Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Dec 21;30(2):209–224. doi: 10.1007/s12613-022-2544-y

A review of lithium extraction from natural resources

Yubo Liu 1,2, Baozhong Ma 1,2,3,, Yingwei Lü 1,2, Chengyan Wang 1,2,3,, Yongqiang Chen 1,2,3
PMCID: PMC9768727

Abstract

Lithium is considered to be the most important energy metal of the 21st century. Because of the development trend of global electrification, the consumption of lithium has increased significantly over the last decade, and it is foreseeable that its demand will continue to increase for a long time. Limited by the total amount of lithium on the market, lithium extraction from natural resources is still the first choice for the rapid development of emerging industries. This paper reviews the recent technological developments in the extraction of lithium from natural resources. Existing methods are summarized by the main resources, such as spodumene, lepidolite, and brine. The advantages and disadvantages of each method are compared. Finally, reasonable suggestions are proposed for the development of lithium extraction from natural resources based on the understanding of existing methods. This review provides a reference for the research, development, optimization, and industrial application of future processes.

Keywords: lithium, extraction, spodumene, lepidolite, brine

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52034002 and U1802253), the National Key Research and Development Program of China (No. 2019YFC1908401), and the Fundamental Research Funds for the Central Universities, China (No. FRF-TT-19-001).

Footnotes

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Contributor Information

Baozhong Ma, Email: bzhma_ustb@yeah.net.

Chengyan Wang, Email: chywang@yeah.net.

References

  • [1].S. Ferrari, M. Falco, A.B. Munoz-Garcia, et al., Solid-state post Li metal ion batteries: A sustainable forthcoming reality?, Adv. Energy Mater., 11(2021), No. 43, art. No. 2100785.
  • [2].Y.B. Liu, B.Z. Ma, Y.W. Lv, C.Y. Wang, and Y.Q. Chen, Thorough extraction of lithium and rubidium from lepidolite via thermal activation and acid leaching, Miner. Eng., 178(2022), art. No. 107407.
  • [3].A. Karrech, M.R. Azadi, M. Elchalakani, M.A. Shahin, and A.C. Seibi, A review on methods for liberating lithium from pegmatities, Miner. Eng., 145(2020), art. No. 106085.
  • [4].Kesler SE, Gruber PW, Medina PA, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012;48:55. doi: 10.1016/j.oregeorev.2012.05.006. [DOI] [Google Scholar]
  • [5].Z. Li, H.N. Gu, H. Wen, and Y.Q. Yang, Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process, Hydrometallurgy, 206(2021), art. No. 105759.
  • [6].U.S Geological Survey, Mineral Commodity Summaries 2022, U.S. Geological Survey, 2022 [2022-07-10]. 10.3133/mcs2022
  • [7].Meng F, McNeice J, Zadeh SS, Ghahreman A. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Miner. Process. Extr. Metall. Rev. 2021;42(2):123. doi: 10.1080/08827508.2019.1668387. [DOI] [Google Scholar]
  • [8].J.C. Kelly, M. Wang, Q. Dai, and O. Winjobi, Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries, Resour. Conserv. Recycl., 174(2021), art. No. 105762.
  • [9].Kim Y, Han Y, Kim S, Jeon HS. Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process. Process Saf. Environ. Prot. 2021;148:765. doi: 10.1016/j.psep.2021.02.001. [DOI] [Google Scholar]
  • [10].Li J, Kong J, Zhu QS, Li HZ. In-situ capturing of fluorine with CaO for accelerated defluorination roasting of lepidolite in a fluidized bed reactor. Powder Technol. 2019;353:498. doi: 10.1016/j.powtec.2019.05.063. [DOI] [Google Scholar]
  • [11].Zhang SM, Yang GJ, Li XY, et al. Electrolyte and current collector designs for stable lithium metal anodes. Int. J. Miner. Metall. Mater. 2022;29(5):953. doi: 10.1007/s12613-022-2442-3. [DOI] [Google Scholar]
  • [12].Yang M, Bi RY, Wang JY, Yu RB, Wang D. Decoding lithium batteries through advanced in situ characterization techniques. Int. J. Miner. Metall. Mater. 2022;29(5):965. doi: 10.1007/s12613-022-2461-0. [DOI] [Google Scholar]
  • [13].Liu W, Li JX, Xu HY, Li J, Qiu XP. Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating. Int. J. Miner. Metall. Mater. 2022;29(5):917. doi: 10.1007/s12613-022-2483-7. [DOI] [Google Scholar]
  • [14].Li N, Yang SQ, Chen HS, Jiao SQ, Song WL. Mechano-electrochemical perspectives on flexible lithium-ion batteries. Int. J. Miner. Metall. Mater. 2022;29(5):1019. doi: 10.1007/s12613-022-2486-4. [DOI] [Google Scholar]
  • [15].Goto M, Okumura K, Nakagawa S, et al. Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors. Fusion Eng. Des. 2018;136:357. doi: 10.1016/j.fusengdes.2018.02.029. [DOI] [Google Scholar]
  • [16].Konobeyev AY, Korovin YA, Pereslavtsev PE, Fischer U, von Möllendorff U. Development of methods for calculation of deuteron-lithium and neutron-lithium cross sections for energies up to 50 MeV. Nucl. Sci. Eng. 2001;139(1):1. doi: 10.13182/NSE00-31. [DOI] [Google Scholar]
  • [17].A. Youssef, R. Anwar, I.I. Bashter, E.A. Amin, and S.M. Reda, Neutron yield as a measure of achievement nuclear fusion using a mixture of deuterium and tritium isotopes, Phys. Scripta., 97(2022), No. 8, art. No. 085601.
  • [18].E. Stefanelli, M. Puccini, A. Pesetti, R. Lo Frano, and D. Aquaro, Lithium orthosilicate as nuclear fusion breeder material: Optimization of the drip casting production technology, Nucl. Mater. Energy, 30(2022), art. No. 101131.
  • [19].Yang C, Zhang JL, Jing QK, Liu YB, Chen YQ, Wang CY. Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process. Int. J. Miner. Metall. Mater. 2021;28(9):1478. doi: 10.1007/s12613-020-2137-6. [DOI] [Google Scholar]
  • [20].Lin J, Wu JW, Fan ES, et al. Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials. Int. J. Miner. Metall. Mater. 2022;29(5):942. doi: 10.1007/s12613-022-2430-7. [DOI] [Google Scholar]
  • [21].Dang H, Chang ZD, Zhou HL, Ma SH, Li M, Xiang JL. Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates. Int. J. Miner. Metall. Mater. 2022;29(9):1715. doi: 10.1007/s12613-021-2366-3. [DOI] [Google Scholar]
  • [22].Tadesse B, Makuei F, Albijanic B, Dyer L. The beneficiation of lithium minerals from hard rock ores: A review. Miner. Eng. 2019;131:170. doi: 10.1016/j.mineng.2018.11.023. [DOI] [Google Scholar]
  • [23].Salakjani NK, Singh P, Nikoloski AN. Production of lithium — A literature review part 1: Pretreatment of spodumene. Miner. Process. Extr. Metall. Rev. 2020;41(5):335. doi: 10.1080/08827508.2019.1643343. [DOI] [Google Scholar]
  • [24].Grosjean C, Miranda PH, Perrin M, Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable Sustainable Energy Rev. 2012;16(3):1735. doi: 10.1016/j.rser.2011.11.023. [DOI] [Google Scholar]
  • [25].Moon KS, Fuerstenau DW. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates. Int. J. Miner. Process. 2003;72(1–4):11. doi: 10.1016/S0301-7516(03)00084-X. [DOI] [Google Scholar]
  • [26].Hao H, Liu ZW, Zhao FQ, Geng Y, Sarkis J. Material flow analysis of lithium in China. Resour. Policy. 2017;51:100. doi: 10.1016/j.resourpol.2016.12.005. [DOI] [Google Scholar]
  • [27].Salakjani NK, Singh P, Nikoloski AN. Production of lithium-A literature review. part 2. extraction from spodumene. Miner. Process. Extr. Metall. Rev. 2021;42(4):268. doi: 10.1080/08827508.2019.1700984. [DOI] [Google Scholar]
  • [28].Samoilov VI, Kulenova NA, Sheregeda ZV, Gadylbekova LG, Agapov VA, Shushkevich LV. Integrated processing of spodumene in hydrometallurgy. Russ. J. Appl. Chem. 2008;81(3):494. doi: 10.1134/S1070427208030312. [DOI] [Google Scholar]
  • [29].Samoilov VI, Borsuk AN, Kulenova NA. Industrial methods for the integrated processing of minerals that contain beryllium and lithium. Metallurgist. 2009;53(1–2):53. doi: 10.1007/s11015-009-9137-0. [DOI] [Google Scholar]
  • [30].D. Yelatontsev and A. Mukhachev, Processing of lithium ores: Industrial technologies and case studies — A review, Hydrometallurgy, 201(2021), art. No. 105578.
  • [31].Rioyo J, Tuset S, Grau R. Lithium extraction from spodumene by the traditional sulfuric acid process: A review. Miner. Process. Extr. Metall. Rev. 2022;43(1):97. doi: 10.1080/08827508.2020.1798234. [DOI] [Google Scholar]
  • [32].Peltosaari O, Tanskanen P, Hautala S, Heikkinen EP, Fabritius T. Mechanical enrichment of converted spodumene by selective sieving. Miner. Eng. 2016;98:30. doi: 10.1016/j.mineng.2016.07.010. [DOI] [Google Scholar]
  • [33].S.B. Qiu, C.L. Liu, and J.G. Yu, Conversion from α-spodumene to intermediate product Li2SiO3 by hydrothermal alkaline treatment in the lithium extraction process, Miner. Eng., 183(2022), art. No. 107599.
  • [34].C. Dessemond, G. Soucy, J.P. Harvey, and P. Ouzilleau, Phase transitions in the α−γ−β spodumene thermodynamic system and impact of γ-spodumene on the efficiency of lithium extraction by acid leaching, Minerals, 10(2020), No. 6, art. No. 519.
  • [35].Lajoie-Leroux F, Dessemond C, Soucy G, Laroche N, Magnan JF. Impact of the impurities on lithium extraction from β-spodumene in the sulfuric acid process. Miner. Eng. 2018;129:1. doi: 10.1016/j.mineng.2018.09.011. [DOI] [Google Scholar]
  • [36].H. Li, J. Eksteen, and G. Kuang, Recovery of lithium from mineral resources: State-of-the-art and perspectives — A review, Hydrometallurgy, 189(2019), art. No. 105129.
  • [37].E. Gasafi and R. Pardemann, Processing of spodumene concentrates in fluidized-bed systems, Miner. Eng., 148(2020), art. No. 106205.
  • [38].Kotsupalo NP, Menzheres LT, Ryabtsev AD, Boldyrev VV. Mechanical activation of α-spodumene for further processing into lithium compounds. Theor. Found. Chem. Eng. 2010;44(4):503. doi: 10.1134/S0040579510040251. [DOI] [Google Scholar]
  • [39].Salakjani NK, Singh P, Nikoloski AN. Acid roasting of spodumene: Microwave vs. conventional heating. Miner. Eng. 2019;138:161. doi: 10.1016/j.mineng.2019.05.003. [DOI] [Google Scholar]
  • [40].H. Guo, G. Kuang, H.D. Wang, H.Z. Yu, and X.K. Zhao, Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid, Minerals, 7(2017), No. 11, art. No. 205.
  • [41].Guo H, Yu HZ, Zhou AN, et al. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium. Trans. Nonferrous Met. Soc. China. 2019;29(2):407. doi: 10.1016/S1003-6326(19)64950-2. [DOI] [Google Scholar]
  • [42].H. Guo, M.H. Lv, G. Kuang, and H.D. Wang, Enhanced lithium extraction from α-spodumene with fluorine-based chemical method: A stepwise heat treatment for fluorine removal, Miner. Eng., 174(2021), art. No. 107246.
  • [43].G. Rosales, M. Ruiz, and M. Rodriguez, Study of the extraction kinetics of lithium by leaching β-spodumene with hydrofluoric acid, Minerals, 6(2016), No. 4, art. No. 98.
  • [44].Rosales GD, Ruiz MDC, Rodriguez MH. Novel process for the extraction of lithium from β-spodumene by leaching with HF. Hydrometallurgy. 2014;147–148:1. doi: 10.1016/j.hydromet.2014.04.009. [DOI] [Google Scholar]
  • [45].Chen Y, Tian QQ, Chen BZ, Shi XC, Liao T. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process. Hydrometallurgy. 2011;109(1–2):43. doi: 10.1016/j.hydromet.2011.05.006. [DOI] [Google Scholar]
  • [46].Kuang G, Liu Y, Li H, Xing SZ, Li FJ, Guo H. Extraction of lithium from β-spodumene using sodium sulfate solution. Hydrometallurgy. 2018;177:49. doi: 10.1016/j.hydromet.2018.02.015. [DOI] [Google Scholar]
  • [47].Y.F. Song, T.Y. Zhao, L.H. He, Z.W. Zhao, and X.H. Liu, A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate, Hydrometallurgy, 189(2019), art. No. 105141.
  • [48].Xing P, Wang CY, Zeng L, et al. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene. ACS Sustainable Chem. Eng. 2019;7(10):9498. doi: 10.1021/acssuschemeng.9b00923. [DOI] [Google Scholar]
  • [49].Rosales GD, Resentera ACJ, Gonzalez JA, Wuilloud RG, Rodriguez MH. Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching. Chem. Eng. Res. Des. 2019;150:320. doi: 10.1016/j.cherd.2019.08.009. [DOI] [Google Scholar]
  • [50].Santos LLD, Nascimento RMD, Pergher SBC. Beta-spodumene:Na2CO3:NaCl system calcination: A kinetic study of the conversion to lithium salt. Chem. Eng. Res. Des. 2019;147:338. doi: 10.1016/j.cherd.2019.05.019. [DOI] [Google Scholar]
  • [51].M.L. Grasso, J.A. González, and F.C. Gennari, Lithium extraction from β-LiAlSi2O6 using Na2CO3 through thermal reaction, Miner. Eng., 176(2022), art. No. 107349.
  • [52].Barbosa LI, Valente NG, González JA. Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas. Thermochim. Acta. 2013;557:61. doi: 10.1016/j.tca.2013.01.033. [DOI] [Google Scholar]
  • [53].Barbosa LI, Valente G, Orosco RP, González JA. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner. Eng. 2014;56:29. doi: 10.1016/j.mineng.2013.10.026. [DOI] [Google Scholar]
  • [54].Barbosa LI, González JA, Ruiz MDC. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride. Thermochim. Acta. 2015;605:63. doi: 10.1016/j.tca.2015.02.009. [DOI] [Google Scholar]
  • [55].A.C. Resentera, G.D. Rosales, M.R. Esquivel, and M.H. Rodriguez, Thermal and structural analysis of the reaction pathways of α-spodumene with NH4HF2, Thermochim. Acta, 689(2020), art. No. 178609.
  • [56].Resentera AC, Esquivel MR, Rodriguez MH. Low-temperature lithium extraction from α-spodumene with NH4HF2: Modeling and optimization by least squares and artificial neural networks. Chem. Eng. Res. Des. 2021;167:73. doi: 10.1016/j.cherd.2020.12.023. [DOI] [Google Scholar]
  • [57].N. Setoudeh, A. Nosrati, and N.J. Welham, Phase changes in mechanically activated spodumene-Na2SO4 mixtures after isothermal heating, Miner. Eng., 155(2020), art. No. 106455.
  • [58].Ncube T, Oskierski H, Senanayake G, Dlugogorski BZ. Two-step reaction mechanism of roasting spodumene with potassium sulfate. Inorg. Chem. 2021;60(6):3620. doi: 10.1021/acs.inorgchem.0c03125. [DOI] [PubMed] [Google Scholar]
  • [59].Swain B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017;172:388. doi: 10.1016/j.seppur.2016.08.031. [DOI] [Google Scholar]
  • [60].P. Xing, C.Y. Wang, Y.Q. Chen, and B.Z. Ma, Rubidium extraction from mineral and brine resources: A review, Hydrometallurgy, 203(2021), art. No. 105644.
  • [61].Reichel S, Aubel T, Patzig A, Janneck E, Martin M. Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms. Miner. Eng. 2017;106:18. doi: 10.1016/j.mineng.2017.02.012. [DOI] [Google Scholar]
  • [62].Luong VT, Kang DJ, An JW, Kim MJ, Tran T. Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy. 2013;134–135:54. doi: 10.1016/j.hydromet.2013.01.015. [DOI] [Google Scholar]
  • [63].Setoudeh N, Nosrati A, Welham NJ. Lithium recovery from mechanically activated mixtures of lepidolite and sodium sulfate. Miner. Process. Extr. Metall. 2021;130(4):354. [Google Scholar]
  • [64].Vieceli N, Nogueira CA, Pereira MFC, Durão FO, Guimarães C, Margarido F. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates. Miner. Process. Extr. Metall. Rev. 2017;38(1):62. doi: 10.1080/08827508.2016.1262858. [DOI] [Google Scholar]
  • [65].Yan QX, Li XH, Wang ZX, et al. Extraction of lithium from lepidolite by sulfation roasting and water leaching. Int. J. Miner. Process. 2012;110–111:1. doi: 10.1016/j.minpro.2012.03.005. [DOI] [Google Scholar]
  • [66].H. Su, J.Y. Ju, J. Zhang, A.F. Yi, Z. Lei, L.N. Wang, Z.W. Zhu, and T. Qi, Lithium recovery from lepidolite roasted with potassium compounds, Miner. Eng., 145(2020), art. No. 106087.
  • [67].Luong VT, Kang DJ, An JW, Dao DA, Kim MJ, Tran T. Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy. 2014;141:8. doi: 10.1016/j.hydromet.2013.09.016. [DOI] [Google Scholar]
  • [68].X.F. Zhang, Z.C. Chen, S. Rohani, M.Y. He, X.M. Tan, and W.Z. Liu, Simultaneous extraction of lithium, rubidium, cesium and potassium from lepidolite via roasting with iron(II) sulfate followed by water leaching, Hydrometallurgy, 208(2022), art. No. 105820.
  • [69].Yan QX, Li XH, Wang ZX, et al. Extraction of lithium from lepidolite using chlorination roasting-water leaching process. Trans. Nonferrous Met. Soc. China. 2012;22(7):1753. doi: 10.1016/S1003-6326(11)61383-6. [DOI] [Google Scholar]
  • [70].Omoniyi KI, Agaku PI, Baba AA. Optimal hydrometallurgical extraction conditions for lithium extraction from a nigerian polylithionite ore for industrial application. In: Azimi G, Forsberg K, Ouchi T, Kim H, Alam S, Baba A, editors. Rare Metal Technology 2020. Cham: Springer; 2020. p. 33. [Google Scholar]
  • [71].X.F. Zhang, T. Aldahri, X.M. Tan, W.Z. Liu, L.Z. Zhang, and S.W. Tang, Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting, Chem. Eng. Process. Process Intensif., 147(2020), art. No. 107777.
  • [72].Yan QX, Li XH, Wang ZX, et al. Extraction of valuable metals from lepidolite. Hydrometallurgy. 2012;117–118:116. doi: 10.1016/j.hydromet.2012.02.004. [DOI] [Google Scholar]
  • [73].Y.Q. Kuai, W.G. Yao, H.W. Ma, M.T. Liu, Y. Gao, and R.Y. Guo, Recovery lithium and potassium from lepidolite via potash calcination-leaching process, Miner. Eng., 160(2021), art. No. 106643.
  • [74].Liu JL, Yin ZL, Li XH, Hu QY, Liu W. Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium. Trans. Nonferrous Met. Soc. China. 2019;29(3):641. doi: 10.1016/S1003-6326(19)64974-5. [DOI] [Google Scholar]
  • [75].J.L. Liu, Z.L. Yin, W. Liu, X.H. Li, and Q.Y. Hu, Treatment of aluminum and fluoride during hydrochloric acid leaching of lepidolite, Hydrometallurgy, 191(2020), art. No. 105222.
  • [76].Rentsch L, Martin G, Bertau M, Höck M. Lithium extracting from zinnwaldite: Economical comparison of an adapted spodumene and a direct-carbonation process. Chem. Eng. Technol. 2018;41(5):975. doi: 10.1002/ceat.201700604. [DOI] [Google Scholar]
  • [77].G.D. Rosales, E.G. Pinna, D.S. Suarez, and M.H. Rodriguez, Recovery process of Li, Al and Si from lepidolite by leaching with HF, Minerals, 7(2017), No. 3, art. No. 36.
  • [78].Guo H, Kuang G, Wan H, Yang Y, Yu HZ, Wang HD. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method. Hydrometallurgy. 2019;183:9. doi: 10.1016/j.hydromet.2018.10.020. [DOI] [Google Scholar]
  • [79].Wang HD, Zhou AN, Guo H, Lü MH, Yu HZ. Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid. J. Cent. South Univ. 2020;27(1):27. doi: 10.1007/s11771-020-4275-4. [DOI] [Google Scholar]
  • [80].H. Guo, M.H. Lv, G. Kuang, Y.J. Cao, and H.D. Wang, Step-wise heat treatment for fluorine removal on selective leachability of Li from lepidolite using HF/H2SO4 as lixiviant, Sep. Purif. Technol., 259(2021), art. No. 118194.
  • [81].Guo H, Kuang G, Li H, Pei WT, Wang HD. Enhanced lithium leaching from lepidolite in continuous tubular reactor using H2SO4+H2SiF6 as lixiviant. Trans. Nonferrous Met. Soc. China. 2021;31(7):2165. doi: 10.1016/S1003-6326(21)65646-7. [DOI] [Google Scholar]
  • [82].Vieceli N, Nogueira CA, Pereira MFC, et al. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate. Miner. Eng. 2017;102:1. doi: 10.1016/j.mineng.2016.12.001. [DOI] [Google Scholar]
  • [83].Vieceli N, Nogueira CA, Pereira MFC, Durão FO, Guimarães C, Margarido F. Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite. Int. J. Miner. Metall. Mater. 2018;25(1):11. doi: 10.1007/s12613-018-1541-7. [DOI] [Google Scholar]
  • [84].Vieceli N, Nogueira CA, Pereira MFC, Durão FO, Guimarães C, Margarido F. Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite. Hydrometallurgy. 2018;175:1. doi: 10.1016/j.hydromet.2017.10.022. [DOI] [Google Scholar]
  • [85].Zhang XF, Tan XM, Li C, Yi YJ, Liu WZ, Zhang LZ. Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching. Hydrometallurgy. 2019;185:244. doi: 10.1016/j.hydromet.2019.02.011. [DOI] [Google Scholar]
  • [86].Y.B. Liu, B.Z. Ma, Y.W. Lv, C.Y. Wang, and Y.Q. Chen, Selective recovery and efficient separation of lithium, rubidium, and cesium from lepidolite ores, Sep. Purif. Technol., 288(2022), art. No. 120667.
  • [87].Yan QX, Li XH, Yin ZL, et al. A novel process for extracting lithium from lepidolite. Hydrometallurgy. 2012;121–124:54. doi: 10.1016/j.hydromet.2012.04.006. [DOI] [Google Scholar]
  • [88].Lv YW, Xing P, Ma BZ, et al. Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation. ACS Sustainable Chem. Eng. 2020;8(38):14462. doi: 10.1021/acssuschemeng.0c04437. [DOI] [Google Scholar]
  • [89].Y.W. Lv, B.Z. Ma, Y.B. Liu, C.Y. Wang, and Y.Q. Chen, Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue, Microporous Mesoporous Mater., 329(2022), art. No. 111553.
  • [90].J. Mulwanda, G. Senanayake, H. Oskierski, M. Altarawneh, and B.Z. Dlugogorski, Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition, Hydrometallurgy, 201(2021), art. No. 105538.
  • [91].P.F.A. Braga, S.C.A. França, C.C. Gonçalves, P.F.V. Ferraz, and R. Neumann, Extraction of lithium from a montebrasite concentrate: Applied mineralogy, pyro- and hydrometallurgy, Hydrometallurgy, 191(2020), art. No. 105249.
  • [92].N. Setoudeh, A. Nosrati, and N.J. Welham, Lithium extraction from mechanically activated of petalite-Na2SO4 mixtures after isothermal heating, Miner. Eng., 151(2020), art. No. 106294.
  • [93].Hermawan A, Ohuchi T, Fujimoto N, Murase Y. Manufacture of composite board using wood prunings and waste porcelain stone. J. Wood Sci. 2009;55(1):74. doi: 10.1007/s10086-008-1000-6. [DOI] [Google Scholar]
  • [94].J.L. Wang, H.Z. Hu, and K.Q. Wu, Extraction of lithium, rubidium and cesium from lithium porcelain stone, Hydrometallurgy, 191(2020), art. No. 105233.
  • [95].Wang JL, Hu HZ, Ji BR. Selective extraction of Li, Rb, and Cs and precipitation of lithium carbonate directly from lithium porcelain stone. Russ. J. Non-Ferrous. Met. 2020;61(2):143. doi: 10.3103/S1067821220020133. [DOI] [Google Scholar]
  • [96].H.N. Gu, T.F. Guo, H.J. Wen, et al., Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone, Miner. Eng., 145(2020), art. No. 106076.
  • [97].Mubarok MZ, Madisaw RF, Kurniawan MR, Hidayat T. Experimental study of lithium extraction from a lithium-containing geothermal mud by hydrochloric acid leaching. J. Sustainable Metall. 2021;7(3):1254. doi: 10.1007/s40831-021-00415-6. [DOI] [Google Scholar]
  • [98].Y.X. Mu, C.Y. Zhang, W. Zhang, and Y.X. Wang, Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes, Desalination, 511(2021), art. No. 115112.
  • [99].Z.W. Zhao, G. Liu, H. Jia, and L.H. He, Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio, J. Membr. Sci., 596(2020), art. No. 117685.
  • [100].X.J. Pan, Z.H. Dou, D.L. Meng, X.X. Han, and T.A. Zhang, Electrochemical separation of magnesium from solutions of magnesium and lithium chloride, Hydrometallurgy, 191(2020), art. No. 105166.
  • [101].J. Chen, S. Lin, and J.G. Yu, Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines, J. Hazard. Mater., 388(2020), art. No. 122101. [DOI] [PubMed]
  • [102].A. Battistel, M.S. Palagonia, D. Brogioli, F. la Mantia, and R. Trócoli, Electrochemical methods for lithium recovery: A comprehensive and critical review, Adv. Mater., 32(2020), No. 23, art. No. e1905440. [DOI] [PubMed]
  • [103].Calvo EJ. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr. Opin. Electrochem. 2019;15:102. doi: 10.1016/j.coelec.2019.04.010. [DOI] [Google Scholar]
  • [104].Zhao ZW, Si XF, Liu XH, He LH, Liang XX. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy. 2013;133:75. doi: 10.1016/j.hydromet.2012.11.013. [DOI] [Google Scholar]
  • [105].D.F. Liu, Z.W. Zhao, W.H. Xu, J.C. Xiong, and L.H. He, A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation, Desalination, 519(2021), art. No. 115302.
  • [106].J.C. Xiong, L.H. He, D.F. Liu, W.H. Xu, and Z.W. Zhao, Olivine-FePO4 preparation for lithium extraction from brines via Electrochemical De-intercalation/Intercalation method, Desalination, 520(2021), art. No. 115326.
  • [107].J.C. Xiong, L.H. He, and Z.W. Zhao, Lithium extraction from high-sodium raw brine with Li0.3FePO4 electrode, Desalination, 535(2022), art. No. 115822.
  • [108].J.C. Xiong, Z.W. Zhao, D.F. Liu, and L.H. He, Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials, Sep. Purif. Technol., 290(2022), art. No. 120789.
  • [109].W.H. Xu, L.H. He, and Z.W. Zhao, Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials, Desalination, 503(2021), art. No. 114935.
  • [110].D.F. Liu, W.H. Xu, J.C. Xiong, L.H. He, and Z.W. Zhao, Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics, Sep. Purif. Technol., 270(2021), art. No. 118809.
  • [111].Z.Y. Guo, Z.Y. Ji, J. Wang, X.F. Guo, and J.S. Liang, Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage, Desalination, 533(2022), art. No. 115767.
  • [112].Luo GL, Zhu L, Li XW, et al. Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3−ZrO2 coated LiMn2O4 electrode. J. Energy Chem. 2022;69:244. doi: 10.1016/j.jechem.2022.01.012. [DOI] [Google Scholar]
  • [113].Yuan JS, Yin HB, Ji ZY, Deng HN. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate. Ind. Eng. Chem. Res. 2014;53(23):9889. doi: 10.1021/ie501098e. [DOI] [Google Scholar]
  • [114].R. Pulido, N. Naveas, R. J Martín-Palma, et al., Experimental and density functional theory study of the Li+ desorption in spinel/layered lithium manganese oxide nanocomposites using HCl, Chem. Eng. J., 441(2022), art. No. 136019.
  • [115].Xiao JL, Nie XY, Sun SY, Song XF, Li P, Yu JG. Lithium ion adsorption-desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model. Adv. Powder Technol. 2015;26(2):589. doi: 10.1016/j.apt.2015.01.008. [DOI] [Google Scholar]
  • [116].Lin HY, Yu XP, Li ML, Duo J, Guo YF, Deng TL. Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water. ACS Appl. Mater. Interfaces. 2019;11(29):26364. doi: 10.1021/acsami.9b07401. [DOI] [PubMed] [Google Scholar]
  • [117].Liu MX, Wu D, Qin DL, Yang G. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance. Chin. J. Chem. Eng. 2022;45:258. doi: 10.1016/j.cjche.2021.07.003. [DOI] [Google Scholar]
  • [118].S.D. Wei, Y.F. Wei, T. Chen, C.B. Liu, and Y.H. Tang, Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water, Chem. Eng. J., 379(2020), art. No. 122407.
  • [119].X.W. Li, L.L. Chen, Y.H. Chao, et al., Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene, Desalination, 537(2022), art. No. 115847.
  • [120].Ryu T, Shin J, Ghoreishian SM, Chung KS, Huh YS. Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite. Hydrometallurgy. 2019;184:22. doi: 10.1016/j.hydromet.2018.12.012. [DOI] [Google Scholar]
  • [121].Paranthaman MP, Li L, Luo JQ, et al. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents. Environ. Sci. Technol. 2017;51(22):13481. doi: 10.1021/acs.est.7b03464. [DOI] [PubMed] [Google Scholar]
  • [122].Yu TM, Caroline Reis Meira A, Cristina Kreutz J, et al. Exploring the surface reactivity of the magnetic layered double hydroxide lithium-aluminum: An alternative material for sorption and catalytic purposes. Appl. Surf. Sci. 2019;467–468:1195. [Google Scholar]
  • [123].S.S. Xu, J.F. Song, Q.Y. Bi, et al., Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice, J. Membr. Sci., 635(2021), art. No. 119441.
  • [124].Nie XY, Sun SY, Sun Z, Song XF, Yu JG. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination. 2017;403:128. doi: 10.1016/j.desal.2016.05.010. [DOI] [Google Scholar]
  • [125].Guo ZY, Ji ZY, Chen QB, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. J. Clean. Prod. 2018;193:338. doi: 10.1016/j.jclepro.2018.05.077. [DOI] [Google Scholar]
  • [126].G. Liu, Z.W. Zhao, and L.H. He, Highly selective lithium recovery from high Mg/Li ratio brines, Desalination, 474(2020), art. No. 114185.
  • [127].Shi WH, Liu XY, Ye CZ, Cao XH, Gao CJ, Shen JN. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane. Sep. Purif. Technol. 2019;210:885. doi: 10.1016/j.seppur.2018.09.006. [DOI] [Google Scholar]
  • [128].J. Hou, H.C. Zhang, A.W. Thornton, A.J. Hill, H.T. Wang, and K. Konstas, Lithium extraction by emerging metal-organic framework-based membranes, Adv. Funct. Mater., 31(2021), No. 46, art. No. 2105991.
  • [129].Zhong JJ, Qin L, Li JL, Yang Z, Yang K, Zhang MJ. MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors. Int. J. Miner. Metall. Mater. 2022;29(5):1061. doi: 10.1007/s12613-022-2469-5. [DOI] [Google Scholar]
  • [130].Ji LM, Hu YH, Li LJ, et al. Lithium extraction with a synergistic system of dioctyl phthalate and tributyl phosphate in kerosene and FeCl3. Hydrometallurgy. 2016;162:71. doi: 10.1016/j.hydromet.2016.02.018. [DOI] [Google Scholar]
  • [131].Sun Q, Chen H, Yu JG. Investigation on the lithium extraction process with the TBP-FeCl3 solvent system using experimental and DFT methods. Ind. Eng. Chem. Res. 2022;61(13):4672. doi: 10.1021/acs.iecr.1c05072. [DOI] [Google Scholar]
  • [132].Yu XP, Fan XB, Guo YF, Deng TL. Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate. Sep. Purif. Technol. 2019;211:790. doi: 10.1016/j.seppur.2018.10.054. [DOI] [Google Scholar]
  • [133].C.Q. Cai, T. Hanada, A.T.N. Fajar, and M. Goto, An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(I) from salt lakes, Desalination, 509(2021), art. No. 115073.
  • [134].X.H. Liu, M.L. Zhong, X.Y. Chen, J.T. Li, L.H. He, and Z.W. Zhao, Enriching lithium and separating lithium to magnesium from sulfate type salt lake brine, Hydrometallurgy, 192(2020), art. No. 105247.
  • [135].D.F. Liu, Z. Li, L.H. He, and Z.W. Zhao, Facet engineered Li3PO4 for lithium recovery from brines, Desalination, 514(2021), art. No. 115186.

Articles from International Journal of Minerals, Metallurgy and Materials are provided here courtesy of Nature Publishing Group

RESOURCES