rep 7:3169–3169. https://doi.org/10.1038/s41598-017-03034-y doi: 10.1038/s41598-017-03034-y. [DOI] [PMC free article] [PubMed]
- Ramos-Sáenz A, González-Álvarez D, Rodríguez-Galán O et al (2019) Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in Saccharomyces cerevisiae. RNA 25:1561–1575. https://doi.org/10.1261/rna.072116.119 doi: 10.1261/rna.072116.119. [DOI] [PMC free article] [PubMed]
- Braun CM, Hackert P, Schmid CE et al (2020) Pol5 is required for recycling of small subunit biogenesis factors and for formation of the peptide exit tunnel of the large ribosomal subunit. Nucleic Acids Res 48:405–420. https://doi.org/10.1093/nar/gkz1079 doi: 10.1093/nar/gkz1079. [DOI] [PMC free article] [PubMed]
