Abstract
Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4′-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets.

Electronic Supplementary Material
Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (Fd versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, Fdynamic acting on 3 µL water droplets moving at speeds of 0.1–1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.
Keywords: liquid crystals, lubricated surfaces, magnetic field, wettability, droplet mobility
Electronic Supplementary Material
Supplementary material, approximately 1.50 MB.
Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces
Acknowledgements
X. W. thanks the funding support from the startup fund of the Ohio State University (OSU) and OSU Institute for Materials Research Kickstart Facility Grant. S. Č. and U. T. acknowledge support by Slovenian Research Agency (ARRS) under contracts (Nos. P1-0099, P1-0055, and J1-2457).
References
- [1].Xu W H, Zheng H X, Liu Y, Zhou X F, Zhang C, Song Y X, Deng X, Leung M, Yang Z B, Xu R X, et al. A droplet-based electricity generator with high instantaneous power density. Nature. 2020;578:392–396. doi: 10.1038/s41586-020-1985-6. [DOI] [PubMed] [Google Scholar]
- [2].Guo Z Q, Zhang L, Monga D, Stone H A, Dai X M. Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. Cell Rep. Phys. Sci. 2021;2:100387. doi: 10.1016/j.xcrp.2021.100387. [DOI] [Google Scholar]
- [3].Chen H W, Ran T, Gan Y, Zhou J J, Zhang Y, Zhang L W, Zhang D Y, Jiang L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 2018;17:935–942. doi: 10.1038/s41563-018-0171-9. [DOI] [PubMed] [Google Scholar]
- [4].Dai X M, Sun N, Nielsen S O, Stogin B B, Wang J, Yang S K, Wong T S. Hydrophilic directional slippery rough surfaces for water harvesting. Sci. Adv. 2018;4:eaaq0919. doi: 10.1126/sciadv.aaq0919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Maji K, Das A, Dhar M, Manna U. Synergistic chemical patterns on a hydrophilic slippery liquid infused porous surface (SLIPS) for water harvesting applications. J. Mater. Chem. A. 2020;8:25040–25046. doi: 10.1039/D0TA09271A. [DOI] [Google Scholar]
- [6].Shang L R, Cheng Y, Zhao Y J. Emerging droplet microfluidics. Chem. Rev. 2017;117:7964–8040. doi: 10.1021/acs.chemrev.6b00848. [DOI] [PubMed] [Google Scholar]
- [7].Kaminski T S, Garstecki P. Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 2017;46:6210–6226. doi: 10.1039/C5CS00717H. [DOI] [PubMed] [Google Scholar]
- [8].Jiang J K, Gao J, Zhang H D, He W Q, Zhang J Q, Daniel D, Yao X. Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl. Acad. Sci. USA. 2019;116:2482–2487. doi: 10.1073/pnas.1817172116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017;2:17036. doi: 10.1038/natrevmats.2017.36. [DOI] [Google Scholar]
- [10].Manna U, Lynn D M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: Principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces. Adv. Mater. 2015;27:3007–3012. doi: 10.1002/adma.201500893. [DOI] [PubMed] [Google Scholar]
- [11].Hou X, Zhang Y S, Santiago G T D, Alvarez M M, Ribas J, Jonas S J, Weiss P S, Andrews A M, Aizenberg J, Khademhosseini A. Interplay between materials and microfluidics. Nat. Rev. Mater. 2017;2:17016. doi: 10.1038/natrevmats.2017.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Su B, Wang S T, Song Y L, Jiang L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2010;4:266–273. doi: 10.1007/s12274-010-0078-5. [DOI] [Google Scholar]
- [13].Wei Y Y, Cheng G Y, Ho H P, Ho Y P, Yong K T. Thermodynamic perspectives on liquid-liquid droplet reactors for biochemical applications. Chem. Soc. Rev. 2020;49:6555–6567. doi: 10.1039/C9CS00541B. [DOI] [PubMed] [Google Scholar]
- [14].Yao Y X, Bennett R K A, Xu Y, Rather A M, Li S C, Cheung T C, Bhanji A, Kreder M J, Daniel D, Adera S, et al. Wettability-based ultrasensitive detection of amphiphiles through directed concentration at disordered regions in self-assembled monolayers. Proc. Natl. Acad. Sci. USA. 2022;119:e2211042119. doi: 10.1073/pnas.2211042119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Li W, Tang X, Wang L Q. Photopyroelectric microfluidics. Sci. Adv. 2020;6:eabc1693. doi: 10.1126/sciadv.abc1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Gao Z F, Liu R, Wang J H, Dai J, Huang W H, Liu M J, Wang S T, Xia F, Jiang L. Controlling droplet motion on an organogel surface by tuning the chain length of DNA and its biosensing application. Chem. 2018;4:2929–2943. doi: 10.1016/j.chempr.2018.09.028. [DOI] [Google Scholar]
- [17].Courtney M, Chen X M, Chan S, Mohamed T, Rao P P N, Ren C L. Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications. Anal. Chem. 2017;89:910–915. doi: 10.1021/acs.analchem.6b04039. [DOI] [PubMed] [Google Scholar]
- [18].Li A, Li H Z, Li Z, Zhao Z P, Li K Z, Li M Z, Song Y L. Programmable droplet manipulation by a magnetic-actuated robot. Sci. Adv. 2020;6:eaay5808. doi: 10.1126/sciadv.aay5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Wang C, Wang D Y, Miao W N, Shi L X, Wang S T, Tian Y, Jiang L. Bioinspired ultrafast-responsive nanofluidic system for ion and molecule transport with speed control. ACS Nano. 2020;14:12614–12620. doi: 10.1021/acsnano.0c05156. [DOI] [PubMed] [Google Scholar]
- [20].Zhan Y Y, Zhou G F, Lamers B A G, Visschers F L L, Hendrix M M R M, Broer D J, Liu D Q. Artificial organic skin wets its surface by field-induced liquid secretion. Matter. 2020;3:782–793. doi: 10.1016/j.matt.2020.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature. 2010;463:640–643. doi: 10.1038/nature08729. [DOI] [PubMed] [Google Scholar]
- [22].Park K C, Kim P, Grinthal A, He N, Fox D, Weaver J C, Aizenberg J. Condensation on slippery asymmetric bumps. Nature. 2016;531:78–82. doi: 10.1038/nature16956. [DOI] [PubMed] [Google Scholar]
- [23].Ju J, Bai H, Zheng Y M, Zhao T Y, Fang R C, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012;3:1247. doi: 10.1038/ncomms2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Tang X, Li W, Wang L Q. Furcated droplet motility on crystalline surfaces. Nat. Nanotechnol. 2021;16:1106–1112. doi: 10.1038/s41565-021-00945-w. [DOI] [PubMed] [Google Scholar]
- [25].Jin Y K, Xu W H, Zhang H H, Li R R, Sun J, Yang S Y, Liu M J, Mao H Y, Wang Z K. Electrostatic tweezer for droplet manipulation. Proc. Natl. Acad. Sci. USA. 2022;119:e2105459119. doi: 10.1073/pnas.2105459119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Guo T Q, Che P D, Heng L P, Fan L Z, Jiang L. Anisotropic slippery surfaces: Electric-driven smart control of a drop’s slide. Adv. Mater. 2016;28:6999–7007. doi: 10.1002/adma.201601239. [DOI] [PubMed] [Google Scholar]
- [27].Zhang P R, Chen C Y, Su X Y, Mai J, Gu Y Y, Tian Z H, Zhu H D, Zhong Z W, Fu H, Yang S J, et al. Acoustic streaming vortices enable contactless, digital control of droplets. Sci. Adv. 2020;6:eaba0606. doi: 10.1126/sciadv.aba0606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Collignon S, Friend J, Yeo L. Planar microfluidic drop splitting and merging. Lab Chip. 2015;15:1942–1951. doi: 10.1039/C4LC01453G. [DOI] [PubMed] [Google Scholar]
- [29].Wang F, Liu M J, Liu C, Zhao Q L, Wang T, Wang Z K, Du Z M. Light-induced charged slippery surfaces. Sci. Adv. 2022;8:eabp9369. doi: 10.1126/sciadv.abp9369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Tang X, Wang L Q. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces. ACS Nano. 2018;12:8994–9004. doi: 10.1021/acsnano.8b02470. [DOI] [PubMed] [Google Scholar]
- [31].Timonen J V I, Latikka M, Leibler L, Ras R H A, Ikkala O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science. 2013;341:253–257. doi: 10.1126/science.1233775. [DOI] [PubMed] [Google Scholar]
- [32].Liu X B, Kent N, Ceballos A, Streubel R, Jiang Y F, Chai Y, Kim P Y, Forth J, Hellman F, Shi S W, et al. Reconfigurable ferromagnetic liquid droplets. Science. 2019;365:264–267. doi: 10.1126/science.aaw8719. [DOI] [PubMed] [Google Scholar]
- [33].Zhang J Q, Wang X J, Wang Z Y, Pan S F, Yi B, Ai L Q, Gao J, Mugele F, Yao X. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021;12:7136. doi: 10.1038/s41467-021-27503-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Feng L, He X Y, Zhu J L, Shi W Y. Magnetic manipulation of diamagnetic droplet on slippery liquid-infused porous surface. Phys. Rev. Fluids. 2022;7:053602. doi: 10.1103/PhysRevFluids.7.053602. [DOI] [Google Scholar]
- [35].Roy P K, Bormashenko E, Frenkel M, Legchenkova I, Shoval S. Magnetic field induced motion of water droplets and bubbles on the lubricant coated surface. Colloid Surf. A. 2020;597:124773. doi: 10.1016/j.colsurfa.2020.124773. [DOI] [Google Scholar]
- [36].Volk A A, Epps R W, Abolhasani M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: Toward autonomous robotic experimentation. Adv. Mater. 2021;33:2004495. doi: 10.1002/adma.202004495. [DOI] [PubMed] [Google Scholar]
- [37].Wang W D, Timonen J V I, Carlson A, Drotlef D M, Zhang C T, Kolle S, Grinthal A, Wong T S, Hatton B, Kang S H, et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature. 2018;559:77–82. doi: 10.1038/s41586-018-0250-8. [DOI] [PubMed] [Google Scholar]
- [38].Guo P, Wang Z B, Heng L P, Zhang Y Q, Wang X, Jiang L. Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface. Adv. Funct. Mater. 2019;29:1808717. doi: 10.1002/adfm.201808717. [DOI] [Google Scholar]
- [39].Lou X D, Huang Y, Yang X, Zhu H, Heng L P, Xia F. External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: Fabrications and applications. Adv. Funct. Mater. 2020;30:1901130. doi: 10.1002/adfm.201901130. [DOI] [Google Scholar]
- [40].Demus D, Goodby J, Gray G W, Spiess H W, Vill V. Handbook of Liquid Crystals: Low Molecular Weight Liquid Crystals I. New York: Wiley-VCH Verlag GmbH; 1998. [Google Scholar]
- [41].Schadt M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 1997;27:305–379. doi: 10.1146/annurev.matsci.27.1.305. [DOI] [Google Scholar]
- [42].Bukusoglu E, Pantoja M B, Mushenheim P C, Wang X G, Abbott N L. Design of responsive and active (soft) materials using liquid crystals. Annu. Rev. Chem. Biomol. Eng. 2016;7:163–196. doi: 10.1146/annurev-chembioeng-061114-123323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Kim Y K, Wang X G, Mondkar P, Bukusoglu E, Abbott N L. Self-reporting and self-regulating liquid crystals. Nature. 2018;557:539–544. doi: 10.1038/s41586-018-0098-y. [DOI] [PubMed] [Google Scholar]
- [44].Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv. Mater. 2020;32:2004664. doi: 10.1002/adma.202004664. [DOI] [PubMed] [Google Scholar]
- [45].Turiv T, Koizumi R, Thijssen K, Genkin M M, Yu H, Peng C H, Wei Q H, Yeomans J M, Aranson I S, Doostmohammadi A, et al. Polar jets of swimming bacteria condensed by a patterned liquid crystal. Nat. Phys. 2020;16:481–487. doi: 10.1038/s41567-020-0793-0. [DOI] [Google Scholar]
- [46].Xu Y, Rather A M, Song S, Fang J C, Dupont R L, Kara U I, Chang Y, Paulson J A, Qin R J, Bao X P, et al. Ultrasensitive and selective detection of SARS-CoV-2 using thermotropic liquid crystals and image-based machine learning. Cell Rep. Phys. Sci. 2020;1:100276. doi: 10.1016/j.xcrp.2020.100276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [47].Kléman M, Lavrentovich O D. Soft Matter Physics: An Introduction. New York: Springer; 2003. [Google Scholar]
- [48].Turiv T, Lazo I, Brodin A, Lev B I, Reiffenrath V, Nazarenko V G, Lavrentovich O D. Effect of collective molecular reorientations on brownian motion of colloids in nematic liquid crystal. Science. 2013;342:1351–1354. doi: 10.1126/science.1240591. [DOI] [PubMed] [Google Scholar]
- [49].Xu Y, Rather A M, Yao Y X, Fang J C, Mamtani R S, Bennett R K A, Atta R G, Adera S, Tkalec U, Wang X G. Liquid crystal-based open surface microfluidics manipulate liquid mobility and chemical composition on demand. Sci. Adv. 2021;7:eabi7607. doi: 10.1126/sciadv.abi7607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [50].Xu Y, Chang Y, Yao Y X, Zhang M, Dupont R L, Rather A M, Bao X P, Wang X G. Modularizable liquid-crystal-based open surfaces enable programmable chemical transport and feeding using liquid droplets. Adv. Mater. 2022;34:2108788. doi: 10.1002/adma.202108788. [DOI] [PubMed] [Google Scholar]
- [51].K&J Magnetics, Inc [Online]. https://www.kjmagnetics.com/. (Accessed on Oct 29, 2022).
- [52].Gim M J, Beller D A, Yoon D K. Morphogenesis of liquid crystal topological defects during the nematic-smectic a phase transition. Nat. Commun. 2017;8:15453. doi: 10.1038/ncomms15453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [53].Honglawan A, Beller D A, Cavallaro M, Jr., Kamien R D, Stebe K J, Yang S. Topographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystals. Proc. Natl. Acad. Sci. USA. 2013;110:34–39. doi: 10.1073/pnas.1214708109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Yoon D K, Deb R, Chen D, Körblova E, Shao R F, Ishikawa K, Rao N V S, Walba D M, Smalyukh I I, Clark N A. Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement. Proc. Natl. Acad. Sci. USA. 2010;107:21311–21315. doi: 10.1073/pnas.1014593107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Zappone B, Meyer C, Bruno L, Lacaze E. Periodic lattices of frustrated focal conic defect domains in smectic liquid crystal films. Soft Matter. 2012;8:4318–4326. doi: 10.1039/c2sm07207f. [DOI] [Google Scholar]
- [56].Rather A M, Xu Y, Chang Y, Dupont R L, Borbora A, Kara U I, Fang J C, Mamtani R, Zhang M, Yao Y X, et al. Stimuli-responsive liquid-crystal-infused porous surfaces for manipulation of underwater gas bubble transport and adhesion. Adv. Mater. 2022;34:2110085. doi: 10.1002/adma.202110085. [DOI] [PubMed] [Google Scholar]
- [57].Gao N, Geyer F, Pilat D W, Wooh S, Vollmer D, Butt H J, Berger R. How drops start sliding over solid surfaces. Nat. Phys. 2018;14:191–196. doi: 10.1038/nphys4305. [DOI] [Google Scholar]
- [58].Mirsaidov U M, Zheng H M, Bhattacharya D, Casana Y, Matsudaira P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA. 2012;109:7187–7190. doi: 10.1073/pnas.1200457109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [59].Sun L Y, Bian F K, Wang Y, Wang Y T, Zhang X X, Zhao Y J. Bioinspired programmable wettability arrays for droplets manipulation. Proc. Natl. Acad. Sci. USA. 2020;117:4527–4532. doi: 10.1073/pnas.1921281117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [60].Wang B L, Heng L P, Jiang L. Temperature-responsive anisotropic slippery surface for smart control of the droplet motion. ACS Appl. Mater. Interfaces. 2018;10:7442–7450. doi: 10.1021/acsami.7b16818. [DOI] [PubMed] [Google Scholar]
- [61].Kreder M J, Daniel D, Tetreault A, Cao Z L, Lemaire B, Timonen J V I, Aizenberg J. Film dynamics and lubricant depletion by droplets moving on lubricated surfaces. Phys. Rev. X. 2018;8:031053. [Google Scholar]
- [62].Daniel D, Timonen J V I, Li R P, Velling S J, Aizenberg J. Oleoplaning droplets on lubricated surfaces. Nat. Phys. 2017;13:1020–1025. doi: 10.1038/nphys4177. [DOI] [Google Scholar]
- [63].Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, McKinley G H, Varanasi K K. Droplet mobility on lubricant-impregnated surfaces. Soft Matter. 2013;9:1772–1780. doi: 10.1039/C2SM27032C. [DOI] [Google Scholar]
- [64].Xu W, Choi C H. From sticky to slippery droplets: Dynamics of contact line depinning on superhydrophobic surfaces. Phys. Rev. Lett. 2012;109:024504. doi: 10.1103/PhysRevLett.109.024504. [DOI] [PubMed] [Google Scholar]
- [65].Malinowski R, Parkin I P, Volpe G. Advances towards programmable droplet transport on solid surfaces and its applications. Chem. Soc. Rev. 2020;49:7879–7892. doi: 10.1039/D0CS00268B. [DOI] [PubMed] [Google Scholar]
- [66].Gao L C, McCarthy T J. Contact angle hysteresis explained. Langmuir. 2006;22:6234–6237. doi: 10.1021/la060254j. [DOI] [PubMed] [Google Scholar]
- [67].De Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves. New York: Springer; 2004. [Google Scholar]
- [68].Daniel D, Timonen J V I, Li R P, Velling S J, Kreder M J, Tetreault A, Aizenberg J. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 2018;120:244503. doi: 10.1103/PhysRevLett.120.244503. [DOI] [PubMed] [Google Scholar]
- [69].Landau L, Levich B. Dragging of a liquid by a moving plate. In: Pelcé P, editor. Dynamics of Curved Fronts. Boston: Academic Press; 1988. pp. 141–153. [Google Scholar]
- [70].Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477:443–447. doi: 10.1038/nature10447. [DOI] [PubMed] [Google Scholar]
- [71].De Gennes P G, Prost J. The Physics of Liquid Crystals; Clarendon Press. Oxford: Oxford University Press; 1993. [Google Scholar]
- [72].Chmielewski A G. Viscosity coefficients of some nematic liquid crystals. Mol. Cryst. Liq. Cryst. 1986;132:339–352. doi: 10.1080/00268948608079552. [DOI] [Google Scholar]
- [73].Mottram N J, Hogan S J. Magnetic field-induced changes in molecular order in nematic liquid crystals. Continuum Mech. Thermodyn. 2002;14:281–295. doi: 10.1007/s00161-002-0097-x. [DOI] [Google Scholar]
- [74].Concellón A, Zentner C A, Swager T M. Dynamic complex liquid crystal emulsions. J. Am. Chem. Soc. 2019;141:18246–18255. doi: 10.1021/jacs.9b09216. [DOI] [PubMed] [Google Scholar]
- [75].Kikuchi H. Liquid crystalline blue phases. In: Kato T, editor. Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Berlin: Springer; 2008. pp. 99–117. [Google Scholar]
- [76].Martínez-González J A, Zhou Y, Rahimi M, Bukusoglu E, Abbott N L, De Pablo J J. Blue-phase liquid crystal droplets. Proc. Natl. Acad. Sci. USA. 2015;112:13195–13200. doi: 10.1073/pnas.1514251112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [77].Borshch V, Kim Y K, Xiang J, Gao M, Jákli A, Panov V P, Vij J K, Imrie C T, Tamba M G, Mehl G H, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun. 2013;4:2635. doi: 10.1038/ncomms3635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [78].Chen D, Porada J H, Hooper J B, Klittnick A, Shen Y Q, Tuchband M R, Korblova E, Bedrov D, Walba D M, Glaser M A, et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc. Natl. Acad. Sci. USA. 2013;110:15931–15936. doi: 10.1073/pnas.1314654110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [79].Lee C, Kim H, Nam Y. Drop impact dynamics on oil-infused nanostructured surfaces. Langmuir. 2014;30:8400–8407. doi: 10.1021/la501341x. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Supplementary material, approximately 1.50 MB.
Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces
