Abstract
Technical advances have pushed the resolution limit of single-particle cryo-electron microscopy (cryo-EM) throughout the past decade and made the technique accessible to a wide range of samples. Among them, multisubunit DNA-dependent RNA polymerases (Pols) are a prominent example. This review aims at briefly summarizing the architecture and structural adaptations of Pol I, highlighting the importance of cryo-electron microscopy in determining the structures of transcription complexes.
Full text of this article can be found in Bookshelf.
References
- Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–1876. https://doi.org/10.1126/science.1059493 doi: 10.1126/science.1059493. [DOI] [PubMed]
- Armache J-K, Mitterweger S, Meinhart A, Cramer P (2004) Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J Biol Chem 280(8):7131–7134. https://doi.org/10.1074/jbc.M413038200 doi: 10.1074/jbc.M413038200. [DOI] [PubMed]
- Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292:1876–1882. https://doi.org/10.1126/science.1059495 doi: 10.1126/science.1059495. [DOI] [PubMed]
- Kettenberger H, Armache K-J, Cramer P (2004) Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16:955–965. https://doi.org/10.1016/j.molcel.2004.11.040 doi: 10.1016/j.molcel.2004.11.040. [DOI] [PubMed]
- Kettenberger H, Armache K-J, Cramer P (2003) Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114:347–357. https://doi.org/10.1016/S0092-8674(03)00598-1 doi: 10.1016/S0092-8674(03)00598-1. [DOI] [PubMed]
- Wang D, Bushnell DA, Huang X, Westover KD, Levitt M, Kornberg RD (2009) Structural basis of transcription: Backtracked RNA polymerase II at 3.4 Å resolution. Science 324:1203–1206. https://doi.org/10.1126/science.1168729 doi: 10.1126/science.1168729. [DOI] [PMC free article] [PubMed]
- Liu X, Bushnell DA, Wang D, Calero G, Kornberg RD (2010) Structure of an RNA polymerase II–TFIIB complex and the transcription initiation mechanism. Science 327:206. https://doi.org/10.1126/science.1182015 doi: 10.1126/science.1182015. [DOI] [PMC free article] [PubMed]
- Sainsbury S, Niesser J, Cramer P (2013) Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature 493:437–440. https://doi.org/10.1038/nature11715 doi: 10.1038/nature11715. [DOI] [PubMed]
- Sainsbury S, Bernecky C, Cramer P (2015) Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol 16:129–143. https://doi.org/10.1038/nrm3952 doi: 10.1038/nrm3952. [DOI] [PubMed]
- McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17. https://doi.org/10.1016/bs.mie.2016.05.056 doi: 10.1016/bs.mie.2016.05.056. [DOI] [PubMed]
- Scheres SHW (2012) A Bayesian view on cryo-EM structure determination. J Mol Biol 415:406–418. https://doi.org/10.1016/j.jmb.2011.11.010 doi: 10.1016/j.jmb.2011.11.010. [DOI] [PMC free article] [PubMed]
- Zivanov J, Nakane T, Forsberg B, Kimanius D, Hagen WJH, Lindahl E, Scheres SHW (2018) RELION-3: new tools for automated high-resolution cryo-EM structure determination. bioRxiv. https://doi.org/10.1101/421123 doi: 10.1101/421123. [DOI] [PMC free article] [PubMed]
- Kühlbrandt W (2014) Biochemistry. The resolution revolution. Science 343:1443–1444. https://doi.org/10.1126/science.1251652 doi: 10.1126/science.1251652. [DOI] [PubMed]
- Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. https://doi.org/10.1107/S0907444904019158 doi: 10.1107/S0907444904019158. [DOI] [PubMed]
- Geiger SR, Lorenzen K, Schreieck A, Hanecker P, Kostrewa D, Heck AJR, Cramer P (2010) RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol Cell 39:583–594. https://doi.org/10.1016/j.molcel.2010.07.028 doi: 10.1016/j.molcel.2010.07.028. [DOI] [PubMed]
- Kuhn C-D, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P (2007) Functional architecture of RNA polymerase I. Cell 131:1260–1272. https://doi.org/10.1016/j.cell.2007.10.051 doi: 10.1016/j.cell.2007.10.051. [DOI] [PubMed]
- Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H (2020) RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 295:4782–4795. https://doi.org/10.1074/jbc.RA119.011827 doi: 10.1074/jbc.RA119.011827. [DOI] [PMC free article] [PubMed]
- Jennebach S, Herzog F, Aebersold R, Cramer P (2012) Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res 40:5591–5601. https://doi.org/10.1093/nar/gks220 doi: 10.1093/nar/gks220. [DOI] [PMC free article] [PubMed]
- Lisica A, Engel C, Jahnel M, Roldán É, Galburt EA, Cramer P, Grill SW (2016) Mechanisms of backtrack recovery by RNA polymerases I and II. Proc Natl Acad Sci U S A 113:2946–2951. https://doi.org/10.1073/pnas.1517011113 doi: 10.1073/pnas.1517011113. [DOI] [PMC free article] [PubMed]
- Fath S, Kobor MS, Philippi A, Greenblatt J, Tschochner H (2004) Dephosphorylation of RNA polymerase I by Fcp1p is required for efficient rRNA synthesis. J Biol Chem 279:25251–25259. https://doi.org/10.1074/jbc.M401867200 doi: 10.1074/jbc.M401867200. [DOI] [PubMed]
- Clemente-Blanco A, Mayán-Santos M, Schneider DA, Machín F, Jarmuz A, Tschochner H, Aragón L (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458:219–222. https://doi.org/10.1038/nature07652 doi: 10.1038/nature07652. [DOI] [PMC free article] [PubMed]
- Mayer C, Zhao J, Yuan X, Grummt I (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18:423–434. https://doi.org/10.1101/gad.285504 doi: 10.1101/gad.285504. [DOI] [PMC free article] [PubMed]
- Hannan KM, Brandenburger Y, Jenkins A, Sharkey K, Cavanaugh A, Rothblum L, Moss T, Poortinga G, McArthur GA, Pearson RB, Hannan RD (2003) mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 23:8862–8877. https://doi.org/10.1128/mcb.23.23.8862-8877.2003 doi: 10.1128/mcb.23.23.8862-8877.2003. [DOI] [PMC free article] [PubMed]
- Cheung ACM, Cramer P (2012) A movie of RNA polymerase II transcription. Cell 149:1431–1437. https://doi.org/10.1016/j.cell.2012.06.006 doi: 10.1016/j.cell.2012.06.006. [DOI] [PubMed]
- Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49. https://doi.org/10.1007/s00018-006-6278-1 doi: 10.1007/s00018-006-6278-1. [DOI] [PMC free article] [PubMed]
- Goodfellow SJ, Zomerdijk JCBM (2013) Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 61:211–236. https://doi.org/10.1007/978-94-007-4525-4_10 doi: 10.1007/978-94-007-4525-4_10. [DOI] [PMC free article] [PubMed]
- Keener J, Josaitis CA, Dodd JA, Nomura M (1998) Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem 273:33795–33802 doi: 10.1074/jbc.273.50.33795. [DOI] [PubMed]
- Milkereit P, Tschochner H (1998) A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J 17:3692–3703. https://doi.org/10.1093/emboj/17.13.3692 doi: 10.1093/emboj/17.13.3692. [DOI] [PMC free article] [PubMed]
- Reiter A, Hamperl S, Seitz H, Merkl P, Perez-Fernandez J, Williams L, Gerber J, Németh A, Léger I, Gadal O, Milkereit P, Griesenbeck J, Tschochner H (2012) The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J 31:3480–3493. https://doi.org/10.1038/emboj.2012.185 doi: 10.1038/emboj.2012.185. [DOI] [PMC free article] [PubMed]
- Merkl P, Perez-Fernandez J, Pilsl M, Reiter A, Williams L, Gerber J, Böhm M, Deutzmann R, Griesenbeck J, Milkereit P, Tschochner H (2014) Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol Cell Biol 34:3817–3827. https://doi.org/10.1128/MCB.00395-14 doi: 10.1128/MCB.00395-14. [DOI] [PMC free article] [PubMed]
- Bischler N, Brino L, Carles C, Riva M, Tschochner H, Mallouh V, Schultz P (2002) Localization of the yeast RNA polymerase I-specific subunits. EMBO J 21:4136–4144. https://doi.org/10.1093/emboj/cdf392 doi: 10.1093/emboj/cdf392. [DOI] [PMC free article] [PubMed]
- Milkereit P, Schultz P, Tschochner H (1997) Resolution of RNA polymerase I into dimers and monomers and their function in transcription. Biol Chem 378:1433–1443 doi: 10.1515/bchm.1997.378.12.1433. [DOI] [PubMed]
- Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P (2013) RNA polymerase I structure and transcription regulation. Nature 502:650–655. https://doi.org/10.1038/nature12712 doi: 10.1038/nature12712. [DOI] [PubMed]
- Fernández-Tornero C, Moreno-Morcillo M, Rashid UJ, Taylor NMI, Ruiz FM, Gruene T, Legrand P, Steuerwald U, Müller CW (2013) Crystal structure of the 14-subunit RNA polymerase I. Nature 502:644–649. https://doi.org/10.1038/nature12636 doi: 10.1038/nature12636. [DOI] [PubMed]
- Kostrewa D, Kuhn C-D, Engel C, Cramer P (2015) An alternative RNA polymerase I structure reveals a dimer hinge. Acta Crystallogr D Biol Crystallogr 71:1850–1855. https://doi.org/10.1107/S1399004715012651 doi: 10.1107/S1399004715012651. [DOI] [PubMed]
- Fernández-Tornero C (2018) RNA polymerase I activation and hibernation: unique mechanisms for unique genes. Transcription 9:248–254. https://doi.org/10.1080/21541264.2017.1416267 doi: 10.1080/21541264.2017.1416267. [DOI] [PMC free article] [PubMed]
- Torreira E, Louro JA, Pazos I, González-Polo N, Gil-Carton D, Duran AG, Tosi S, Gallego O, Calvo O, Fernández-Tornero C (2017) The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. elife 6:e20832. https://doi.org/10.7554/eLife.20832 doi: 10.7554/eLife.20832. [DOI] [PMC free article] [PubMed]
- Hanske J, Sadian Y, Müller CW (2018) The cryo-EM resolution revolution and transcription complexes. Curr Opin Struct Biol 52:8–15. https://doi.org/10.1016/j.sbi.2018.07.002 doi: 10.1016/j.sbi.2018.07.002. [DOI] [PMC free article] [PubMed]
- Engel C, Neyer S, Cramer P (2018) Distinct mechanisms of transcription initiation by RNA polymerases I and II. Annu Rev Biophys 47:425–446. https://doi.org/10.1146/annurev-biophys-070317-033058 doi: 10.1146/annurev-biophys-070317-033058. [DOI] [PubMed]
- Jochem L, Ramsay EP, Vannini A (2017) RNA polymerase I, bending the rules? EMBO J 36:2664–2666. https://doi.org/10.15252/embj.201797924 doi: 10.15252/embj.201797924. [DOI] [PMC free article] [PubMed]
- Jackobel AJ, Han Y, He Y, Knutson BA (2018) Breaking the mold: structures of the RNA polymerase I transcription complex reveal a new path for initiation. Transcription 9:255–261. https://doi.org/10.1080/21541264.2017.1416268 doi: 10.1080/21541264.2017.1416268. [DOI] [PMC free article] [PubMed]
- Blattner C, Jennebach S, Herzog F, Mayer A, Cheung ACM, Witte G, Lorenzen K, Hopfner K-P, Heck AJR, Aebersold R, Cramer P (2011) Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes Dev 25:2093–2105. https://doi.org/10.1101/gad.17363311 doi: 10.1101/gad.17363311. [DOI] [PMC free article] [PubMed]
- Engel C, Plitzko J, Cramer P (2016) RNA polymerase I-Rrn3 complex at 4.8 Å resolution. Nat Commun 7:12129. https://doi.org/10.1038/ncomms12129 doi: 10.1038/ncomms12129. [DOI] [PMC free article] [PubMed]
- Pilsl M, Crucifix C, Papai G, Krupp F, Steinbauer R, Griesenbeck J, Milkereit P, Tschochner H, Schultz P (2016) Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat Commun 7:12126. https://doi.org/10.1038/ncomms12126 doi: 10.1038/ncomms12126. [DOI] [PMC free article] [PubMed]
- Knutson BA, Hahn S (2011) Yeast Rrn7 and human TAF1B are TFIIB-related RNA polymerase I general transcription factors. Science 333:1637–1640. https://doi.org/10.1126/science.1207699 doi: 10.1126/science.1207699. [DOI] [PMC free article] [PubMed]
- Naidu S, Friedrich JK, Russell J, Zomerdijk JCBM (2011) TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase I. Science 333:1640–1642. https://doi.org/10.1126/science.1207656 doi: 10.1126/science.1207656. [DOI] [PMC free article] [PubMed]
- Heiss FB, Daiß JL, Becker P, Engel C (2021) Conserved strategies of RNA polymerase I hibernation and activation. Nat Commun 12:758. https://doi.org/10.1038/s41467-021-21031-8 doi: 10.1038/s41467-021-21031-8. [DOI] [PMC free article] [PubMed]
- Engel C, Gubbey T, Neyer S, Sainsbury S, Oberthuer C, Baejen C, Bernecky C, Cramer P (2017) Structural basis of RNA polymerase I transcription initiation. Cell 169:120–131.e22. https://doi.org/10.1016/j.cell.2017.03.003 doi: 10.1016/j.cell.2017.03.003. [DOI] [PubMed]
- Han Y, Yan C, Nguyen THD, Jackobel AJ, Ivanov I, Knutson BA, He Y (2017) Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. elife 6:e27414. https://doi.org/10.7554/eLife.27414 doi: 10.7554/eLife.27414. [DOI] [PMC free article] [PubMed]
- Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R, Buczak K, Hagen WJ, Beck M, Sachse C, Müller CW (2017) Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J 36:2698–2709. https://doi.org/10.15252/embj.201796958 doi: 10.15252/embj.201796958. [DOI] [PMC free article] [PubMed]
- Bier M, Fath S, Tschochner H (2004) The composition of the RNA polymerase I transcription machinery switches from initiation to elongation mode. FEBS Lett 564:41–46. https://doi.org/10.1016/S0014-5793(04)00311-4 doi: 10.1016/S0014-5793(04)00311-4. [DOI] [PubMed]
- Herdman C, Mars J-C, Stefanovsky VY, Tremblay MG, Sabourin-Felix M, Lindsay H, Robinson MD, Moss T (2017) A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. PLoS Genet 13:e1006899. https://doi.org/10.1371/journal.pgen.1006899 doi: 10.1371/journal.pgen.1006899. [DOI] [PMC free article] [PubMed]
- Sadian Y, Baudin F, Tafur L, Murciano B, Wetzel R, Weis F, Müller CW (2019) Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nat Commun 10:5543. https://doi.org/10.1038/s41467-019-13510-w doi: 10.1038/s41467-019-13510-w. [DOI] [PMC free article] [PubMed]
- Pilsl M, Engel C (2020) Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting. Nat Commun 11:1206. https://doi.org/10.1038/s41467-020-15052-y doi: 10.1038/s41467-020-15052-y. [DOI] [PMC free article] [PubMed]
- Neyer S, Kunz M, Geiss C, Hantsche M, Hodirnau V-V, Seybert A, Engel C, Scheffer MP, Cramer P, Frangakis AS (2016) Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 540(7634):607–610. https://doi.org/10.1038/nature20561 doi: 10.1038/nature20561. [DOI] [PubMed]
- Tafur L, Sadian Y, Hoffmann NA, Jakobi AJ, Wetzel R, Hagen WJH, Sachse C, Müller CW (2016) Molecular structures of transcribing RNA polymerase I. Mol Cell 64:1135–1143. https://doi.org/10.1016/j.molcel.2016.11.013 doi: 10.1016/j.molcel.2016.11.013. [DOI] [PMC free article] [PubMed]
- Beckouet F, Labarre-Mariotte S, Albert B, Imazawa Y, Werner M, Gadal O, Nogi Y, Thuriaux P (2008) Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol Cell Biol 28:1596–1605. https://doi.org/10.1128/MCB.01464-07 doi: 10.1128/MCB.01464-07. [DOI] [PMC free article] [PubMed]
- Tafur L, Sadian Y, Hanske J, Wetzel R, Weis F, Müller CW (2019) The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. elife 8:e43204. https://doi.org/10.7554/eLife.43204 doi: 10.7554/eLife.43204. [DOI] [PMC free article] [PubMed]
- Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, Glatt S, Kosinski J, Hagen WJH, Sachse C, Müller CW (2015) Molecular structures of unbound and transcribing RNA polymerase III. Nature 528:231–236. https://doi.org/10.1038/nature16143 doi: 10.1038/nature16143. [DOI] [PMC free article] [PubMed]
- Sanz-Murillo M, Xu J, Belogurov GA, Calvo O, Gil-Carton D, Moreno-Morcillo M, Wang D, Fernández-Tornero C (2018) Structural basis of RNA polymerase I stalling at UV light-induced DNA damage. Proc Natl Acad Sci U S A 115:8972–8977. https://doi.org/10.1073/pnas.1802626115 doi: 10.1073/pnas.1802626115. [DOI] [PMC free article] [PubMed]
- Miller OL, Beatty BR (1969) Visualization of nucleolar genes. Science 164:955–957. https://doi.org/10.1126/science.164.3882.955 doi: 10.1126/science.164.3882.955. [DOI] [PubMed]
- Kramm K, Engel C, Grohmann D (2019) Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 47:411–423. https://doi.org/10.1042/BST20180623 doi: 10.1042/BST20180623. [DOI] [PubMed]
- Bedwell GJ, Appling FD, Anderson SJ, Schneider DA (2012) Efficient transcription by RNA polymerase I using recombinant core factor. Gene 492:94–99. https://doi.org/10.1016/j.gene.2011.10.049 doi: 10.1016/j.gene.2011.10.049. [DOI] [PMC free article] [PubMed]
- Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C, Urlaub H, Cramer P (2017) Structures of transcription pre-initiation complex with TFIIH and mediator. Nature 551:204–209. https://doi.org/10.1038/nature24282 doi: 10.1038/nature24282. [DOI] [PMC free article] [PubMed]
- He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E (2016) Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359–365. https://doi.org/10.1038/nature17970 doi: 10.1038/nature17970. [DOI] [PMC free article] [PubMed]
- Abascal-Palacios G, Ramsay EP, Beuron F, Morris E, Vannini A (2018) Structural basis of RNA polymerase III transcription initiation. Nature 553:301–306. https://doi.org/10.1038/nature25441 doi: 10.1038/nature25441. [DOI] [PubMed]
- Vorländer MK, Khatter H, Wetzel R, Hagen WJH, Müller CW (2018) Molecular mechanism of promoter opening by RNA polymerase III. Nature 553:295–300. https://doi.org/10.1038/nature25440 doi: 10.1038/nature25440. [DOI] [PMC free article] [PubMed]
- Ramsay EP, Abascal-Palacios G, Daiß JL, King H, Gouge J, Pilsl M, Beuron F, Morris E, Gunkel P, Engel C, Vannini A (2020) Structure of human RNA polymerase III. Nat Commun 11:6409. https://doi.org/10.1038/s41467-020-20262-5 doi: 10.1038/s41467-020-20262-5. [DOI] [PMC free article] [PubMed]
- Shukla AK, Westfield GH, Xiao K, Reis RI, Huang L-Y, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang C-R, Gu L-L, Shan J-M, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL, Kobilka BK, Skiniotis G, Lefkowitz RJ (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512:218–222. https://doi.org/10.1038/nature13430 doi: 10.1038/nature13430. [DOI] [PMC free article] [PubMed]
- Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D (2020) DNA origami-based single-molecule force spectroscopy elucidates RNA polymerase III pre-initiation complex stability. Nat Commun 11:2828. https://doi.org/10.1038/s41467-020-16702-x doi: 10.1038/s41467-020-16702-x. [DOI] [PMC free article] [PubMed]
- Leitner A, Faini M, Stengel F, Aebersold R (2016) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci 41:20–32. https://doi.org/10.1016/j.tibs.2015.10.008 doi: 10.1016/j.tibs.2015.10.008. [DOI] [PubMed]
- Schmidt C, Urlaub H (2017) Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struct Biol 46:157–168. https://doi.org/10.1016/j.sbi.2017.10.005 doi: 10.1016/j.sbi.2017.10.005. [DOI] [PubMed]
