Skip to main content
International Journal of Molecular Sciences logoLink to International Journal of Molecular Sciences
editorial
. 2022 Dec 12;23(24):15730. doi: 10.3390/ijms232415730

Host–Guest Complexes

Juan C Mejuto 1, Jesus Simal-Gandara 2,*
PMCID: PMC9779678  PMID: 36555372

Host–guest complexes, also known as inclusion complexes, are supramolecular structures [1,2] composed of two or more molecules or ions that are maintained through noncovalent interactions in a reversible way (Figure 1).

Figure 1.

Figure 1

Schematic structure of a host–guest complex with different stoichiometries.

The hosts have a cavity that allows them to behave as main host receptors with high affinity and selectivity for guest molecules. Macrocycles are generally used as host molecules (Figure 2).

Figure 2.

Figure 2

Typical host macrocyclic molecules.

These molecules include cryptands [3], crown ethers [4,5,6], cyclophanes [7], cyclopeptides [8,9], cyclodextrins [10,11,12], resorcin-arenes [13], cucurbit[n]urils [14,15], calix[n]arenes [16,17,18,19], and pillar[n]arenes [20,21].

In the literature, there are multiple examples of the applicability of these supramolecular systems in numerous fields of science and technology, such as functional materials, catalysts, electronic devices, sensors, and in the pharmaceutical or food industries [22,23,24,25,26].

In this Special Issue, entitled “Host–Guest Complexes”, structural aspects of the formation and stability of these complexes, as well as their characterization and aspects related to their technological applications, are addressed.

Galmés et al. [27] addressed non-covalent interactions associated with supramolecular compounds from the perspective of theoretical chemistry. In addition to this contribution, associated with the structural and energetic characteristics of host–guest complexes, multiple applications have been studied from a technological point of view, such as drug carriers and drug deliverers [28,29,30], gene delivery for immune-modulating therapy (Bai et al. [28]), inclusion complexes for cancer cells (Raffaini et al. [29]), and crystals as a solid solution for enantiomers (Czapik et al. [30]).

Likewise, corresponding results have been presented with the modification and/or improvement of physicochemical characteristics of substances associated with the use of inclusion complexes. This takes advantage of synergistic effects [31,32] for improving targeting and local anesthesia in inflamed tissues (Couto et al. [31]) and both antimicrobial and modulatory activity (de Alemeida-Magalhäes et al. [32]).

In this Special Issue, findings in the field of biotechnology are also presented by García-Pérez et al. [33], such as the presence of host–guest complexes showing an improvement in the production of bioactive compounds [33].

In short, the set of contributions that make up this Special Issue show that host–guest complexes constitute an interesting family of chemical structures whose study is an integral part of innovative current scientific research in the field of supramolecular chemistry. This is due to both the scientific interest they arouse and the multiple and varied applications in the field of new technologies in a large number of industrial sectors.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Steed J.W., Atwood J.L. Supramolecular Chemistry. 2nd ed. Wiley; Hoboken, NJ, USA: 2013. [Google Scholar]
  • 2.Lehn J.M. Supramolecular Shemistry. Science. 1993;260:1762–1763. doi: 10.1126/science.8511582. [DOI] [PubMed] [Google Scholar]
  • 3.Zhang M., Yan X., Huang F., Gibson H.W. Stimuli-Responsive Host–Guest Systems Based on the Recognition of Cryptands by Organic Guests. Acc. Chem. Res. 2014;47:1995–2005. doi: 10.1021/ar500046r. [DOI] [PubMed] [Google Scholar]
  • 4.Kralij M., Tusek-Bozic L., Frkanec L. Biomedical potentials of crown ethers: Prospective antitumor agents. ChemMedChem. 2008;3:1478–1492. doi: 10.1002/cmdc.200800118. [DOI] [PubMed] [Google Scholar]
  • 5.Goek G.W., Leevy W.M., Weber M.E. Crown Ethers:  Sensors for Ions and Molecular Scaffolds for Materials and Biological Models. Chem. Rev. 2004;104:2723–2750. doi: 10.1021/cr020080k. [DOI] [PubMed] [Google Scholar]
  • 6.Hof F. Host–guest chemistry that directly targets lysine methylation: Synthetic host molecules as alternatives to bio-reagents. Chem. Commun. 2016;52:10093–10108. doi: 10.1039/C6CC04771H. [DOI] [PubMed] [Google Scholar]
  • 7.Ramaiah D., Neelakandan P.P., Naira A.K., Aviraha R.R. Functional cyclophanes: Promising hosts for optical biomolecular recognition. Chem. Soc. Rev. 2010;39:4158–4168. doi: 10.1039/b920032k. [DOI] [PubMed] [Google Scholar]
  • 8.Tan N.-H., Zhou J. Plant Cyclopeptides. Chem. Rev. 2006;106:840–895. doi: 10.1021/cr040699h. [DOI] [PubMed] [Google Scholar]
  • 9.Galan M.C., Dumy P., Renaudet O. Multivalent glyco(cyclo)peptides. Chem. Soc. Rev. 2013;42:4599–4612. doi: 10.1039/C2CS35413F. [DOI] [PubMed] [Google Scholar]
  • 10.Crini G. Review: A History of Cyclodextrins. Chem. Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. [DOI] [PubMed] [Google Scholar]
  • 11.Mellet C.O., Fernandez J.M.G., Benito J.M. Cyclodextrin-based gene delivery systems. Chem. Soc. Rev. 2011;40:1586–1608. doi: 10.1039/C0CS00019A. [DOI] [PubMed] [Google Scholar]
  • 12.García-Río L., Hevés P., Leis J.R., Mejuto J.C., Perez-Juste J., Rodríguez-Dafonte P. Evidence for complexes of different stoichiometries between organic solvents and cyclodextrins. Org. Biomol. Chem. 2006;4:1038–1048. doi: 10.1039/b513214b. [DOI] [PubMed] [Google Scholar]
  • 13.Timmerman P., Verboom W., Reinhoudt D.N. Resorcinarenes. Tetrahedron. 1996;52:2663–2704. doi: 10.1016/0040-4020(95)00984-1. [DOI] [Google Scholar]
  • 14.Lagona J., Mukhopadhyay P., Chakrabarti S., Isaacs L. The Cucurbit[n]uril Family. Angew. Chem. Int. Ed. 2005;44:4844–4870. doi: 10.1002/anie.200460675. [DOI] [PubMed] [Google Scholar]
  • 15.Barrow S.J., Kasera S., Rowland M.J., Barrio J., Scherman O.A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015;115:12320–12406. doi: 10.1021/acs.chemrev.5b00341. [DOI] [PubMed] [Google Scholar]
  • 16.Diamond D., Mckervey M.A. Calixarene-based sensing agents. Chem. Soc. Rev. 1996;25:15–24. doi: 10.1039/cs9962500015. [DOI] [Google Scholar]
  • 17.Ikeda A., Shinkai S. Novel Cavity Design Using Calix[n]arene Skeletons:  Toward Molecular Recognition and Metal Binding. Chem. Rev. 1997;97:1713–1734. doi: 10.1021/cr960385x. [DOI] [PubMed] [Google Scholar]
  • 18.Böhmer V. Calixarenes, Macrocycles with (Almost) Unlimited Possibilities. Angew. Chem. Int. Ed. Engl. 1995;34:713–745. doi: 10.1002/anie.199507131. [DOI] [Google Scholar]
  • 19.Nimse S.B., Kim T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013;42:366–386. doi: 10.1039/C2CS35233H. [DOI] [PubMed] [Google Scholar]
  • 20.Sathiyajith C.W., Shaikh R.R., Han Q., Zhang Y., Meguellati K., Yang Y.-W. Biological and related applications of pillar[n]arenes. Chem. Commun. 2017;53:677–696. doi: 10.1039/C6CC08967D. [DOI] [PubMed] [Google Scholar]
  • 21.Gómez-González B., García-Río L., Basílio N., Mejuto J.C., Simal-Gándara J. Molecular Molecular Recognition by Pillar [5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics. 2022;14:60. doi: 10.3390/pharmaceutics14010060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Chen K.-J., Garcia M.A., Wang H., Tseng H.-R. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics. Wiley; Hoboken, NJ, USA: 2012. Supramolecular Chemistry. [Google Scholar]
  • 23.Ma X., Zhao Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem. Rev. 2015;115:7794–7839. doi: 10.1021/cr500392w. [DOI] [PubMed] [Google Scholar]
  • 24.Cid-Samamed A., Rakmai J., Mejuto J.C., Simal-Gandara J., Astray G. Cyclodextrins inclusion complex: Preparation methos, analytical techniques and food industry applications. Food Chem. 2022;384:132467. doi: 10.1016/j.foodchem.2022.132467. [DOI] [PubMed] [Google Scholar]
  • 25.Gonzalez-Pereira A., Carpena M., García-Oliveira P., Mejuto J.C., Prieto M.A., Simal-Gandara J. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. Int. J. Mol. Sci. 2021;22:1339. doi: 10.3390/ijms22031339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Astray G., Mejuto J.C., Simal-Gandara J. Latest developments in the application of cyclodextrins host-guest complexes in beverage technology processes. Food Hydrocoll. 2020;106:105882. doi: 10.1016/j.foodhyd.2020.105882. [DOI] [Google Scholar]
  • 27.Galmés B., Franconetti A., Frontera A. Nitropyridine-1-Oxides as Excellent π-Hole Donors: Interplay between σ-Hole (Halogen, Hydrogen, Triel, and Coordination Bonds) and π-Hole Interactions. Int. J. Mol. Sci. 2019;20:3440. doi: 10.3390/ijms20143440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Bai H., Wang J., Li Z., Tang G. Macrocyclic Compounds for Drug and Gene Delivery in Immune-Modulating Therapy. Int. J. Mol. Sci. 2019;20:2097. doi: 10.3390/ijms20092097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Raffaini G., Ganazzoli F. A Molecular Dynamics Study of a Photodynamic Sensitizer for Cancer Cells: Inclusion Complexes of γ-Cyclodextrins with C70. Int. J. Mol. Sci. 2019;20:4831. doi: 10.3390/ijms20194831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Czapik A., Jelecki M., Kwit M. Chiral Cocrystal Solid Solutions, Molecular Complexes, and Salts of N-Triphenylacetyl-l-Tyrosine and Diamines. Int. J. Mol. Sci. 2019;20:5004. doi: 10.3390/ijms20205004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Couto V.M., de Oliveira-Nascimento L., Cabeça L.F., Geraldes D.C., Costa J.S.R., Riske K.A., Franz-Montan M., Yokaychiya F., Franco M.K.K.D., de Paula E. Capsaicin-Cyclodextrin Complex Enhances Mepivacaine Targeting and Improves Local Anesthesia in Inflamed Tissues. Int. J. Mol. Sci. 2020;21:5741. doi: 10.3390/ijms21165741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.de Almeida Magalhães T.S.S., de Oliveira Macedo P.C., Kawashima Pacheco S.Y., Silva S.S.D., Barbosa E.G., Pereira R.R., Costa R.M.R., Silva Junior J.O.C., da Silva Ferreira M.A., de Almeida J.C., et al. Development and Evaluation of Antimicrobial and Modulatory Activity of Inclusion Complex of Euterpe oleracea Mart Oil and β-Cyclodextrin or HP-β-Cyclodextrin. Int. J. Mol. Sci. 2020;21:942. doi: 10.3390/ijms21030942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.García-Pérez P., Losada-Barreiro S., Gallego P.P., Bravo-Díaz C. Cyclodextrin-Elicited Bryophyllum Suspension Cultured Cells: Enhancement of the Production of Bioactive Compounds. Int. J. Mol. Sci. 2019;20:5180. doi: 10.3390/ijms20205180. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from International Journal of Molecular Sciences are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES