Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2450:419–436. doi: 10.1007/978-1-0716-2172-1_22

Gene Manipulation in Hydractinia.

Eleni Chrysostomou, Febrimarsa, Timothy DuBuc, Uri Frank
PMCID: PMC9761909  PMID: 35359321

Abstract

The ability to regenerate lost body parts is irregularly distributed among animals, with substantial differences in regenerative potential between and within metazoan phyla. It is widely believed that regenerative animal clades inherited some aspects of their capacity to regenerate from their common ancestors but have also evolved new mechanisms that are not shared with other regenerative animals. Therefore, to gain a broad understanding of animal regenerative mechanisms and evolution, a broad sampling approach is necessary. Unfortunately, only few regenerative animals have been established as laboratory models with protocols for functional gene studies. Here, we describe the methods to establish transgenic individuals of the marine cnidarian Hydractinia. We also provide methods for transient gene expression manipulation without modifying the genome of the animals.


Full text of this article can be found in Bookshelf.

References

  1. Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, Daly M, Collins AG, Haddock SHD, Dunn CW, Cartwright P (2015) Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One 10(10):e0139068. https://doi.org/10.1371/journal.pone.0139068 doi: 10.1371/journal.pone.0139068. [DOI] [PMC free article] [PubMed]
  2. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138:1447–1458. https://doi.org/10.1242/dev.048959 doi: 10.1242/dev.048959. [DOI] [PMC free article] [PubMed]
  3. Bosch TC, Klimovich A, Domazet-Loso T, Grunder S, Holstein TW, Jekely G, Miller DJ, Murillo-Rincon AP, Rentzsch F, Richards GS, Schroder K, Technau U, Yuste R (2017) Back to the basics: cnidarians start to fire. Trends Neurosci 40(2):92–105. https://doi.org/10.1016/j.tins.2016.11.005 doi: 10.1016/j.tins.2016.11.005. [DOI] [PMC free article] [PubMed]
  4. Chang ES, Neuhof M, Rubinstein ND, Diamant A, Philippe H, Huchon D, Cartwright P (2015) Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A 112(48):14912–14917. https://doi.org/10.1073/pnas.1511468112 doi: 10.1073/pnas.1511468112. [DOI] [PMC free article] [PubMed]
  5. Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 226:257. https://doi.org/10.1002/dvdy.10227 doi: 10.1002/dvdy.10227. [DOI] [PubMed]
  6. DuBuc TQ, Traylor-Knowles N, Martindale MQ (2014) Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol 12(1):24. https://doi.org/10.1186/1741-7007-12-24 doi: 10.1186/1741-7007-12-24. [DOI] [PMC free article] [PubMed]
  7. Vogg MC, Galliot B, Tsiairis CD (2019) Model systems for regeneration: Hydra. Development 146(21):dev177212. https://doi.org/10.1242/dev.177212 doi: 10.1242/dev.177212. [DOI] [PubMed]
  8. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou J-C, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289 doi: 10.1016/j.devcel.2009.07.014. [DOI] [PubMed]
  9. Bradshaw B, Thompson K, Frank U (2015) Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata. eLife 4:e05506. https://doi.org/10.7554/eLife.05506 doi: 10.7554/eLife.05506. [DOI] [PMC free article] [PubMed]
  10. Renfer E, Amon-Hassenzahl A, Steinmetz PRH, Technau U (2009) A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci 107(1):104–108. https://doi.org/10.1073/pnas.0909148107 doi: 10.1073/pnas.0909148107. [DOI] [PMC free article] [PubMed]
  11. Künzel T, Heiermann R, Frank U, Müller WA, Tilmann W, Bause M, Nonn A, Helling M, Schwarz RS, Plickert G (2010) Migration and differentiation potential of stem cells in the cnidarian Hydractinia analysed in GFP-transgenic animals and chimeras. Dev Biol 348:120–129 doi: 10.1016/j.ydbio.2010.08.017. [DOI] [PubMed]
  12. Klimovich A, Wittlieb J, Bosch TCG (2019) Transgenesis in Hydra to characterize gene function and visualize cell behavior. Nat Protoc 14(7):2069–2090. https://doi.org/10.1038/s41596-019-0173-3 doi: 10.1038/s41596-019-0173-3. [DOI] [PubMed]
  13. Rentzsch F, Renfer E, Technau U (2020) Generating transgenic reporter lines for studying nervous system development in the Cnidarian Nematostella vectensis. Methods Mol Biol 2047:45–57. https://doi.org/10.1007/978-1-4939-9732-9_3 doi: 10.1007/978-1-4939-9732-9_3. [DOI] [PubMed]
  14. Buss LW, Yund PO (1989) A sibling species group of Hydractinia in the north-eastern United States. J Mar Biol Assoc UK 69(4):857–874. https://doi.org/10.1017/S0025315400032215 doi: 10.1017/S0025315400032215. [DOI]
  15. DuBuc TQ, Schnitzler CE, Chrysostomou E, McMahon ET, Febrimarsa, Gahan JM, Buggie T, Gornik SG, Hanley S, Barreira SN, Gonzalez P, Baxevanis AD, Frank U (2020) Transcription factor AP2 controls cnidarian germ cell induction. Science 367(6479):757–762. https://doi.org/10.1126/science.aay6782 doi: 10.1126/science.aay6782. [DOI] [PMC free article] [PubMed]
  16. Frank U, Nicotra ML, Schnitzler CE (2020) The colonial cnidarian Hydractinia. EvoDevo 11(1):7. https://doi.org/10.1186/s13227-020-00151-0 doi: 10.1186/s13227-020-00151-0. [DOI] [PMC free article] [PubMed]
  17. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG (2006) From the cover: transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. PNAS 103(16):6208–6211. https://doi.org/10.1073/pnas.0510163103 doi: 10.1073/pnas.0510163103. [DOI] [PMC free article] [PubMed]
  18. Quiroga Artigas G, Lapébie P, Leclère L, Takeda N, Deguchi R, Jékely G, Momose T, Houliston E (2018) A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia. eLife 7:e29555. https://doi.org/10.7554/eLife.29555 doi: 10.7554/eLife.29555. [DOI] [PMC free article] [PubMed]
  19. Jones VAS, Bucher M, Hambleton EA, Guse A (2018) Microinjection to deliver protein, mRNA, and DNA into zygotes of the cnidarian endosymbiosis model Aiptasia sp. Sci Rep 8(1):16437. https://doi.org/10.1038/s41598-018-34773-1 doi: 10.1038/s41598-018-34773-1. [DOI] [PMC free article] [PubMed]
  20. Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, Plickert G, Frank U (2011) Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. Development 138(12):2429–2439. https://doi.org/10.1242/dev.064931 doi: 10.1242/dev.064931. [DOI] [PubMed]
  21. Flici H, Schnitker N, Millane RC, Govinden G, Houlihan A, Boomkamp SD, Shen S, Baxevanis AD, Frank U (2017) An evolutionarily conserved SoxB-Hdac2 crosstalk regulates neurogenesis in a cnidarian. Cell Rep 18:1395–1409. https://doi.org/10.1016/j.celrep.2017.01.019 doi: 10.1016/j.celrep.2017.01.019. [DOI] [PMC free article] [PubMed]
  22. Karadge UB, Gosto M, Nicotra ML (2015) Allorecognition proteins in an invertebrate exhibit homophilic interactions. Curr Biol 25:2845–2850. https://doi.org/10.1016/j.cub.2015.09.030 doi: 10.1016/j.cub.2015.09.030. [DOI] [PMC free article] [PubMed]
  23. Steven MS, Zhiwei M, Julia MH, Brooke MR, Gregory AG, Alan MW, Hakima F, Uri F, Christine ES, Andreas DB, Matthew LN (2018) CRISPR/Cas9-mediated gene knockin in the hydroid Hydractinia symbiolongicarpus. BMC Genomics 19(1) https://doi.org/10.1186/s12864-018-5032-z doi: 10.1186/s12864-018-5032-z. [DOI] [PMC free article] [PubMed]
  24. Kanska J, Frank U. Novel roles for Nanos in neural cell fate determination revealed by studies in a cnidarian. J Cell Sci https://doi.org/10.1242/jcs.127233 doi: 10.1242/jcs.127233. [DOI] [PubMed]

RESOURCES