Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2533:247–257. doi: 10.1007/978-1-0716-2501-9_15

Thermofluor-Based Analysis of Protein Integrity and Ligand Interactions.

Sophia Pinz, Eva Doskocil, Wolfgang Seufert
PMCID: PMC9761908  PMID: 35796993

Abstract

Thermofluor is a fluorescence-based thermal shift assay, which measures temperature-induced protein unfolding and thereby yields valuable information about the integrity of a purified recombinant protein. Analysis of ligand binding to a protein is another popular application of this assay. Thermofluor requires neither protein labeling nor highly specialized equipment, and can be performed in a regular real-time PCR instrument. Thus, for a typical molecular biology laboratory, Thermofluor is a convenient method for the routine assessment of protein quality. Here, we provide Thermofluor protocols using the example of Cdc123. This ATP-grasp protein is an essential assembly chaperone of the eukaryotic translation initiation factor eIF2. We also report on a destabilized mutant protein version and on the ATP-mediated thermal stabilization of wild-type Cdc123 illustrating protein integrity assessment and ligand binding analysis as two major applications of the Thermofluor assay.


Full text of this article can be found in Bookshelf.

References

  1. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221 doi: 10.1038/nprot.2007.321. [DOI] [PubMed]
  2. Boivin S, Kozak S, Meijers R (2013) Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif 91:192–206 doi: 10.1016/j.pep.2013.08.002. [DOI] [PubMed]
  3. Huynh K, Partch CL (2015) Analysis of protein stability and ligand interactions by thermal shift assay. Curr Protoc Protein Sci 79:28.9.1–28.9.14 doi: 10.1002/0471140864.ps2809s79. [DOI] [PMC free article] [PubMed]
  4. Poklar N, Lah J, Salobir M, Macek P, Vesnaver G (1997) pH and temperature-induced molten globule-like denatured states of equinatoxin II: a study by UV-melting, DSC, far- and near-UV CD spectroscopy, and ANS fluorescence. Biochemistry 36:14345–14352 doi: 10.1021/bi971719v. [DOI] [PubMed]
  5. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Lane P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440 doi: 10.1177/108705710100600609. [DOI] [PubMed]
  6. Steinberg TH, Jones LJ, Haugland RP, Singer VL (1996) SYPRO orange and SYPRO red protein gel stains: one-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal Biochem 239:223–237 doi: 10.1006/abio.1996.0319. [DOI] [PubMed]
  7. Cimmperman P, Baranauskiene L, Jachimoviciūte S, Jachno J, Torresan J, Michailoviene V, Matuliene J, Sereikaite J, Bumelis V, Matulis D (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231 doi: 10.1529/biophysj.108.134973. [DOI] [PMC free article] [PubMed]
  8. Kranz JK, Schalk-Hihi C (2011) Protein thermal shifts to identify low molecular weight fragments. Meth Enzymol 493:277–298 doi: 10.1016/B978-0-12-381274-2.00011-X. [DOI] [PubMed]
  9. Lo MC, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159 doi: 10.1016/j.ab.2004.04.031. [DOI] [PubMed]
  10. Ehrhardt MKG, Warring SL, Gerth ML (2018) Screening chemoreceptor–ligand interactions by high-throughput thermal-shift assays. In: Manson MD (ed) Bacterial chemosensing: methods and protocols. Springer, New York, New York, NY, pp 281–290 doi: 10.1007/978-1-4939-7577-8_22. [DOI] [PubMed]
  11. Williams TL, Yin YW, Carter CW (2016) Selective inhibition of bacterial Tryptophanyl-tRNA Synthetases by Indolmycin is mechanism-based. J Biol Chem 291:255–265 doi: 10.1074/jbc.M115.690321. [DOI] [PMC free article] [PubMed]
  12. Carver TE, Bordeau B, Cummings MD, Petrella EC, Pucci MJ, Zawadzke LE, Dougherty BA, Tredup JA, Bryson JW, Yanchunas J Jr, Doyle ML, Witmer MR, Nelen MI, DesJarlais RL, Jaeger EP, Devine H, Asel ED, Springer BA, Bone R, Salemme FR, Todd MJ (2005) Decrypting the biochemical function of an essential gene from Streptococcus pneumoniae using ThermoFluor technology. J Biol Chem 280:11704–11712 doi: 10.1074/jbc.M413278200. [DOI] [PubMed]
  13. Matulis D, Kranz JK, Salemme FR, Todd MJ (2005) Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44:5258–5266 doi: 10.1021/bi048135v. [DOI] [PubMed]
  14. Vivoli M, Novak HR, Littlechild JA, Harmer NJ (2014) Determination of protein-ligand interactions using differential scanning fluorimetry. J Vis Exp 91:51809 doi: 10.3791/51809. [DOI] [PMC free article] [PubMed]
  15. Bai N, Roder H, Dickson A, Karanicolas J (2019) Isothermal analysis of ThermoFluor data can readily provide quantitative binding affinities. Sci Rep 9:2650 doi: 10.1038/s41598-018-37072-x. [DOI] [PMC free article] [PubMed]
  16. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298 doi: 10.1016/j.ab.2006.07.027. [DOI] [PubMed]
  17. Wright TA, Stewart JM, Page RC, Konkolewicz D (2017) Extraction of thermodynamic parameters of protein unfolding using parallelized differential scanning Fluorimetry. J Phys Chem Lett 8:553–558 doi: 10.1021/acs.jpclett.6b02894. [DOI] [PubMed]
  18. Kozak S, Lercher L, Karanth MN, Meijers R, Carlomagno T, Boivin S (2016) Optimization of protein samples for NMR using thermal shift assays. J Biomol NMR 64:281–289 doi: 10.1007/s10858-016-0027-z. [DOI] [PMC free article] [PubMed]
  19. Seabrook SA, Newman J (2013) High-throughput thermal scanning for protein stability: making a good technique more robust. ACS Comb Sci 15:387–392 doi: 10.1021/co400013v. [DOI] [PubMed]
  20. Reinhard L, Mayerhofer H, Geerlof A, Mueller-Dieckmann J, Weiss MS (2013) Optimization of protein buffer cocktails using Thermofluor. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:209–214 doi: 10.1107/S1744309112051858. [DOI] [PMC free article] [PubMed]
  21. Perzlmaier AF, Richter F, Seufert W (2013) Translation initiation requires cell division cycle 123 (Cdc123) to facilitate biogenesis of the eukaryotic initiation factor 2 (eIF2). J Biol Chem 288:21537–21546 doi: 10.1074/jbc.M113.472290. [DOI] [PMC free article] [PubMed]
  22. Bieganowski P, Shilinski K, Tsichlis PN, Brenner C (2004) Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance. J Biol Chem 279:44656–44666 doi: 10.1074/jbc.M406151200. [DOI] [PubMed]
  23. Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, Sacco R, van Diemen FR, Olk N, Stukalov A, Marceau C, Janssen H, Carette JE, Bennett KL, Colinge J, Superti-Furga G, Brummelkamp TR (2015) Gene essentiality and synthetic lethality in haploid human cells. Science 350:1092–1096 doi: 10.1126/science.aac7557. [DOI] [PubMed]
  24. Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101 doi: 10.1126/science.aac7041. [DOI] [PMC free article] [PubMed]
  25. Panvert M, Dubiez E, Arnold L, Perez J, Mechulam Y, Seufert W, Schmitt E (2015) Cdc123, a cell cycle regulator needed for eIF2 assembly, is an ATP-grasp protein with unique features. Structure 23:1596–1608 doi: 10.1016/j.str.2015.06.014. [DOI] [PubMed]

RESOURCES