Skip to main content
Life logoLink to Life
. 2022 Dec 7;12(12):2048. doi: 10.3390/life12122048

Novel Virus Identification through Metagenomics: A Systematic Review

Cristian Bassi 1,2, Paola Guerriero 1,2, Marina Pierantoni 1, Elisa Callegari 1, Silvia Sabbioni 2,3,*
Editors: Pabulo H Rampelotto, Milan Kolar
PMCID: PMC9784588  PMID: 36556413

Abstract

Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.

Keywords: viral metagenomics, NGS, novel virus, plant, animal, environment

1. Introduction

Viruses are the most abundant organisms on Earth [1] and play a key role in the ecosystem in which they reside [2]. Virus interactions affect their own abundance and evolution [3]; furthermore they have a deep impact on host individuals, populations and communities [4,5], as well as on environment biogeochemical cycles [6].

Next generation sequencing (NGS) technologies make it possible to retrieve, directly and quickly, millions of RNA or DNA sequences from different types of samples, such as environmental [7,8,9], animal/clinical [10,11] and vegetal [12,13,14,15,16]. In particular, the shotgun metagenomic sequencing (mNGS) has allowed the development of methods of analysis of complex microbial communities and the discovery of novel viruses, greatly expanding our knowledge of the Earth’s virome [17,18,19].

Before mNGS approach development, virus discovery was challenging due to highly variable genomes: the lack of shared sequences hindered the employment of an amplicon-based strategy [20], which can be exploited for bacteria analysis through 16S rRNA gene sequencing [21]. Shotgun mNGS overcame this challenge, providing the untargeted sequencing of all the microbial genomes present in the sample; then, the found reads could be classified based on their similarity to the reference genomes [9,20].

In the last years, metagenomics applications have expanded into several field. mNGS moved from research to clinical laboratories, modifying the approach for infectious disease diagnosis and treatment, as well as improving cancer-associated viruses analysis [10]. Furthermore, mNGS revolutionized virome ecology studies, which previously analyzed viruses individually, rather than as a whole, hindering the discovery of their multiplicity as well the breakthrough of their possible interactions [3].

Contribution of mNGS was decisive for SARS-CoV-2 identification [22,23] as well as for monitoring its evolution and spread patterns [24,25]. mNGS technology is also critical to develop multidisciplinary programs and policies to support animal and environmental health, focusing on food safety, antimicrobial resistance, control of zoonotic disease and the study of neglected tropical diseases, which are the main goals of the “One Health approach” (https://www.who.int/europe/initiatives/one-health, accessed on 28 June 2022). This term was used for the first time in 2003–2004 to underline the interconnection between human, animal and environment health after the Severe acute Respiratory Disease (SARS) and avian influenza H5N1 worldwide transmission [26].

Notwithstanding the progress made, virus analysis exploiting mNGS is still complex because of several critical issues. Sample collection and storage affect both the quality and accuracy of metagenomic data: validated procedures for a specific type of sample might be not suitable for others [27]. Furthermore, the enrichment process and nucleic acid extraction techniques should be carefully selected, since they might impact the amount of certain microbial species in the sample, causing an overestimation of the most abundant species or of those microorganisms that can be more easily lysed [28]. Another critical point concerns the sequence assembly; indeed, choosing the most suitable assembly software is essential to identify not only the most represented microorganism in the sample but also the less abundant ones, which is a typical condition of viruses [29,30,31,32].

Assessing the current state of the art for mNGS applications is relevant to develop strategies and resources to support the application of NGS more broadly, contributing to the design of effective disease control and prevention strategies [33].The main objectives of this critical review are to provide an overview of (1) the published literature on novel virus identification through mNGS in environmental, animal and plant samples, (2) different nucleic acid purification and sequencing platforms and (3) the critical steps in data analysis process, highlighting the bio-informatic tools available.

2. Material and Methods

2.1. Search Strategy and Selection Criteria

We conducted a search of all eligible studies in the MEDLINE electronic database on 30 November 2021, without imposing time limits to the search, to provide an overview of studies that performed mNGS to identify new viruses from samples of various origins (plants, animals and the environment). The following search string was used: (“environmental genomics” [mesh] OR ecogenomics [tiab] or “community genomics” [tiab] OR metagenomics [tiab] or “environmental genomics” [tiab] or ecogenomics [tiab] or community genomics [tiab]) AND (“viruses” [tiab] OR “viruses” [MeSH Terms] OR “virus’s” [tiab] OR “viruses” [tiab] OR “virus” [tiab])) AND (Novel [tiab] OR new* [tiab] OR original [tiab] OR unknown [tiab]). The identified references were imported on EndNote [34]. Two independent reviewers (M.P. and P.G.) screened the titles and abstracts of all unique references. Full texts of remaining articles were assessed for eligibility, after a first screening. Exclusion criteria were use of languages other than English, articles describing known viruses, articles not performing NGS and articles that did not report original data (i.e., review papers, editorial, and commentaries). Only studies that described novel viruses identified by mNGS in specimens from animals, the environment or plants were included. The workflow of the systematic review was reported following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [35].

2.2. Data Extraction and Analysis

Two authors (M.P. and P.G.) performed data extraction independently. The following information was extracted from each included study: year of publication, journal name, first author, type of sample (environmental, vegetal, animal), geographical origin of the sample, sample size, enrichment method, nucleic acid extraction kits, nucleic acid extraction method, sequencing platform, de novo assembly (if any), viral genome type (RNA or DNA), viral family detected, virus detected. The information on taxonomy of different virus families was retrieved through the Taxonomy Browser [36].

Enrichment methods were stratified in nine groups: pore filtration, tangential flow filtration, ultracentrifugation, polyethylene glycol (PEG) precipitation, FeCl3 precipitation, ultrafiltration, chemical flocculation, fluidic circuit and syringe filtration. Nucleic acid extraction strategies were stratified in four groups: type of nucleic acid (DNA only, RNA only, both DNA and RNA), manufacturer, extraction method (column-based, solvent-based, magnetic bead–based, magnetic glass particle–based, silica membrane–based, filter tube, other/multiple) and type of sample actually used with that specific method. Sample size was stratified in four groups: ≤10, 11–100, 101–500 and >500.

The sequencing platforms were divided into 4 primary sequencing platforms: Ion Torrent (Thermo Fisher, Waltham, MA, USA), Illumina (San Diego, CA, USA), Sanger (Hinxton, UK), 454 pyrosequencing (Roche, Basel, Switzerland).

3. Results

3.1. Literature Search and General Characteristics of the Included Studies

A total of 889 records were identified, and 465 were excluded after the first screening by title and abstract analysis, since the identified virus was already known. From the remaining 424 eligible records, 38 non-original articles (reviews) and 7 articles (no NGS or no novel viruses) were excluded, leaving 379 studies included in data extraction and analysis (Figure 1). The list of the 379 references is provided in Table S2.

Figure 1.

Figure 1

Flowchart of the literature search. Search was performed following the guidelines of the preferred reporting items for systematic reviews and meta-analyses (PRISMA).

The earliest included article was published in 2008, with a gradual increase in subsequent years, reaching an apparent plateau with up to 54 elements in 2020. After 2013, there was a sharp increase in the number of articles concerning animal viruses, which accounted for 73.9% of the total, compared to 9.5% and 16.4% for viruses identified in plants and environmental samples, respectively (Figure 2a,b).

Figure 2.

Figure 2

Summary of the publications included in the study per year and per type of sample. (a) Trend for annual publication: each column represents the number of articles by year of publication, from 2008 to 2021, divided by type of sample (environment, animal, plant). (b) Percentage of each sample type of the 379 publications: animal (dark blue), environment (light blue), yellow (plant).

The number of samples analyzed in the published literature was highly variable, between 1 and over 200,000 samples (mosquito specimens [37]). The most frequent sample size was between 11–100 (published papers n = 131). A total of 107 papers showed a sample size ≤10, 51 articles analyzed a number of samples between 101–500, and 43 analyzed >500 samples. In addition, 43 papers did not state the sample size, and 14 papers analyzed sample sets already present in databases (Figure 3a).

Figure 3.

Figure 3

Sample size and geographical provenience. (a) Number of publications for each sample size range; X axes: number of publications, Y axes; sample size range. ND: sample size not specified. (b) Map showing the geographical provenance of the samples; dots indicate the samples/publications (dot dimension reflects different publication numbers). (b) was generated with Bing Maps add-on for Microsoft Office Excel.

From a geographical point of view, the studies were carried out in all 6 World Health Organization (WHO) regions, with 36% in the Americas Region (n = 123), 29% in the South-East Asia Region (n = 99) and 26% in the European Region (n = 90), followed by the Africa Region (6%, n = 21), Western Pacific Region (2%, n = 6) and Eastern Mediterranean Region (n = 1) (Figure 3b). A total of 30 studies did not indicate the exact origin of the samples, while those taken from the Arctic (n = 2), Antarctic (n = 3) and oceans (n = 8) are not included in the WHO classification.

3.2. Enrichment Strategies, Nucleic Acid Purificationand Sequencing Platforms

Limited to the environmental samples, several viral enrichment strategies were employed, with the pore filtration and tangential flow filtration method (24%, n = 15 each) being the most popular; other methods included ultracentrifugation (18%, n = 11), ultrafiltration (8%, n = 5), PEG precipitation (6%, n = 4), FeCl3 precipitation (5%, n = 3), chemical flocculation (3%, n = 2), fluidic circuit (2%, n = 1) and syringe filtration (2%, n = 1). One report (2%) did not indicate sample enrichment (Figure 4a). Some articles used more than one enrichment method: ultracentrifugation and tangential flow filtration [38,39]; ultrafiltration and ultracentrifugation [40,41,42]; tangential flow filtration and PEG precipitation [43].

Figure 4.

Figure 4

Sample enrichment and purification. (a) Enrichment methods used for environmental samples prior to extraction. The figure shows the different enrichment methods and the percentage of each method of the total number of publications (environmental sample). (b) Extraction method. The graph shows the different extraction methods used for all samples. X axis: publication number; Y axis: extraction method.

For extraction methods, commercial kits were employed. These kits allowed extraction of both DNA and RNA (manufacturer n = 16: Beckman Coulter, Brea, CA, USA; Biomérieux, Marcy l’Etoile, France; Biosearch Technologies, Hoddesdon, UK; Intron Biotechnology, Sagimakgol-ro, Jungwon-gu Seongnam, Gyeonggi, Republic Of Korea; Invitrogen, Waltham, MA, USA; Life Technologies, Carlsbad, CA, USA; Macherey-Nagel, Düren, Germany; Omega Biotek, Norcross, GA, USA; Perkin Elmer, Waltham, MA, USA; Promega, Madison, WI, USA; Qiagen, Hilden, Germany; Roche; Sigma-Aldrich, St. Louis, MO, USA; TaKaRa, Kusatsu, Japan; ThermoFisher; Zymo Research, Irvine, CA, USA), DNA only (manufacturer n = 12: GE Healthcare, Chicago, IL, USA; Invitrogen; Macherey–Nagel; Mo Bio, Carlsbad, CA, USA; MP Biomedicals, Irvine, CA, USA; PacBio, Menlo Park, CA, USA; Promega; Qiagen; Roche; Sigma-Aldrich; TaKaRa; ThermoFisher) or RNA only (manufacturer n = 12: Ambion, Foster City, CA, USA;. Life Technologies; Macherey-Nagel; Mo Bio; NEB, Ipswich, MA, USA; NipponGene, Tokyo, Japan; NZYTech, Lisboa, Portugal; Qiagen; Roche; Sigma-Aldrich; ThermoFisher; Zymo Research).

Commercial kits are based on different extraction methods. The most employed are column-based (19%, n = 76), followed by solvent-based (15%, n = 60), silica membrane–based (13%; n = 52), magnetic bead–based (11%, n = 42), filter tube–based (4%, n = 15) and magnetic glass particle–based (1%, n = 5); 66 (17%) reports indicated other/multiple methods, and 77 reports (20%) did not specify the method used (Figure 4b).

The most employed commercial kit was QIAamp viral RNA mini kit (Qiagen) [25,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96], followed by MagMAX Viral RNA Isolation kit (ThermoFisher) [37,60,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117], QIAamp MinElute Virus Spin Kit (Qiagen) [118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139], High Pure Viral Nucleic Acid kit (Roche) [140,141,142,143,144,145,146,147,148,149,150], QIAamp viral RNA kit (Qiagen) [38,151,152,153,154,155,156,157,158], QIAamp DNA Mini Kit (Qiagen) [25,43,159,160,161,162,163], RNeasy Mini Kit (Qiagen) [159,160,161,164,165,166,167], DNeasy Blood & Tissue Kit (Qiagen) [39,168,169,170,171,172] and RNeasy Plus Mini Kit (Qiagen) [118,173,174,175,176,177]. Supplementary Table S1 shows the complete list of commercial kits employed and specimens from which the nucleic acid (DNA, RNA, or both) was extracted (Table S1). Notably, DNA purification kits also allow RNA purification, which is identified as long as a retrotranscription step is introduced before library preparation [171,178].

Regarding the sequencing platforms, the studies were carried out using four sequencing methods: Illumina, Sanger, Ion Torrent and Roche 454. The most utilized platform was Illumina (75%, n = 285), followed by Roche 454 (12%, n = 45), Sanger sequencing (6%, n = 22), and Ion Torrent (5%: n = 18). Seven records (2%) included analysis of public viral metagenomes deposited in databases (as NCBI RefSeq, short read archive (SRA) database, ICTV database) [179,180,181,182,183,184,185], and four records did not specify which sequencing platforms were used [124,128,129,186] (Figure 5a). Illumina has become the most used platform since 2013 (Figure 5b).

Figure 5.

Figure 5

Sequencing platforms. (a) The number of publications employing the different platforms. (b) Annual publications for each sequencing platform. Each column represents the number of articles by year of publication, from 2008 to 2021, divided by platform. “Published sequences” refers to analysis of previously published sequences.

Lastly, for the identification of viral genomes, 62% of the articles (n = 234) used a strategy based on overlapping reads and generations of “contigs”. This strategy, named de novo assembly, allows the reconstruction of the original genome, starting from the sequenced fragments. Among the 234 articles, 77% concerned samples of animal origin, 12% samples of environmental origin, 10% plant origin. A progressive increase in de novo assembly is observed from 2016 until 2019 (Figure S1).

3.3. Overview of the Extracted Characteristics

For each included article, it was then possible to collect and present data regarding first author, date of publication, host, sample size and provenance, type of specimen, enrichment strategies, nucleic acid purification kits, retro-transcription, sequencing platforms, de novo assembly, genome, viral family and name of the novel virus identified (Table S2).

By way of example, a graphical overview of the main characteristics extracted from articles published in 2021 is provided (Figure 6). Each paper is cited in the x axis (numbers refer to the list of references provided in Table S2) and is represented by a column describing its characteristics. By means of color coding, it is possible to identify sample type, origin and size; the method used for enrichment, purification, sequencing and analysis; and the viral genome.

Figure 6.

Figure 6

An overview of 51 included publications (year 2021). Each column represents one paper, and numbers refer to the list of references provided in Supplementary File S1. Each row describes one specific characteristic (from top to bottom): sample, enrichment method, sample size, viral genome, sequencing platform, de novo assembly, retro-transcription (RT), provenance of the sample (WHO classification) and extraction method. Categories and color codes for each data field are indicated in the figure legend. Gray boxes indicate that the technique was not performed or the information was not provided.

3.4. Viral Genomes and Viral Families in Different Sample Types

Among the articles describing novel viruses in animal samples, 270 viruses were identified as belonging to known viral families. In particular Parvoviridae, Picornaviridae, Circoviridae, Anelloviridae, Reoviridae, Astroviridae, Flaviviridae, Rhabdoviridae, Papillomaviridae and Dicistroviridae, are the most represented families (Figure 7a); for 10 publications, it was not possible to identify the family to which they belong [125,130,180,181,187,188,189,190,191,192]. Among the articles describing novel viruses in the environment, 60 viruses were identified as belonging to known viral families; in particular, Siphoviridae, Myoviridae, Podoviridae, Microviridae, Phycodnaviridae, Mimiviridae, Picornaviridae, Circoviridae, Herpesviridae and Hepeviridae are the most represented (Figure 7b); for two publications it was not possible to identify the family to which they belong [193,194]. Among the articles describing novel viruses in plants, all 36 articles described novel viruses belonging to known viral families, with Geminiviridae, Tombusviridae, Potyviridae, Luteoviridae, Bromoviridae, Closteroviridae, Unclassified, Genomoviridae, Partitiviridae, Tymoviridae and Narnaviridae being the most represented families (Figure 7c).

Figure 7.

Figure 7

Viral families discovered in different sample types. The figure shows the viral families and the number of new viruses belonging to each family in (a) animal samples; “other”: families that have been described in less than eight reports; ND: viruses not belonging to known families; (b) environmental samples; “other”: families that have been described in a single report; ND: viruses not belonging to known families; (c) plant samples; “other”: families that have been described in a single report. For all sample types, “unclassified”: as defined in NCBI taxonomy and viral zone databases.

In total, 681 different novel viruses were identified, 290 with DNA genome, 348 with RNA genome and 43 unclassified, as defined in NCBI taxonomy and viral zone databases. In particular, 516 novel viruses were identified in animal samples, 110 in environmental samples and 55 in plants. Analysis performed by type of sample revealed that the distribution of classified viral genomes in the different types of samples was not homogeneous, with a prevalence of RNA viruses compared to DNA viruses in plants (RNA 71% vs. DNA 25%) and animals (RNA 56% vs. DNA 38%), while in environmental samples, a prevalence of DNA viruses over RNA viruses (DNA 74% vs. RNA 16%) was observed (Figure 8).

Figure 8.

Figure 8

Viral Genomes. The graph shows viral genomes of the identified viruses: DNA (blue bar), RNA (orange bar) and unclassified (gray bar) identified in the three sample types (animal, environment, plant). The number of viruses (percentage and absolute number) for each genome type is indicated on the side of the bars. X axis: DNA or RNA genomes in different sample types; y-axis: viral genomes.

3.5. Novel Viruses Found by mNGS Studies

Among viruses infecting animals, new bacteriophages were identified [195]. Bacteriophages are implicated in the dynamics and diversity of bacterial populations in a number of ecosystems, including the human gut [196,197,198], confirming that mNGS technologies allow investigation of the so-called “viral dark matter” [199].

Potential pathogenic viruses for species at zoonotic risk to humans were also identified. For example, new Bocaparvoviruses were identified in different animal species, such as alpacas [200], wild squirrel [124] and tufted deer [121]. Novel Bocaparvoviruses were identified in different geographical areas and in different animal species, including bats [201], camels [202], gorillas [203], marmots [204], pigs [205] and rodents [206], and are associated with various veterinary diseases of the respiratory and gastrointestinal tract and acute respiratory diseases in humans. Their presence in previously unreported animal species, such as the alpaca, whose close contact with humans is favored by breeding and exposure in geographical areas other than that of origin, may be an important element in relation to possible zoonotic risks.

Among the viruses that infect plants, a new Grablovirus was identified in Prunus spp., confirming the possible use of mNGS in the diagnosis of viral infections in economically important sectors such as agriculture. The appearance of these viruses in temperate and tropical woody plant species and herbaceous plants is symptomatic of climate change consequences, since a common feature of viruses within the Geminiviridae family was that they were primarily pathogens of economically important plant species, mainly in the tropical and subtropical regions of the world [207]. Other viruses belonging to the same family Geminiviridae are the Begomoviruses, which infect dicotyledonous plants and have an economic effect linked to the cultivation of tomatoes. A new Begomovirus associated with severe symptoms in tomatoes was identified in Brazil, where the preferential strategy for Begomovirus management in tomatoes is the employment of cultivars carrying disease resistance/tolerance genes, such as the Ty-1 gene [208]. The new Begomovirus identified in this article suggests a mechanism of potential adaptation to the tolerance factor Ty-1, which highlights the potential drawbacks of employing virus-specific resistance in tomato breeding [209].

Among the environmental viruses, an example is the identification of a new Phycodnavirus belonging to the Phycodnaviridae family in a phytoplankton bloom occurring in the West Antarctic Peninsula (WAP) [210]. The identification of this new virus suggests the usefulness of mNGS in the study and monitoring of plankton dynamics as responses to climate change in this warming region [211]. Another study identifies a new virus belonging to the Picobirnaviridae family in the wastewater from Santiago de Chile, confirming the relevance of sewage viromes as epidemiological surveillance tools and supporting the usefulness of sewage viral metagenomics for public health surveillance [40].

Some examples of new viruses identified in different sample types are described in Table 1.

Table 1.

Examples of novel viruses found by mNGS studies.

Sample Type Novel Viruses Found in mNGS Studies References
Animal Flavivirus [45,67,85,147,212,213]
Coronanvirus [25,214,215]
Circovirus [63,120,159,216,217]
Bocaparvovirus [121,124,200]
Siphoviridae, Myoviridae, Podoviridae, crAss-like viruses [195]
Sapovirus [44,95,218].
Plant Prunus Geminivirus [207]
Mastrevirus [219,220,221]
Begomovirus [132,209]
Genomovirus [222]
Narnavirus [223]
Tepovirus [224]
Environment Phycodnavirus [210,225]
Picornavirus [50,226]
PA-SR01 [163]
Picobirnaviridae [40]
Epatitis E virus [171]
Methanosarcina virus MV (MetMV) [227]
Halovirus [42,228]
SAR11 phage [185]

3.6. Bioinformatics Pipelines

The various published articles show different algorithms for the metagenomic analysis or different reference databases, but present four common steps in the bioinformatics analysis process: (a) quality control (QC) check, (b) read trimming, adapter removal, and further filtering, (c) viral genome identification and (d) analysis of the results [19].

3.6.1. Quality Control (QC) Check, Sequence Trimming and Filtering

Quality control (QC) is a critical step in the processing of NGS data and aims to produce high quality data, starting from the raw sequences generated by the sequencing platform, to be provided to the algorithms involved in the subsequent analysis phases (raw-read processing). The programs that carry out this phase are responsible for performing the quality control of the obtained data, the removal of the sequences of the adapters and indexes (sequences artificially inserted in the reads of each sample, in order to recognize the fragments belonging to each sample), the filtering of low quality sequences, and in some cases the filtering of polyclonal sequences. The QC protocol must be designed for a specific dataset, taking into account the differences inherent in different sequencing technologies (short-read platform vs. long-read platform) [229].

The list of the most commonly used programs/algorithms for these phases is provided in Table 2.

Table 2.

Most commonly used programs/algorithms for QC protocol.

Software Reference Available at
FastQC [230] https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 28 June 2022)
Trimmomatic [231]
Trim Galore [232] https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 28 June 2022)
Cutadapt [233] https://journal.embnet.org/index.php/embnetjournal/article/view/200/479 (accessed on 28 June 2022)
CLC Genomics Workbench (Qiagen) [234] https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/qiagen-clc-genomics/ (accessed on 28 June 2022)
BBDuk (part of BBTools/BBMap package) [235] https://jgi.doe.gov/data-and-tools/software-tools/bbtools/ (accessed on 28 June 2022)

3.6.2. Viral Genome Identification

The next step involves the removal of high quality reads belonging to the host genome, through alignment to the host reference genome, using common alignment algorithms (for example Bowtie2 [236], STAR [237], Blast [238], BWA [239] and SAMtools [240]). High quality reads, filtered by the host genome, can now be used for identification of viral genomes through two different strategies: (1) by alignment of reads to a reference sequence database (normally the NCBI nucleotide database (nt) [241], the non-redundant protein database (nr) [241] or the Reference Viral Database (RVDB) [242]); (2) by new de-novo assembly, based on overlapping reads rather than mapping reads, to reference genomes.

In the first case, since amino acid sequences are more conserved than nucleotide sequences, the alignment of the reads to a protein database instead of a nucleotide database, improves the sensitivity of the classification, However, it requires more computational power and more computational time. De novo assembly instead allows the reconstruction of the original genome, starting from the sequenced fragments (generally in the range from 100 to 250 bp), through the production of longer assembled sequences, called “contigs” and “scaffolds”. Metagenomic assembly is a very complex process and requires a high uniformity of coverage throughout the genome, and also between different genomes, in case there are more viruses in the sample [243]. The most used tools for this process are listed in Table 3.

Table 3.

Most-used tools for metagenomic assembly.

Software Reference
SPAdes [31]
MetaSPAdes [244]
Megahit [245]
Velvet [246]
Trinity [247]
SOAPdenovo2 [248]
Ensemble Assembler [249]
MIRA [250]
PRICE [251]
Codon Code Aligner [252]; https://www.codoncode.com/aligner/ (accessed on 28 June 2022)
ABySS [253]
Ray Meta [254]
CAP3 [255]
CLC Genomics Workbench (Qiagen) [234]

The quality and completeness of the final assembly can be evaluated by parameters such as N50 (which summarizes assembly contiguity in a single number: half the genome is assembled on contigs of length N50 or longer), NG50 or U50 (which corrects misrepresented N50 values in high background noise sequences). This evaluation can be carried out via algorithms QUAST [256], Assemblathon [257], GAGE [258] and BUSCO [259].

3.6.3. Analysis of the Results

It is necessary to verify the viral origin of the contigs and/or scaffold produced in the previous step, especially in mixed samples, in which other organisms may be present in addition to the virus of interest. This can be done by comparing sequences with reference sequence databases (such as GenBank non-redundant (NR), nucleotide (NT), Refseq viral, Uniprot viral) or custom viral databases generated in-house and using BLASTx (for comparison with protein databases), blastn (for comparison with nucleotide databases) and DIAMOND [260] (translated protein search mode). Alternatively the HMMER [261] (http://hmmer.org/, accessed on 28 June 2022) algorithm can be used to detect true homologs rather than traditional BLAST-based approaches, based on the fact that certain positions in a sequence alignment are likely to differ in their probability of containing an insertion or a deletion [262]. Finally, through the use of the Sequence Demarcation Tool program, it is possible to verify the result of the previous analysis using a graphic approach that can make it easier to identify the sequences where the similarity is stronger. It is also possible to use the nucleotide or reconstructed amino acid sequence of the virus for phylogenetic analysis. This procedure is carried out by aligning the viral genome sequence with other reference sequences (ideally of similar length), and the result provides information about homology with viruses of different species. This aspect can be very important in the field of public health, such as in the discovery of viruses responsible for new outbreaks of infection, as a potential pathogenic virus can be recognized and investigated by analyzing the epidemiological link between genetic sequences of other pathogens. The most used algorithms to perform this analysis are CLUSTAL, MUSCLE, MAFFT, T-Coffee [263], (available from: https://www.ebi.ac.uk/Tools/msa/, accessed on 28 June 2022) and Megan [264], which, in addition to taxonomic analysis, also allows functional analysis, generation of graphs, clustering and networks analysis.

Having obtained the complete (or almost complete) genomic sequence, it is possible to proceed to the presumed identification of the open reading frames (ORF), which is performed by prediction. The main algorithms that are used for this process are NCBI ORF FINDER, Glimmer (Gene Locator and Interpolated Markov ModelER) and Geneious. Estimation of the relationships between the identified sequence of the virus and its common ancestors [265] or between sequences that supposedly contain genes to assume their function [266] is carried out through the creation of phylogenetic trees, estimated through different methods (Neighbor Joining, UPGMA Maximum Parsiony, Bayesian Inference and Maximum Likelihood [ML]) [267] and algorithms (MEGA, PhyML and IQ-Tree).

4. Discussion

mNGS is one of the most rapidly evolving fields of biology, allowing broadening of our understanding of diversity, ecology and the evolution of microbial communities from different habitats. Its application to the identification of new pathogens or for monitoring known agents in clinical and environmental samples makes it an instrument of choice in the One Health prevention approach. This strategy is based on the awareness that human health is closely linked to that of animals and the environment, an awareness that also aims at reducing the risk of potential epidemics [268,269,270,271,272]. This review highlighted that the application of NGS technologies is currently feasible also in middle and low-income countries, mainly thanks to international collaborations [45,49,104,151,273,274,275]. In these regions, costs associated with infrastructure, equipment, reagents and expertise could pose serious challenges to the use of NGS for pathogen identification [276]; one possible proposal to overcome this limitation may be the establishment of omics international networks.

mNGS allows primer-independent, unbiased detection of the viroma and the reconstruction of full-length viral genomes, even in the case of unknown or poorly characterized viruses [17,277,278], comprising bacteriophages, providing an unprecedented opportunity for the discovery of novel viruses [180]. Since viruses do not share conserved sequences, the definition of viroma is obtainable exclusively through shotgun metagenomic sequencing of the entire microbial community.

This review summarizes previous studies related to the use of mNGS for the identification of new viruses from different types of samples (animal, plant and environmental), through a systematic review of the literature [279,280]. The different processes involved in the studies include processing of different sample types for nucleic acid purification, sequencing and bioinformatics data analysis. For each of these aspects, the literature analysis has highlighted heterogeneous approaches that make it impossible to compare the results but allow the identification of new viruses from different matrices using a plethora of different strategies, responding flexibly to different research questions.

As regards the purification of nucleic acids, the methods used are based on commercial kits producing similar samples in terms of purified microbial communities [281,282]. The different kits used are indicated for the purification of DNA, RNA, or both; however, it has been shown that identification of RNA virus (Norovirus) by mNGS in biological samples such as feces is also possible from nucleic acid obtained by a DNA purification kit, after a retro-transcription step before library preparation [178]. For environmental samples, different sample enrichment strategies before purification have been identified, based on tangential flow filtration, pore filtration, PEG precipitation and FeCl3 precipitation, ultracentrifugation, fluidic circuit, chemical flocculation and syringe filtration, and it has been previously shown that viral richness, viral specificity, viral pathogen detection and viral community composition for metagenomic analyses are influenced by concentration protocols [283].

It has been shown that the use of pre-extraction enrichment methods can introduce bias in the identification of microbial species present in the sample [283]. For example, filtration can reduce the abundance of bacterial [284] or viral species [285,286], depending on pore size dimension. Similarly, enrichment based on low-force centrifugation can induce depletion of large viruses [285]. The use of PEG for the identification of viral species from wastewater induced a better recovery of Adenovirus but a lower recovery efficiency of Human Rotavirus A, compared to methods based on charged membrane or glass wool [287], while enrichment methods based on microfluidics devices have proven to be effective in the characterization of airway microbiomes [288].

To improve shotgun metagenomics results some post-extraction enrichment technologies have also been developed: they aim to reduce host nucleic acid sequences, enriching samples for microbial genomes. Thanks to these methods, an increased number of microbial reads could be obtained from sequencing, improving the number of species and taxa detected and the coverage of each sequence and allowing detection of less-abundant species. Further, they could reduce costs associated with mNGS, since more samples can be analyzed in the same sequencing run. Some enrichment technologies used to remove human DNA from samples have been described [289,290]. In addition, some commercial kits are available, and their efficiency in human DNA depletion has been tested and compared [289,291,292,293]. However, bias in the phylogenetic composition of samples could be introduced by using these post-extraction enrichment methods because of the unspecific removal of some bacterial DNA [289,290,291,293].

With regard to library preparation methods and sequencing platforms, a decrease in heterogeneity has been observed over the years, thanks to the gradual increase in the use of Illumina, which is currently the most widespread among the NGS methods available.

Millions of sequence reads are generated from a single run and must be analyzed through dedicated software and bioinformatics pipelines, to produce meaningful results [19,243,294,295]. The various published articles show different algorithms for metagenomic analysis or different reference databases, but present common steps in the bioinformatics analysis process, which has been described in detail and allows the identification of known and new viruses in the samples.

However, it is possible that erroneous chimeric sequences could be generated from multiple related viruses, if present in the same sample, or even between viral and non-viral sequences. It has been suggested that the use of bioinformatic pipelines that include a chimera checking step could improve the quality of sequencing data [296]. Another possible approach to improve metagenome assemblies from community microbial samples could be the use of sequencing platforms that generate long-range reads [297,298], such as Oxford Nanopore Technologies (ONT, Oxford, UK) [299], Pacific Biosciences (PacBio) [300], 10X Genomics (Pleasanton, CA, USA) [301] and Hi-C [298]. Moreover, mixed approaches, which associate the use of long-range and short nucleotide technologies, could improve the quality of the data [302].

Although there are not many published reports in which the sensitivity of mNGS in identifying viral species is evaluated, it is known that this may vary depending on the sequencing platform used, the depth of sequencing, and the type of virus present in the sample. Frey et al. [303] found that the sensitivity of both Illumina MiSeq and Ion Torrent PGM in identifying Influenza A virus in blood samples stood at 104 genome copies/mL, using an Ion 314 chip for Ion Torrent PGM with an output of 30–50 million single-end reads, and a 300 cycle kit for Illumina MiSeq with an output of 24–30 million paired-end reads. Be et al. [304] found that the sensitivity of Illumina GA IIx to identify B. antracis in Aerosol DNA extract and Soil DNA extract is 10 GEs and 102 GEs, respectively, with a depth of 37.5 million single-end reads/sample (1 sample per lane). Bukowska-Osko et al. [305] detected the presence of HIV in CSF HIV RNA-positive samples containing at least 102 viral copies/mL; they also detected the presence of HSV-1 DNA in CSF samples containing at least 103 viral copies/µL, using an Illumina Hi-Seq 1500 and with a depth of about 33 million reads/sample.

In conclusion, despite the lack of standard protocols from the sampling phase to the production of the interpreted data, the different methods currently existing at each stage of the process offer effective tools for the exploration of the earth viroma (animal, plant, environment). The lack of standardization, moreover, seems to be better suited to the exploration of the sequences that are generated by sequencing but that are not attributable to any known organism/sequence. In fact, the continuous development of new analysis tools also allows the study of previously generated High Throughput Sequencing datasets, which allow the detection of new viral sequences, even pathogenic ones, not previously recognized in the samples analyzed. Though the lack of standardized approaches is currently a constraint on the use of this technology in the regulatory area, for example, for the monitoring of zoonoses or water quality by official control bodies, which require standardized processes [33], mNGS technologies have proven to be suitable and crucial for tracking novel SARS-CoV-2 hosts, evolution, and spread patterns [17,24]. mNGS is characterized by a constant and ultra-rapid development of new analytical methods, both biological and bioinformatics, that seem better suited to follow the dynamic of pandemic events and in general viral outbreaks. This suggests the opportunity to implement these technologies to establish early warning systems [74] and to design effective disease control and prevention strategies.

Acknowledgments

We would like to thank Massimo Negrini for reading the manuscript and for helpful suggestions.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/life12122048/s1, Figure S1: Use of the “de novo Assembly”, Table S1: List of commercial kits employed, Table S2: Characteristic table and list of the included studies.

Author Contributions

Conceptualization, S.S. and C.B.; literature screening, M.P. and P.G.; data analysis: C.B. and M.P.; writing—original draft preparation, S.S. and E.C.; supervision, funding acquisition: S.S.; writing—review and editing, all authors. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data generated or analyzed during this study are included in this published article and its supplementary information files. The dataset supporting the conclusion of this article is included within the article and its additional files.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This work was supported by Fondo di Ateneo per la Ricerca (FAR) 2021–2022 of the University of Ferrara to Silvia Sabbioni.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Bar-On Y.M., Phillips R., Milo R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA. 2018;115:6506–6511. doi: 10.1073/pnas.1711842115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Call L., Nayfach S., Kyrpides N.C. Illuminating the Virosphere Through Global Metagenomics. Annu. Rev. Biomed. Data Sci. 2021;4:369–391. doi: 10.1146/annurev-biodatasci-012221-095114. [DOI] [PubMed] [Google Scholar]
  • 3.French R.K., Holmes E.C. An Ecosystems Perspective on Virus Evolution and Emergence. Trends Microbiol. 2020;28:165–175. doi: 10.1016/j.tim.2019.10.010. [DOI] [PubMed] [Google Scholar]
  • 4.Dobson A. Food-web structure and ecosystem services: Insights from the Serengeti. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2009;364:1665–1682. doi: 10.1098/rstb.2008.0287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Dobson A. Population dynamics of pathogens with multiple host species. Am. Nat. 2004;164((Suppl. 5)):S64–S78. doi: 10.1086/424681. [DOI] [PubMed] [Google Scholar]
  • 6.Jover L.F., Effler T.C., Buchan A., Wilhelm S.W., Weitz J.S. The elemental composition of virus particles: Implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 2014;12:519–528. doi: 10.1038/nrmicro3289. [DOI] [PubMed] [Google Scholar]
  • 7.Shokralla S., Spall J.L., Gibson J.F., Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 2012;21:1794–1805. doi: 10.1111/j.1365-294X.2012.05538.x. [DOI] [PubMed] [Google Scholar]
  • 8.Hamilton R., Kits K.D., Ramonovskaya V.A., Rozova O.N., Yurimoto H., Iguchi H., Khmelenina V.N., Sakai Y., Dunfield P.F., Klotz M.G., et al. Draft genomes of gammaproteobacterial methanotrophs isolated from terrestrial ecosystems. Genome Announc. 2015;3:e00515-15. doi: 10.1128/genomeA.00515-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Quince C., Walker A.W., Simpson J.T., Loman N.J., Segata N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017;35:833–844. doi: 10.1038/nbt.3935. [DOI] [PubMed] [Google Scholar]
  • 10.Chiu C.Y., Miller S.A. Clinical metagenomics. Nat. Rev. Genet. 2019;20:341–355. doi: 10.1038/s41576-019-0113-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Westermann A.J., Vogel J. Cross-species RNA-seq for deciphering host-microbe interactions. Nat. Rev. Genet. 2021;22:361–378. doi: 10.1038/s41576-021-00326-y. [DOI] [PubMed] [Google Scholar]
  • 12.Barba M., Czosnek H., Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses. 2014;6:106. doi: 10.3390/v6010106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Knief C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front. Plant Sci. 2014;5:216. doi: 10.3389/fpls.2014.00216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Maarastawi S.A., Frindte K., Linnartz M., Knief C. Crop Rotation and Straw Application Impact Microbial Communities in Italian and Philippine Soils and the Rhizosphere of Zea mays. Front. Microbiol. 2018;9:1295. doi: 10.3389/fmicb.2018.01295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Manriquez B., Muller D., Prigent-Combaret C. Experimental Evolution in Plant-Microbe Systems: A Tool for Deciphering the Functioning and Evolution of Plant-Associated Microbial Communities. Front. Microbiol. 2021;12:619122. doi: 10.3389/fmicb.2021.619122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Becker M.F., Hellmann M., Knief C. Spatio-temporal variation in the root-associated microbiota of orchard-grown apple trees. Env. Microbiome. 2022;17:31. doi: 10.1186/s40793-022-00427-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Nooij S., Schmitz D., Vennema H., Kroneman A., Koopmans M.P.G. Overview of Virus Metagenomic Classification Methods and Their Biological Applications. Front. Microbiol. 2018;9:749. doi: 10.3389/fmicb.2018.00749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Paez-Espino D., Eloe-Fadrosh E.A., Pavlopoulos G.A., Thomas A.D., Huntemann M., Mikhailova N., Rubin E., Ivanova N.N., Kyrpides N.C. Uncovering Earth’s virome. Nature. 2016;536:425–430. doi: 10.1038/nature19094. [DOI] [PubMed] [Google Scholar]
  • 19.Lapidus A.L., Korobeynikov A.I. Metagenomic Data Assembly—The Way of Decoding Unknown Microorganisms. Front. Microbiol. 2021;12:613791. doi: 10.3389/fmicb.2021.613791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Wylie T.N., Wylie K.M., Herter B.N., Storch G.A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 2015;25:1910–1920. doi: 10.1101/gr.191049.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hamady M., Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 2009;19:1141–1152. doi: 10.1101/gr.085464.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Chen X., Kang Y., Luo J., Pang K., Xu X., Wu J., Li X., Jin S. Next-Generation Sequencing Reveals the Progression of COVID-19. Front. Cell. Infect. Microbiol. 2021;11:632490. doi: 10.3389/fcimb.2021.632490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Castañeda-Mogollón D., Kamaliddin C., Oberding L., Liu Y., Mohon A.N., Faridi R.M., Khan F., Pillai D.R. A metagenomics workflow for SARS-CoV-2 identification, co-pathogen detection, and overall diversity. J. Clin. Virol. 2021;145:105025. doi: 10.1016/j.jcv.2021.105025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Mackenzie J.S., Jeggo M. The One Health Approach-Why Is It So Important? Trop. Med. Infect. Dis. 2019;4:88. doi: 10.3390/tropicalmed4020088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Wesolowska-Andersen A., Bahl M.I., Carvalho V., Kristiansen K., Sicheritz-Ponten T., Gupta R., Licht T.R. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome. 2014;2:19. doi: 10.1186/2049-2618-2-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Probst A.J., Weinmaier T., DeSantis T.Z., Santo Domingo J.W., Ashbolt N. New perspectives on microbial community distortion after whole-genome amplification. PLoS ONE. 2015;10:e0124158. doi: 10.1371/journal.pone.0124158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Peng Y., Leung H.C., Yiu S.M., Chin F.Y. Meta-IDBA: A de Novo assembler for metagenomic data. Bioinformatics. 2011;27:i94–i101. doi: 10.1093/bioinformatics/btr216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Namiki T., Hachiya T., Tanaka H., Sakakibara Y. MetaVelvet: An extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 2012;40:e155. doi: 10.1093/nar/gks678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Rampelli S., Turroni S. From Whole-Genome Shotgun Sequencing to Viral Community Profiling: The ViromeScan Tool. Methods Mol. Biol. 2018;1746:181–185. doi: 10.1007/978-1-4939-7683-6_14. [DOI] [PubMed] [Google Scholar]
  • 33.Garner E., Davis B.C., Milligan E., Blair M.F., Keenum I., Maile-Moskowitz A., Pan J., Gnegy M., Liguori K., Gupta S., et al. Next generation sequencing approaches to evaluate water and wastewater quality. Water Res. 2021;194:116907. doi: 10.1016/j.watres.2021.116907. [DOI] [PubMed] [Google Scholar]
  • 34.Team T.E. EndNote, EndNote X9. Clarivate; Philadelphia, PA, USA: 2013. [Google Scholar]
  • 35.Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gotzsche P.C., Ioannidis J.P., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009;6:e1000100. doi: 10.1371/journal.pmed.1000100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., McVeigh R., O’Neill K., Robbertse B., et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062. doi: 10.1093/database/baaa062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Shahhosseini N., Lühken R., Jöst H., Jansen S., Börstler J., Rieger T., Krüger A., Yadouleton A., de Mendonça Campos R., Cirne-Santos C.C., et al. Detection and characterization of a novel rhabdovirus in Aedes cantans mosquitoes and evidence for a mosquito-associated new genus in the family Rhabdoviridae. Infect. Genet. Evol. 2017;55:260–268. doi: 10.1016/j.meegid.2017.09.026. [DOI] [PubMed] [Google Scholar]
  • 38.Ge X., Wu Y., Wang M., Wang J., Wu L., Yang X., Zhang Y., Shi Z. Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China. Virol. Sin. 2013;28:280–290. doi: 10.1007/s12250-013-3365-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Wu S., Zhou L., Zhou Y., Wang H., Xiao J., Yan S., Wang Y. Diverse and unique viruses discovered in the surface water of the East China Sea. BMC Genom. 2020;21:441. doi: 10.1186/s12864-020-06861-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Guajardo-Leiva S., Chnaiderman J., Gaggero A., Díez B. Metagenomic Insights into the Sewage RNA Virosphere of a Large City. Viruses. 2020;12:1050. doi: 10.3390/v12091050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kallies R., Hölzer M., Brizola Toscan R., Nunes da Rocha U., Anders J., Marz M., Chatzinotas A. Evaluation of Sequencing Library Preparation Protocols for Viral Metagenomic Analysis from Pristine Aquifer Groundwaters. Viruses. 2019;11:484. doi: 10.3390/v11060484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Font-Verdera F., Liébana R., Aldeguer-Riquelme B., Gangloff V., Santos F., Viver T., Rosselló-Móra R. Inverted microbial community stratification and spatial-temporal stability in hypersaline anaerobic sediments from the S’Avall solar salterns. Syst. Appl. Microbiol. 2021;44:126231. doi: 10.1016/j.syapm.2021.126231. [DOI] [PubMed] [Google Scholar]
  • 43.Roux S., Enault F., Robin A., Ravet V., Personnic S., Theil S., Colombet J., Sime-Ngando T., Debroas D. Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS ONE. 2012;7:e33641. doi: 10.1371/journal.pone.0033641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zhang B., Tang C., Yue H., Ren Y., Song Z. Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China. J. Gen. Virol. 2014;95:1603–1611. doi: 10.1099/vir.0.063743-0. [DOI] [PubMed] [Google Scholar]
  • 45.Baidaliuk A., Lequime S., Moltini-Conclois I., Dabo S., Dickson L.B., Prot M., Duong V., Dussart P., Boyer S., Shi C., et al. Novel genome sequences of cell-fusing agent virus allow comparison of virus phylogeny with the genetic structure of Aedes aegypti populations. Virus Evol. 2020;6:veaa018. doi: 10.1093/ve/veaa018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Coffey L.L., Page B.L., Greninger A.L., Herring B.L., Russell R.C., Doggett S.L., Haniotis J., Wang C., Deng X., Delwart E.L. Enhanced arbovirus surveillance with deep sequencing: Identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes. Virology. 2014;448:146–158. doi: 10.1016/j.virol.2013.09.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Conceição-Neto N., Godinho R., Álvares F., Yinda C.K., Deboutte W., Zeller M., Laenen L., Heylen E., Roque S., Petrucci-Fonseca F., et al. Viral gut metagenomics of sympatric wild and domestic canids, and monitoring of viruses: Insights from an endangered wolf population. Ecol. Evol. 2017;7:4135–4146. doi: 10.1002/ece3.2991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.de Souza W.M., Fumagalli M.J., Martin M.C., de Araujo J., Orsi M.A., Sanfilippo L.F., Modha S., Durigon E.L., Proença-Módena J.L., Arns C.W., et al. Pingu virus: A new picornavirus in penguins from Antarctica. Virus Evol. 2019;5:vez047. doi: 10.1093/ve/vez047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Duraisamy R., Akiana J., Davoust B., Mediannikov O., Michelle C., Robert C., Parra H.J., Raoult D., Biagini P., Desnues C. Detection of novel RNA viruses from free-living gorillas, Republic of the Congo: Genetic diversity of picobirnaviruses. Virus Genes. 2018;54:256–271. doi: 10.1007/s11262-018-1543-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Fernandez-Cassi X., Timoneda N., Gonzales-Gustavson E., Abril J.F., Bofill-Mas S., Girones R. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water. Int. J. Food Microbiol. 2017;257:80–90. doi: 10.1016/j.ijfoodmicro.2017.06.001. [DOI] [PubMed] [Google Scholar]
  • 51.Frey K.G., Biser T., Hamilton T., Santos C.J., Pimentel G., Mokashi V.P., Bishop-Lilly K.A. Bioinformatic Characterization of Mosquito Viromes within the Eastern United States and Puerto Rico: Discovery of Novel Viruses. Evol. Bioinform. 2016;12((Suppl. 2)):1–12. doi: 10.4137/EBO.S38518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Wang G., Huang Y., Zhang W., Peng R., Luo J., Liu S., Bai S., Hu X., Wu Z., Yang F., et al. Identification and genome analysis of a novel picornavirus from captive belugas (Delphinapterus leucas) in China. Sci. Rep. 2021;11:21018. doi: 10.1038/s41598-021-00605-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Gonzales-Gustavson E., Timoneda N., Fernandez-Cassi X., Caballero A., Abril J.F., Buti M., Rodriguez-Frias F., Girones R. Identification of sapovirus GV.2, astrovirus VA3 and novel anelloviruses in serum from patients with acute hepatitis of unknown aetiology. PLoS ONE. 2017;12:e0185911. doi: 10.1371/journal.pone.0185911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Guo L., Hua X., Zhang W., Yang S., Shen Q., Hu H., Li J., Liu Z., Wang X., Wang H., et al. Viral metagenomics analysis of feces from coronary heart disease patients reveals the genetic diversity of the Microviridae. Virol. Sin. 2017;32:130–138. doi: 10.1007/s12250-016-3896-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Han Z., Xiao J., Song Y., Hong M., Dai G., Lu H., Zhang M., Liang Y., Yan D., Zhu S., et al. The Husavirus Posa-Like Viruses in China, and a New Group of Picornavirales. Viruses. 2020;12:995. doi: 10.3390/v12090995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Hargitai R., Boros Á., Pankovics P., Mátics R., Altan E., Delwart E., Reuter G. Detection and genetic characterization of a novel parvovirus (family Parvoviridae) in barn owls (Tyto alba) in Hungary. Arch. Virol. 2021;166:231–236. doi: 10.1007/s00705-020-04862-6. [DOI] [PubMed] [Google Scholar]
  • 57.Yang J., Wang H., Zhang X., Yang S., Xu H., Zhang W. Viral metagenomic identification of a novel anellovirus in blood sample of a child with atopic dermatitis. J. Med. Virol. 2021;93:4038–4041. doi: 10.1002/jmv.26603. [DOI] [PubMed] [Google Scholar]
  • 58.Kauer R.V., Koch M.C., Hierweger M.M., Werder S., Boujon C.L., Seuberlich T. Discovery of novel astrovirus genotype species in small ruminants. PeerJ. 2019;7:e7338. doi: 10.7717/peerj.7338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Li L., Victoria J.G., Wang C., Jones M., Fellers G.M., Kunz T.H., Delwart E. Bat guano virome: Predominance of dietary viruses from insects and plants plus novel mammalian viruses. J. Virol. 2010;84:6955–6965. doi: 10.1128/JVI.00501-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Li L., Giannitti F., Low J., Keyes C., Ullmann L.S., Deng X., Aleman M., Pesavento P.A., Pusterla N., Delwart E. Exploring the virome of diseased horses. J. Gen. Virol. 2015;96:2721–2733. doi: 10.1099/vir.0.000199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Li L., Pesavento P.A., Shan T., Leutenegger C.M., Wang C., Delwart E. Viruses in diarrhoeic dogs include novel kobuviruses and sapoviruses. J. Gen. Virol. 2011;92:2534–2541. doi: 10.1099/vir.0.034611-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Langat S.K., Eyase F., Bulimo W., Lutomiah J., Oyola S.O., Imbuga M., Sang R. Profiling of RNA Viruses in Biting Midges (Ceratopogonidae) and Related Diptera from Kenya Using Metagenomics and Metabarcoding Analysis. mSphere. 2021;6:e0055121. doi: 10.1128/mSphere.00551-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Law J., Jovel J., Patterson J., Ford G., O’Keefe S., Wang W., Meng B., Song D., Zhang Y., Tian Z., et al. Identification of hepatotropic viruses from plasma using deep sequencing: A next generation diagnostic tool. PLoS ONE. 2013;8:e60595. doi: 10.1371/journal.pone.0060595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Liu Z., Yang S., Wang Y., Shen Q., Yang Y., Deng X., Zhang W., Delwart E. Identification of a novel human papillomavirus by metagenomic analysis of vaginal swab samples from pregnant women. Virol. J. 2016;13:122. doi: 10.1186/s12985-016-0583-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Mahmood A., Shama S., Ni H., Wang H., Ling Y., Xu H., Yang S., Naseer Q.A., Zhang W. Viral Metagenomics Revealed a Novel Cardiovirus in Feces of Wild Rats. Intervirology. 2019;62:45–50. doi: 10.1159/000500555. [DOI] [PubMed] [Google Scholar]
  • 66.Perez-Sautu U., Wiley M.R., Prieto K., Chitty J.A., Haddow A.D., Sanchez-Lockhart M., Klein T.A., Kim H.C., Chong S.T., Kim Y.J., et al. Novel viruses in hard ticks collected in the Republic of Korea unveiled by metagenomic high-throughput sequencing analysis. Ticks Tick-Borne Dis. 2021;12:101820. doi: 10.1016/j.ttbdis.2021.101820. [DOI] [PubMed] [Google Scholar]
  • 67.Pyke A.T., Shivas M.A., Darbro J.M., Onn M.B., Johnson P.H., Crunkhorn A., Montgomery I., Burtonclay P., Jansen C.C., van den Hurk A.F. Uncovering the genetic diversity within the Aedes notoscriptus virome and isolation of new viruses from this highly urbanised and invasive mosquito. Virus Evol. 2021;7:veab082. doi: 10.1093/ve/veab082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Liu Q., Wang H., Ling Y., Yang S.X., Wang X.C., Zhou R., Xiao Y.Q., Chen X., Yang J., Fu W.G., et al. Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer. Virol. J. 2020;17:61. doi: 10.1186/s12985-020-01332-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Qi D., Shan T., Liu Z., Deng X., Zhang Z., Bi W., Owens J.R., Feng F., Zheng L., Huang F., et al. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca) Virol. J. 2017;14:207. doi: 10.1186/s12985-017-0867-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Ramírez A.L., Colmant A.M.G., Warrilow D., Huang B., Pyke A.T., McMahon J.L., Meyer D.B., Graham R.M.A., Jennison A.V., Ritchie S.A., et al. Metagenomic Analysis of the Virome of Mosquito Excreta. mSphere. 2020;5:e00587-20. doi: 10.1128/mSphere.00587-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Ramírez-Martínez M.M., Bennett A.J., Dunn C.D., Yuill T.M., Goldberg T.L. Bat Flies of the Family Streblidae (Diptera: Hippoboscoidea) Host Relatives of Medically and Agriculturally Important “Bat-Associated” Viruses. Viruses. 2021;13:860. doi: 10.3390/v13050860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Reuter G., Pankovics P., Gyöngyi Z., Delwart E., Boros A. Novel dicistrovirus from bat guano. Arch. Virol. 2014;159:3453–3456. doi: 10.1007/s00705-014-2212-2. [DOI] [PubMed] [Google Scholar]
  • 73.I. Sardi S., H. Carvalho R., C. Pacheco L.G., P. D. Almeida J.P., M. D. A. Belitardo E.M., S. Pinheiro C., S. Campos G., R. G. R. Aguiar E. High-Quality Resolution of the Outbreak-Related Zika Virus Genome and Discovery of New Viruses Using Ion Torrent-Based Metatranscriptomics. Viruses. 2020;12:782. doi: 10.3390/v12070782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Santos P.D., Ziegler U., Szillat K.P., Szentiks C.A., Strobel B., Skuballa J., Merbach S., Grothmann P., Tews B.A., Beer M., et al. In action-an early warning system for the detection of unexpected or novel pathogens. Virus Evol. 2021;7:veab085. doi: 10.1093/ve/veab085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Shi C., Beller L., Deboutte W., Yinda K.C., Delang L., Vega-Rúa A., Failloux A.B., Matthijnssens J. Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome. 2019;7:121. doi: 10.1186/s40168-019-0734-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Simsek C., Corman V.M., Everling H.U., Lukashev A.N., Rasche A., Maganga G.D., Binger T., Jansen D., Beller L., Deboutte W., et al. At Least Seven Distinct Rotavirus Genotype Constellations in Bats with Evidence of Reassortment and Zoonotic Transmissions. mBio. 2021;12:e02755-20. doi: 10.1128/mBio.02755-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Siqueira J.D., Ng T.F., Miller M., Li L., Deng X., Dodd E., Batac F., Delwart E. Endemic Infection of Stranded Southern Sea Otters (Enhydra Lutris Nereis) with Novel Parvovirus, Polyomavirus, And Adenovirus. J. Wildl. Dis. 2017;53:532–542. doi: 10.7589/2016-04-082. [DOI] [PubMed] [Google Scholar]
  • 78.Souza W.M., Fumagalli M.J., Torres Carrasco A.O., Romeiro M.F., Modha S., Seki M.C., Gheller J.M., Daffre S., Nunes M.R.T., Murcia P.R., et al. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil. Sci. Rep. 2018;8:16315. doi: 10.1038/s41598-018-34630-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Ng T.F.F., Dill J.A., Camus A.C., Delwart E., Van Meir E.G. Two new species of betatorqueviruses identified in a human melanoma that metastasized to the brain. Oncotarget. 2017;8:105800–105808. doi: 10.18632/oncotarget.22400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Ng T.F., Mesquita J.R., Nascimento M.S., Kondov N.O., Wong W., Reuter G., Knowles N.J., Vega E., Esona M.D., Deng X., et al. Feline fecal virome reveals novel and prevalent enteric viruses. Vet. Microbiol. 2014;171:102–111. doi: 10.1016/j.vetmic.2014.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Zhao T., Gong H., Shen X., Zhang W., Shan T., Yu X., Wang S.J., Cui L. Comparison of Viromes in Ticks from Different Domestic Animals in China. Virol. Sin. 2020;35:398–406. doi: 10.1007/s12250-020-00197-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Theuns S., Conceição-Neto N., Zeller M., Heylen E., Roukaerts I.D., Desmarets L.M., Van Ranst M., Nauwynck H.J., Matthijnssens J. Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. Infect. Genet. Evol. 2016;43:135–145. doi: 10.1016/j.meegid.2016.05.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Tse H., Tsang A.K., Tsoi H.W., Leung A.S., Ho C.C., Lau S.K., Woo P.C., Yuen K.Y. Identification of a novel bat papillomavirus by metagenomics. PLoS ONE. 2012;7:e43986. doi: 10.1371/journal.pone.0043986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Ullah K., Mehmood A., Chen X., Dar M.A., Yang S., Zhang W. Detection and molecular characterization of picobirnaviruses in the wild birds: Identification of a novel picobirnavirus possessing yeast mitochondrial genetic code. Virus Res. 2021;308:198624. doi: 10.1016/j.virusres.2021.198624. [DOI] [PubMed] [Google Scholar]
  • 85.Vandegrift K.J., Kumar A., Sharma H., Murthy S., Kramer L.D., Ostfeld S., Hudson P.J., Kapoor A. Presence of Segmented Flavivirus Infections in North America. Emerg. Infect. Dis. 2020;26:1810–1817. doi: 10.3201/eid2608.190986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Vanmechelen B., Merino M., Vergote V., Laenen L., Thijssen M., Martí-Carreras J., Claerebout E., Maes P. Exploration of the Ixodes ricinus virosphere unveils an extensive virus diversity including novel coltiviruses and other reoviruses. Virus Evol. 2021;7:veab066. doi: 10.1093/ve/veab066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Vibin J., Chamings A., Klaassen M., Alexandersen S. Metagenomic characterisation of additional and novel avian viruses from Australian wild ducks. Sci. Rep. 2020;10:22284. doi: 10.1038/s41598-020-79413-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Vibin J., Chamings A., Klaassen M., Bhatta T.R., Alexandersen S. Metagenomic characterisation of avian parvoviruses and picornaviruses from Australian wild ducks. Sci. Rep. 2020;10:12800. doi: 10.1038/s41598-020-69557-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Zhang W., Yang S., Shan T., Hou R., Liu Z., Li W., Guo L., Wang Y., Chen P., Wang X., et al. Virome comparisons in wild-diseased and healthy captive giant pandas. Microbiome. 2017;5:90. doi: 10.1186/s40168-017-0308-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Chen X., Zhang B., Yue H., Wang Y., Zhou F., Zhang Q., Tang C. A novel astrovirus species in the gut of yaks with diarrhoea in the Qinghai–Tibetan Plateau, 2013. J. Gen. Virol. 2015;96:3672–3680. doi: 10.1099/jgv.0.000303. [DOI] [PubMed] [Google Scholar]
  • 91.Chen X.U., He Y., Li W., Kalim U., Xiao Y., Yang J., Wang X., Yang S., Zhang W. Identification and Characterization of a Novel Recombinant Porcine Astrovirus from Pigs in Anhui, China. Pol. J. Microbiol. 2020;69:471–478. doi: 10.33073/pjm-2020-051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Wang Y., Yang S., Liu D., Zhou C., Li W., Lin Y., Wang X., Shen Q., Wang H., Li C., et al. The fecal virome of red-crowned cranes. Arch. Virol. 2019;164:3–16. doi: 10.1007/s00705-018-4037-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Xu Y., Sun Y., Ma J., Zhou S., Fang W., Ye J., Tan L., Ji J., Luo D., Li L., et al. A novel Enterovirus 96 circulating in China causes hand, foot, and mouth disease. Virus Genes. 2017;53:352–356. doi: 10.1007/s11262-017-1431-5. [DOI] [PubMed] [Google Scholar]
  • 94.Yinda C.K., Zeller M., Conceição-Neto N., Maes P., Deboutte W., Beller L., Heylen E., Ghogomu S.M., Van Ranst M., Matthijnssens J. Novel highly divergent reassortant bat rotaviruses in Cameroon, without evidence of zoonosis. Sci. Rep. 2016;6:34209. doi: 10.1038/srep34209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Yinda C.K., Conceição-Neto N., Zeller M., Heylen E., Maes P., Ghogomu S.M., Van Ranst M., Matthijnssens J. Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon. Emerg. Microbes Infect. 2017;6:e38. doi: 10.1038/emi.2017.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Yang Z., Zhang J., Yang S., Wang X., Shen Q., Sun G., Wang H., Zhang W. Virome analysis of ticks in a forest region of Liaoning, China: Characterization of a novel hepe-like virus sequence. Virol. J. 2021;18:163. doi: 10.1186/s12985-021-01632-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Alex C.E., Kubiski S.V., Li L., Sadeghi M., Wack R.F., McCarthy M.A., Pesavento J.B., Delwart E., Pesavento P.A. Amdoparvovirus Infection in Red Pandas (Ailurus fulgens) Vet. Pathol. 2018;55:552–561. doi: 10.1177/0300985818758470. [DOI] [PubMed] [Google Scholar]
  • 98.Alex C.E., Fahsbender E., Altan E., Bildfell R., Wolff P., Jin L., Black W., Jackson K., Woods L., Munk B., et al. Viruses in unexplained encephalitis cases in American black bears (Ursus americanus) PLoS ONE. 2020;15:e0244056. doi: 10.1371/journal.pone.0244056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Altan E., Delaney M.A., Colegrove K.M., Spraker T.R., Wheeler E.A., Deng X., Li Y., Gulland F.M.D., Delwart E. Complex Virome in a Mesenteric Lymph Node from a Californian Sea Lion (Zalophus Californianus) with Polyserositis and Steatitis. Viruses. 2020;12:793. doi: 10.3390/v12080793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Altan E., Hui A., Li Y., Pesavento P., Asín J., Crossley B., Deng X., Uzal F.A., Delwart E. New Parvoviruses and Picornavirus in Tissues and Feces of Foals with Interstitial Pneumonia. Viruses. 2021;13:1612. doi: 10.3390/v13081612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Altan E., Kubiski S.V., Boros Á., Reuter G., Sadeghi M., Deng X., Creighton E.K., Crim M.J., Delwart E. A Highly Divergent Picornavirus Infecting the Gut Epithelia of Zebrafish (Danio rerio) in Research Institutions Worldwide. Zebrafish. 2019;16:291–299. doi: 10.1089/zeb.2018.1710. [DOI] [PubMed] [Google Scholar]
  • 102.Altan E., Li Y., Sabino-Santos G., Jr., Sawaswong V., Barnum S., Pusterla N., Deng X., Delwart E. Viruses in Horses with Neurologic and Respiratory Diseases. Viruses. 2019;11:942. doi: 10.3390/v11100942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Altan E., Seguin M.A., Leutenegger C.M., Phan T.G., Deng X., Delwart E. Nasal virome of dogs with respiratory infection signs include novel taupapillomaviruses. Virus Genes. 2019;55:191–197. doi: 10.1007/s11262-019-01634-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Eibach D., Hogan B., Sarpong N., Winter D., Struck N.S., Adu-Sarkodie Y., Owusu-Dabo E., Schmidt-Chanasit J., May J., Cadar D. Viral metagenomics revealed novel betatorquevirus species in pediatric inpatients with encephalitis/meningoencephalitis from Ghana. Sci. Rep. 2019;9:2360. doi: 10.1038/s41598-019-38975-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Fahsbender E., Altan E., Seguin M.A., Young P., Estrada M., Leutenegger C., Delwart E. Chapparvovirus DNA Found in 4% of Dogs with Diarrhea. Viruses. 2019;11:398. doi: 10.3390/v11050398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Fahsbender E., Charlys da-Costa A., Elise Gill D., Augusto de Padua Milagres F., Brustulin R., Julio Costa Monteiro F., Octavio da Silva Rego M., Soares D’Athaide Ribeiro E., Cerdeira Sabino E., Delwart E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS ONE. 2020;15:e0229993. doi: 10.1371/journal.pone.0229993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Fernández-Correa I., Truchado D.A., Gomez-Lucia E., Doménech A., Pérez-Tris J., Schmidt-Chanasit J., Cadar D., Benítez L. A novel group of avian astroviruses from Neotropical passerine birds broaden the diversity and host range of Astroviridae. Sci. Rep. 2019;9:9513. doi: 10.1038/s41598-019-45889-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Hargitai R., Pankovics P., Boros Á., Mátics R., Altan E., Delwart E., Reuter G. Novel picornavirus (family Picornaviridae) from freshwater fishes (Perca fluviatilis, Sander lucioperca, and Ameiurus melas) in Hungary. Arch. Virol. 2021;166:2627–2632. doi: 10.1007/s00705-021-05167-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Phan T.G., Luchsinger V., Avendaño L.F., Deng X., Delwart E. Cyclovirus in nasopharyngeal aspirates of Chilean children with respiratory infections. J. Gen. Virol. 2014;95:922–927. doi: 10.1099/vir.0.061143-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Reuter G., Boros Á., Mátics R., Kapusinszky B., Delwart E., Pankovics P. Detection and complete genome characterization of a novel RNA virus related to members of the Hepe-Virga clade in bird species, hoopoe (Upupa epops) Infect. Genet. Evol. 2020;81:104236. doi: 10.1016/j.meegid.2020.104236. [DOI] [PubMed] [Google Scholar]
  • 111.Sadeghi M., Kapusinszky B., Yugo D.M., Phan T.G., Deng X., Kanevsky I., Opriessnig T., Woolums A.R., Hurley D.J., Meng X.J., et al. Virome of US bovine calf serum. Biologicals. 2017;46:64–67. doi: 10.1016/j.biologicals.2016.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Sadeghi M., Popov V., Guzman H., Phan T.G., Vasilakis N., Tesh R., Delwart E. Genomes of viral isolates derived from different mosquitos species. Virus Res. 2017;242:49–57. doi: 10.1016/j.virusres.2017.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Truchado D.A., Diaz-Piqueras J.M., Gomez-Lucia E., Doménech A., Milá B., Pérez-Tris J., Schmidt-Chanasit J., Cadar D., Benítez L. A Novel and Divergent Gyrovirus with Unusual Genomic Features Detected in Wild Passerine Birds from a Remote Rainforest in French Guiana. Viruses. 2019;11:1148. doi: 10.3390/v11121148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Truchado D.A., Llanos-Garrido A., Oropesa-Olmedo D.A., Cerrada B., Cea P., Moens M.A.J., Gomez-Lucia E., Doménech A., Milá B., Pérez-Tris J., et al. Comparative Metagenomics of Palearctic and Neotropical Avian Cloacal Viromes Reveal Geographic Bias in Virus Discovery. Microorganisms. 2020;8:1869. doi: 10.3390/microorganisms8121869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Zhang W., Li L., Deng X., Kapusinszky B., Delwart E. What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology. 2014;468–470:303–310. doi: 10.1016/j.virol.2014.08.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Zhang W., Li L., Deng X., Kapusinszky B., Pesavento P.A., Delwart E. Faecal virome of cats in an animal shelter. J. Gen. Virol. 2014;95:2553–2564. doi: 10.1099/vir.0.069674-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Li Y., Gordon E., Idle A., Hui A., Chan R., Seguin M.A., Delwart E. Astrovirus Outbreak in an Animal Shelter Associated with Feline Vomiting. Front. Vet. Sci. 2021;8:628082. doi: 10.3389/fvets.2021.628082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Aw T.G., Howe A., Rose J.B. Metagenomic approaches for direct and cell culture evaluation of the virological quality of wastewater. J. Virol. Methods. 2014;210:15–21. doi: 10.1016/j.jviromet.2014.09.017. [DOI] [PubMed] [Google Scholar]
  • 119.Castrignano S.B., Nagasse-Sugahara T.K., Kisielius J.J., Ueda-Ito M., Brandão P.E., Curti S.P. Two novel circo-like viruses detected in human feces: Complete genome sequencing and electron microscopy analysis. Virus Res. 2013;178:364–373. doi: 10.1016/j.virusres.2013.09.018. [DOI] [PubMed] [Google Scholar]
  • 120.Dai Z., Wang H., Feng Z., Ma L., Yang S., Shen Q., Wang X., Zhou T., Zhang W. Identification of a novel circovirus in blood sample of giant pandas (Ailuropoda melanoleuca) Infect. Genet. Evol. 2021;95:105077. doi: 10.1016/j.meegid.2021.105077. [DOI] [PubMed] [Google Scholar]
  • 121.Dai Z., Wang H., Yang S., Shen Q., Wang X., Zhou T., Feng Z., Zhang W. Identification and characterization of a novel bocaparvovirus in tufted deer (Elaphodus cephalophus) in China. Arch. Virol. 2022;167:201–206. doi: 10.1007/s00705-021-05308-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Dunlap D.S., Ng T.F., Rosario K., Barbosa J.G., Greco A.M., Breitbart M., Hewson I. Molecular and microscopic evidence of viruses in marine copepods. Proc. Natl. Acad. Sci. USA. 2013;110:1375–1380. doi: 10.1073/pnas.1216595110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Wang H., Ling Y., Shan T., Yang S., Xu H., Deng X., Delwart E., Zhang W. Gut virome of mammals and birds reveals high genetic diversity of the family Microviridae. Virus Evol. 2019;5:vez013. doi: 10.1093/ve/vez013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Wang J., Li N., Li Z., Liu L., He Y., Meng J., Li S., Wang J. Identification of a novel bocaparvovirus in a wild squirrel in Kunming, Yunnan Province, China. Arch. Virol. 2020;165:1469–1474. doi: 10.1007/s00705-020-04613-7. [DOI] [PubMed] [Google Scholar]
  • 125.Leigh B.A., Bordenstein S.R., Brooks A.W., Mikaelyan A., Bordenstein S.R. Finer-Scale Phylosymbiosis: Insights from Insect Viromes. mSystems. 2018;3:e00131-18. doi: 10.1128/mSystems.00131-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Ling Y., Zhang X., Qi G., Yang S., Jingjiao L., Shen Q., Wang X., Cui L., Hua X., Deng X., et al. Viral metagenomics reveals significant viruses in the genital tract of apparently healthy dairy cows. Arch. Virol. 2019;164:1059–1067. doi: 10.1007/s00705-019-04158-4. [DOI] [PubMed] [Google Scholar]
  • 127.Richard J.C., Leis E., Dunn C.D., Agbalog R., Waller D., Knowles S., Putnam J., Goldberg T.L. Mass mortality in freshwater mussels (Actinonaias pectorosa) in the Clinch River, USA, linked to a novel densovirus. Sci. Rep. 2020;10:14498. doi: 10.1038/s41598-020-71459-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Rosario K., Marinov M., Stainton D., Kraberger S., Wiltshire E.J., Collings D.A., Walters M., Martin D.P., Breitbart M., Varsani A. Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera) J. Gen. Virol. 2011;92:1302–1308. doi: 10.1099/vir.0.030338-0. [DOI] [PubMed] [Google Scholar]
  • 129.Rosario K., Padilla-Rodriguez M., Kraberger S., Stainton D., Martin D.P., Breitbart M., Varsani A. Discovery of a novel mastrevirus and alphasatellite-like circular DNA in dragonflies (Epiprocta) from Puerto Rico. Virus Res. 2013;171:231–237. doi: 10.1016/j.virusres.2012.10.017. [DOI] [PubMed] [Google Scholar]
  • 130.Rosario K., Schenck R.O., Harbeitner R.C., Lawler S.N., Breitbart M. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins. Front. Microbiol. 2015;6:696. doi: 10.3389/fmicb.2015.00696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Rosario K., Seah Y.M., Marr C., Varsani A., Kraberger S., Stainton D., Moriones E., Polston J.E., Duffy S., Breitbart M. Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus Species in the New and Old Worlds. Viruses. 2015;7:5553–5570. doi: 10.3390/v7102895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Ng T.F., Duffy S., Polston J.E., Bixby E., Vallad G.E., Breitbart M. Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS ONE. 2011;6:e19050. doi: 10.1371/journal.pone.0019050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Ng T.F., Kondov N.O., Hayashimoto N., Uchida R., Cha Y., Beyer A.I., Wong W., Pesavento P.A., Suemizu H., Muench M.O., et al. Identification of an astrovirus commonly infecting laboratory mice in the US and Japan. PLoS ONE. 2013;8:e66937. doi: 10.1371/journal.pone.0066937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Ng T.F., Manire C., Borrowman K., Langer T., Ehrhart L., Breitbart M. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J. Virol. 2009;83:2500–2509. doi: 10.1128/JVI.01946-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Ng T.F.F., Wheeler E., Greig D., Waltzek T.B., Gulland F., Breitbart M. Metagenomic identification of a novel anellovirus in Pacific harbor seal (Phoca vitulina richardsii) lung samples and its detection in samples from multiple years. J. Gen. Virol. 2011;92:1318–1323. doi: 10.1099/vir.0.029678-0. [DOI] [PubMed] [Google Scholar]
  • 136.Wang X.C., Wang H., Tan S.D., Yang S.X., Shi X.F., Zhang W. Viral metagenomics reveals diverse anelloviruses in bone marrow specimens from hematologic patients. J. Clin. Virol. 2020;132:104643. doi: 10.1016/j.jcv.2020.104643. [DOI] [PubMed] [Google Scholar]
  • 137.Kim Y., Aw T.G., Teal T.K., Rose J.B. Metagenomic Investigation of Viral Communities in Ballast Water. Environ. Sci. Technol. 2015;49:8396–8407. doi: 10.1021/acs.est.5b01633. [DOI] [PubMed] [Google Scholar]
  • 138.Li Y., Gordon E., Idle A., Altan E., Seguin M.A., Estrada M., Deng X., Delwart E. Virome of a Feline Outbreak of Diarrhea and Vomiting Includes Bocaviruses and a Novel Chapparvovirus. Viruses. 2020;12:506. doi: 10.3390/v12050506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Zhou H., Zhu S., Quan R., Wang J., Wei L., Yang B., Xu F., Wang J., Chen F., Liu J. Identification and Genome Characterization of the First Sicinivirus Isolate from Chickens in Mainland China by Using Viral Metagenomics. PLoS ONE. 2015;10:e0139668. doi: 10.1371/journal.pone.0139668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Bodewes R., Contreras G.J.S., García A.R., Hapsari R., van de Bildt M.W.G., Kuiken T., Osterhaus A. Identification of DNA sequences that imply a novel gammaherpesvirus in seals. J. Gen. Virol. 2015;96:1109–1114. doi: 10.1099/vir.0.000029. [DOI] [PubMed] [Google Scholar]
  • 141.Castrignano S.B., Nagasse-Sugahara T.K., Garrafa P., Monezi T.A., Barrella K.M., Mehnert D.U. Identification of circo-like virus-Brazil genomic sequences in raw sewage from the metropolitan area of São Paulo: Evidence of circulation two and three years after the first detection. Mem. Inst. Oswaldo Cruz. 2017;112:175–181. doi: 10.1590/0074-02760160312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Crane A., Goebel M.E., Kraberger S., Stone A.C., Varsani A. Novel anelloviruses identified in buccal swabs of Antarctic fur seals. Virus Genes. 2018;54:719–723. doi: 10.1007/s11262-018-1585-9. [DOI] [PubMed] [Google Scholar]
  • 143.Dayaram A., Opong A., Jaschke A., Hadfield J., Baschiera M., Dobson R.C., Offei S.K., Shepherd D.N., Martin D.P., Varsani A. Molecular characterisation of a novel cassava associated circular ssDNA virus. Virus Res. 2012;166:130–135. doi: 10.1016/j.virusres.2012.03.009. [DOI] [PubMed] [Google Scholar]
  • 144.Kraberger S., Cook C.N., Schmidlin K., Fontenele R.S., Bautista J., Smith B., Varsani A. Diverse single-stranded DNA viruses associated with honey bees (Apis mellifera) Infect. Genet. Evol. 2019;71:179–188. doi: 10.1016/j.meegid.2019.03.024. [DOI] [PubMed] [Google Scholar]
  • 145.Kraberger S., Schmidlin K., Fontenele R.S., Walters M., Varsani A. Unravelling the Single-Stranded DNA Virome of the New Zealand Blackfly. Viruses. 2019;11:532. doi: 10.3390/v11060532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.A. Duarte M., F. Silva J.M., R. Brito C., S. Teixeira D., L. Melo F., M. Ribeiro B., Nagata. T., S. Campos F. Faecal Virome Analysis of Wild Animals from Brazil. Viruses. 2019;11:803. doi: 10.3390/v11090803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Öncü C., Brinkmann A., Günay F., Kar S., Öter K., Sarıkaya Y., Nitsche A., Linton Y.M., Alten B., Ergünay K. West Nile virus, Anopheles flavivirus, a novel flavivirus as well as Merida-like rhabdovirus Turkey in field-collected mosquitoes from Thrace and Anatolia. Infect. Genet. Evol. 2018;57:36–45. doi: 10.1016/j.meegid.2017.11.003. [DOI] [PubMed] [Google Scholar]
  • 148.Orton J.P., Morales M., Fontenele R.S., Schmidlin K., Kraberger S., Leavitt D.J., Webster T.H., Wilson M.A., Kusumi K., Dolby G.A., et al. Virus Discovery in Desert Tortoise Fecal Samples: Novel Circular Single-Stranded DNA Viruses. Viruses. 2020;12:143. doi: 10.3390/v12020143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Popgeorgiev N., Boyer M., Fancello L., Monteil S., Robert C., Rivet R., Nappez C., Azza S., Chiaroni J., Raoult D., et al. Marseillevirus-like virus recovered from blood donated by asymptomatic humans. J. Infect. Dis. 2013;208:1042–1050. doi: 10.1093/infdis/jit292. [DOI] [PubMed] [Google Scholar]
  • 150.Sasaki M., Orba Y., Ueno K., Ishii A., Moonga L., Hang’ombe B.M., Mweene A.S., Ito K., Sawa H. Metagenomic analysis of the shrew enteric virome reveals novel viruses related to human stool-associated viruses. J. Gen. Virol. 2015;96:440–452. doi: 10.1099/vir.0.071209-0. [DOI] [PubMed] [Google Scholar]
  • 151.Anh N.T., Hong N.T.T., Nhu L.N.T., Thanh T.T., Lau C.Y., Limmathurotsakul D., Deng X., Rahman M., Chau N.V.V., van Doorn H.R., et al. Viruses in Vietnamese Patients Presenting with Community-Acquired Sepsis of Unknown Cause. J. Clin. Microbiol. 2019;57:e00386-19. doi: 10.1128/JCM.00386-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Pan S., Yu T., Wang Y., Lu R., Wang H., Xie Y., Feng X. Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s Lymphoma Patients. Front. Microbiol. 2018;9:1680. doi: 10.3389/fmicb.2018.01680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Plyusnin I., Kant R., Jääskeläinen A.J., Sironen T., Holm L., Vapalahti O., Smura T. Novel NGS pipeline for virus discovery from a wide spectrum of hosts and sample types. Virus Evol. 2020;6:veaa091. doi: 10.1093/ve/veaa091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Shan T., Li L., Simmonds P., Wang C., Moeser A., Delwart E. The fecal virome of pigs on a high-density farm. J. Virol. 2011;85:11697–11708. doi: 10.1128/JVI.05217-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Li T., Mbala-Kingebeni P., Naccache S.N., Thézé J., Bouquet J., Federman S., Somasekar S., Yu G., Sanchez-San Martin C., Achari A., et al. Metagenomic Next-Generation Sequencing of the 2014 Ebola Virus Disease Outbreak in the Democratic Republic of the Congo. J. Clin. Microbiol. 2019;57:e00827-19. doi: 10.1128/JCM.00827-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Xia H., Wang Y., Shi C., Atoni E., Zhao L., Yuan Z. Comparative Metagenomic Profiling of Viromes Associated with Four Common Mosquito Species in China. Virol. Sin. 2018;33:59–66. doi: 10.1007/s12250-018-0015-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Zhang Y., Li F., Shan T.L., Deng X., Delwart E., Feng X.P. A novel species of torque teno mini virus (TTMV) in gingival tissue from chronic periodontitis patients. Sci. Rep. 2016;6:26739. doi: 10.1038/srep26739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Zhang Y., Shan T.L., Li F., Yu T., Chen X., Deng X.T., Delwart E., Feng X.P. A novel phage from periodontal pockets associated with chronic periodontitis. Virus Genes. 2019;55:381–393. doi: 10.1007/s11262-019-01658-y. [DOI] [PubMed] [Google Scholar]
  • 159.Blomström A.L., Fossum C., Wallgren P., Berg M. Viral Metagenomic Analysis Displays the Co-Infection Situation in Healthy and PMWS Affected Pigs. PLoS ONE. 2016;11:e0166863. doi: 10.1371/journal.pone.0166863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Blomström A.L., Ståhl K., Masembe C., Okoth E., Okurut A.R., Atmnedi P., Kemp S., Bishop R., Belák S., Berg M. Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2. Virol. J. 2012;9:192. doi: 10.1186/1743-422X-9-192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Blomström A.L., Widén F., Hammer A.S., Belák S., Berg M. Detection of a novel astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral metagenomics. J. Clin. Microbiol. 2010;48:4392–4396. doi: 10.1128/JCM.01040-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Cebriá-Mendoza M., Arbona C., Larrea L., Díaz W., Arnau V., Peña C., Bou J.V., Sanjuán R., Cuevas J.M. Deep viral blood metagenomics reveals extensive anellovirus diversity in healthy humans. Sci. Rep. 2021;11:6921. doi: 10.1038/s41598-021-86427-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Zhang D., You F., He Y., Te S.H., Gin K.Y. Isolation and Characterization of the First Freshwater Cyanophage Infecting Pseudanabaena. J. Virol. 2020;94:e00682-20. doi: 10.1128/JVI.00682-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Birnberg L., Temmam S., Aranda C., Correa-Fiz F., Talavera S., Bigot T., Eloit M., Busquets N. Viromics on Honey-Baited FTA Cards as a New Tool for the Detection of Circulating Viruses in Mosquitoes. Viruses. 2020;12:274. doi: 10.3390/v12030274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.He B., Yang F., Yang W., Zhang Y., Feng Y., Zhou J., Xie J., Feng Y., Bao X., Guo H., et al. Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: A distant relative of feline/canine rotaviruses. J. Virol. 2013;87:12357–12366. doi: 10.1128/JVI.02013-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Roediger B., Lee Q., Tikoo S., Cobbin J.C.A., Henderson J.M., Jormakka M., O’Rourke M.B., Padula M.P., Pinello N., Henry M., et al. An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell. 2018;175:530–543.e524. doi: 10.1016/j.cell.2018.08.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Schlottau K., Schulze C., Bilk S., Hanke D., Höper D., Beer M., Hoffmann B. Detection of a Novel Bovine Astrovirus in a Cow with Encephalitis. Transbound. Emerg. Dis. 2016;63:253–259. doi: 10.1111/tbed.12493. [DOI] [PubMed] [Google Scholar]
  • 168.Dela Cruz F.N., Jr., Li L., Delwart E., Pesavento P.A. A novel pulmonary polyomavirus in alpacas (Vicugna pacos) Vet. Microbiol. 2017;201:49–55. doi: 10.1016/j.vetmic.2017.01.005. [DOI] [PubMed] [Google Scholar]
  • 169.Aswad A., Katzourakis A. A novel viral lineage distantly related to herpesviruses discovered within fish genome sequence data. Virus Evol. 2017;3:vex016. doi: 10.1093/ve/vex016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Carrai M., Van Brussel K., Shi M., Li C.X., Chang W.S., Munday J.S., Voss K., McLuckie A., Taylor D., Laws A., et al. Identification of A Novel Papillomavirus Associated with Squamous Cell Carcinoma in A Domestic Cat. Viruses. 2020;12:124. doi: 10.3390/v12010124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Wang H., Neyvaldt J., Enache L., Sikora P., Mattsson A., Johansson A., Lindh M., Bergstedt O., Norder H. Variations among Viruses in Influent Water and Effluent Water at a Wastewater Plant over One Year as Assessed by Quantitative PCR and Metagenomics. Appl. Environ. Microbiol. 2020;86:e02073-20. doi: 10.1128/AEM.02073-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Ng T.F., Alavandi S., Varsani A., Burghart S., Breitbart M. Metagenomic identification of a nodavirus and a circular ssDNA virus in semi-purified viral nucleic acids from the hepatopancreas of healthy Farfantepenaeus duorarum shrimp. Dis. Aquat. Org. 2013;105:237–242. doi: 10.3354/dao02628. [DOI] [PubMed] [Google Scholar]
  • 173.Campbell S.J., Ashley W., Gil-Fernandez M., Newsome T.M., Di Giallonardo F., Ortiz-Baez A.S., Mahar J.E., Towerton A.L., Gillings M., Holmes E.C., et al. Red fox viromes in urban and rural landscapes. Virus Evol. 2020;6:veaa065. doi: 10.1093/ve/veaa065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Chong R., Shi M., Grueber C.E., Holmes E.C., Hogg C.J., Belov K., Barrs V.R. Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J. Virol. 2019;93:e00205-19. doi: 10.1128/JVI.00205-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Geoghegan J.L., Di Giallonardo F., Wille M., Ortiz-Baez A.S., Costa V.A., Ghaly T., Mifsud J.C.O., Turnbull O.M.H., Bellwood D.R., Williamson J.E., et al. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol. 2021;7:veab005. doi: 10.1093/ve/veab005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Harvey E., Rose K., Eden J.S., Lo N., Abeyasuriya T., Shi M., Doggett S.L., Holmes E.C. Extensive Diversity of RNA Viruses in Australian Ticks. J. Virol. 2019;93:e01358-18. doi: 10.1128/JVI.01358-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Porter A.F., Pettersson J.H., Chang W.S., Harvey E., Rose K., Shi M., Eden J.S., Buchmann J., Moritz C., Holmes E.C. Novel hepaci- and pegi-like viruses in native Australian wildlife and non-human primates. Virus Evol. 2020;6:veaa064. doi: 10.1093/ve/veaa064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Scavizzi F., Bassi C., Lupini L., Guerriero P., Raspa M., Sabbioni S. A comprehensive approach for microbiota and health monitoring in mouse colonies using metagenomic shotgun sequencing. Anim. Microbiome. 2021;3:53. doi: 10.1186/s42523-021-00113-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Coutinho F.H., Edwards R.A., Rodríguez-Valera F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol. 2019;17:109. doi: 10.1186/s12915-019-0723-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Dutilh B.E., Cassman N., McNair K., Sanchez S.E., Silva G.G., Boling L., Barr J.J., Speth D.R., Seguritan V., Aziz R.K., et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 2014;5:4498. doi: 10.1038/ncomms5498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Ma Y., You X., Mai G., Tokuyasu T., Liu C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome. 2018;6:24. doi: 10.1186/s40168-018-0410-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Mushegian A., Shipunov A., Elena S.F. Changes in the composition of the RNA virome mark evolutionary transitions in green plants. BMC Biol. 2016;14:68. doi: 10.1186/s12915-016-0288-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Rosario K., Duffy S., Breitbart M. Diverse circovirus-like genome architectures revealed by environmental metagenomics. J. Gen. Virol. 2009;90:2418–2424. doi: 10.1099/vir.0.012955-0. [DOI] [PubMed] [Google Scholar]
  • 184.Yutin N., Kapitonov V.V., Koonin E.V. A new family of hybrid virophages from an animal gut metagenome. Biol. Direct. 2015;10:19. doi: 10.1186/s13062-015-0054-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Zaragoza-Solas A., Rodriguez-Valera F., Lopez-Perez M. Metagenome Mining Reveals Hidden Genomic Diversity of Pelagimyophages in Aquatic Environments. mSystems. 2020;5:e00905-19. doi: 10.1128/mSystems.00905-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Victoria J.G., Kapoor A., Dupuis K., Schnurr D.P., Delwart E.L. Rapid identification of known and new RNA viruses from animal tissues. PLoS Pathog. 2008;4:e1000163. doi: 10.1371/journal.ppat.1000163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Dayaram A., Galatowitsch M., Harding J.S., Argüello-Astorga G.R., Varsani A. Novel circular DNA viruses identified in Procordulia grayi and Xanthocnemis zealandica larvae using metagenomic approaches. Infect. Genet. Evol. 2014;22:134–141. doi: 10.1016/j.meegid.2014.01.013. [DOI] [PubMed] [Google Scholar]
  • 188.Fehér E., Mihalov-Kovács E., Kaszab E., Malik Y.S., Marton S., Bányai K. Genomic Diversity of CRESS DNA Viruses in the Eukaryotic Virome of Swine Feces. Microorganisms. 2021;9:1426. doi: 10.3390/microorganisms9071426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Jackson E.W., Bistolas K.S., Button J.B., Hewson I. Novel Circular Single-Stranded DNA Viruses among an Asteroid, Echinoid and Holothurian (Phylum: Echinodermata) PLoS ONE. 2016;11:e0166093. doi: 10.1371/journal.pone.0166093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Suzuki Y., Nishijima S., Furuta Y., Yoshimura J., Suda W., Oshima K., Hattori M., Morishita S. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome. 2019;7:119. doi: 10.1186/s40168-019-0737-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Zhu Q., Dupont C.L., Jones M.B., Pham K.M., Jiang Z.D., DuPont H.L., Highlander S.K. Visualization-assisted binning of metagenome assemblies reveals potential new pathogenic profiles in idiopathic travelers’ diarrhea. Microbiome. 2018;6:201. doi: 10.1186/s40168-018-0579-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Li Y., Altan E., Reyes G., Halstead B., Deng X., Delwart E. Virome of Bat Guano from Nine Northern California Roosts. J. Virol. 2021;95:e01713-20. doi: 10.1128/JVI.01713-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Gulino K., Rahman J., Badri M., Morton J., Bonneau R., Ghedin E. Initial Mapping of the New York City Wastewater Virome. mSystems. 2020;5:e00876-19. doi: 10.1128/mSystems.00876-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Chen P., Zhou H., Huang Y., Xie Z., Zhang M., Wei Y., Li J., Ma Y., Luo M., Ding W., et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 2021;22:207. doi: 10.1186/s13059-021-02408-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Fitzgerald C.B., Shkoporov A.N., Upadrasta A., Khokhlova E.V., Ross R.P., Hill C. Probing the “Dark Matter” of the Human Gut Phageome: Culture Assisted Metagenomics Enables Rapid Discovery and Host-Linking for Novel Bacteriophages. Front. Cell. Infect. Microbiol. 2021;11:616918. doi: 10.3389/fcimb.2021.616918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Townsend E.M., Kelly L., Muscatt G., Box J.D., Hargraves N., Lilley D., Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front. Cell. Infect. Microbiol. 2021;11:643214. doi: 10.3389/fcimb.2021.643214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Shkoporov A.N., Ryan F.J., Draper L.A., Forde A., Stockdale S.R., Daly K.M., McDonnell S.A., Nolan J.A., Sutton T.D.S., Dalmasso M., et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome. 2018;6:68. doi: 10.1186/s40168-018-0446-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Shkoporov A.N., Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe. 2019;25:195–209. doi: 10.1016/j.chom.2019.01.017. [DOI] [PubMed] [Google Scholar]
  • 199.Aggarwala V., Liang G., Bushman F.D. Viral communities of the human gut: Metagenomic analysis of composition and dynamics. Mob. DNA. 2017;8:12. doi: 10.1186/s13100-017-0095-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Kumar D., Chaudhary S., Lu N., Duff M., Heffel M., McKinney C.A., Bedenice D., Marthaler D. Metagenomic Next-Generation Sequencing Reveal Presence of a Novel Ungulate Bocaparvovirus in Alpacas. Viruses. 2019;11:701. doi: 10.3390/v11080701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Lau S.K.P., Ahmed S.S., Yeung H.C., Li K.S.M., Fan R.Y.Y., Cheng T.Y.C., Cai J.P., Wang M., Zheng B.J., Wong S.S.Y., et al. Identification and interspecies transmission of a novel bocaparvovirus among different bat species in China. J. Gen. Virol. 2016;97:3345–3358. doi: 10.1099/jgv.0.000645. [DOI] [PubMed] [Google Scholar]
  • 202.Woo P.C.Y., Lau S.K.P., Tsoi H.W., Patteril N.G., Yeung H.C., Joseph S., Wong E.Y.M., Muhammed R., Chow F.W.N., Wernery U., et al. Two novel dromedary camel bocaparvoviruses from dromedaries in the Middle East with unique genomic features. J. Gen. Virol. 2017;98:1349–1359. doi: 10.1099/jgv.0.000775. [DOI] [PubMed] [Google Scholar]
  • 203.Kapoor A., Mehta N., Esper F., Poljsak-Prijatelj M., Quan P.L., Qaisar N., Delwart E., Lipkin W.I. Identification and characterization of a new bocavirus species in gorillas. PLoS ONE. 2010;5:e11948. doi: 10.1371/journal.pone.0011948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Ao Y., Li X., Li L., Xie X., Jin D., Yu J., Lu S., Duan Z. Two novel bocaparvovirus species identified in wild Himalayan marmots. Sci. China. Life Sci. 2017;60:1348–1356. doi: 10.1007/s11427-017-9231-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Gunn L., Collins P.J., Fanning S., McKillen J., Morgan J., Staines A., O’Shea H. Detection and characterisation of novel bocavirus (genus Bocaparvovirus) and gastroenteritis viruses from asymptomatic pigs in Ireland. Infect. Ecol. Epidemiol. 2015;5:27270. doi: 10.3402/iee.v5.27270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Zhang C., Song F., Xiu L., Liu Y., Yang J., Yao L., Peng J. Identification and characterization of a novel rodent bocavirus from different rodent species in China. Emerg. Microbes Infect. 2018;7:48. doi: 10.1038/s41426-018-0052-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Al Rwahnih M., Alabi O.J., Westrick N.M., Golino D. Prunus geminivirus A: A Novel Grablovirus Infecting Prunus spp. Plant Dis. 2018;102:1246–1253. doi: 10.1094/PDIS-09-17-1486-RE. [DOI] [PubMed] [Google Scholar]
  • 208.Voorburg C.M., Yan Z., Bergua-Vidal M., Wolters A.A., Bai Y., Kormelink R. Ty-1, a universal resistance gene against geminiviruses that is compromised by co-replication of a betasatellite. Mol. Plant Pathol. 2020;21:160–172. doi: 10.1111/mpp.12885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.De Nazare Almeida Dos Reis L., Fonseca M.E.N., Ribeiro S.G., Naito F.Y.B., Boiteux L.S., Pereira-Carvalho R.C. Metagenomics of Neotropical Single-Stranded DNA Viruses in Tomato Cultivars with and without the Ty-1 Gene. Viruses. 2020;12:819. doi: 10.3390/v12080819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Alarcon-Schumacher T., Guajardo-Leiva S., Anton J., Diez B. Elucidating Viral Communities During a Phytoplankton Bloom on the West Antarctic Peninsula. Front. Microbiol. 2019;10:1014. doi: 10.3389/fmicb.2019.01014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Hendry K.R., Meredith M.P., Ducklow H.W. The marine system of the West Antarctic Peninsula: Status and strategy for progress. Philos. Trans. A Math Phys Eng Sci. 2018;376:20170179. doi: 10.1098/rsta.2017.0179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Faizah A.N., Kobayashi D., Isawa H., Amoa-Bosompem M., Murota K., Higa Y., Futami K., Shimada S., Kim K.S., Itokawa K., et al. Deciphering the Virome of Culex vishnui Subgroup Mosquitoes, the Major Vectors of Japanese Encephalitis, in Japan. Viruses. 2020;12:264. doi: 10.3390/v12030264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Fauver J.R., Grubaugh N.D., Krajacich B.J., Weger-Lucarelli J., Lakin S.M., Fakoli L.S., 3rd, Bolay F.K., Diclaro J.W., 2nd, Dabiré K.R., Foy B.D., et al. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology. 2016;498:288–299. doi: 10.1016/j.virol.2016.07.031. [DOI] [PubMed] [Google Scholar]
  • 214.Ducatez M.F., Guérin J.L. Identification of a novel coronavirus from guinea fowl using metagenomics. Methods Mol. Biol. 2015;1282:27–31. doi: 10.1007/978-1-4939-2438-7_2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Liais E., Croville G., Mariette J., Delverdier M., Lucas M.N., Klopp C., Lluch J., Donnadieu C., Guy J.S., Corrand L., et al. Novel avian coronavirus and fulminating disease in guinea fowl, France. Emerg. Infect. Dis. 2014;20:105–108. doi: 10.3201/eid2001.130774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Dennis T.P.W., Flynn P.J., de Souza W.M., Singer J.B., Moreau C.S., Wilson S.J., Gifford R.J. Insights into Circovirus Host Range from the Genomic Fossil Record. J. Virol. 2018;92:e00145-18. doi: 10.1128/JVI.00145-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Hui A., Altan E., Slovis N., Fletcher C., Deng X., Delwart E. Circovirus in Blood of a Febrile Horse with Hepatitis. Viruses. 2021;13:944. doi: 10.3390/v13050944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Katsuta R., Sunaga F., Oi T., Doan Y.H., Tsuzuku S., Suzuki Y., Sano K., Katayama Y., Omatsu T., Oba M., et al. First identification of Sapoviruses in wild boar. Virus Res. 2019;271:197680. doi: 10.1016/j.virusres.2019.197680. [DOI] [PubMed] [Google Scholar]
  • 219.Boukari W., Alcalá-Briseño R.I., Kraberger S., Fernandez E., Filloux D., Daugrois J.H., Comstock J.C., Lett J.M., Martin D.P., Varsani A., et al. Occurrence of a novel mastrevirus in sugarcane germplasm collections in Florida, Guadeloupe and Réunion. Virol. J. 2017;14:146. doi: 10.1186/s12985-017-0810-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Fontenele R.S., Alves-Freitas D.M.T., Silva P.I.T., Foresti J., Silva P.R., Godinho M.T., Varsani A., Ribeiro S.G. Discovery of the first maize-infecting mastrevirus in the Americas using a vector-enabled metagenomics approach. Arch. Virol. 2018;163:263–267. doi: 10.1007/s00705-017-3571-2. [DOI] [PubMed] [Google Scholar]
  • 221.Claverie S., Ouattara A., Hoareau M., Filloux D., Varsani A., Roumagnac P., Martin D.P., Lett J.M., Lefeuvre P. Exploring the diversity of Poaceae-infecting mastreviruses on Reunion Island using a viral metagenomics-based approach. Sci. Rep. 2019;9:12716. doi: 10.1038/s41598-019-49134-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Feng C., Feng J., Wang Z., Pedersen C., Wang X., Saleem H., Domier L., Marzano S.L. Identification of the Viral Determinant of Hypovirulence and Host Range in Sclerotiniaceae of a Genomovirus Reconstructed from the Plant Metagenome. J. Virol. 2021;95:e0026421. doi: 10.1128/JVI.00264-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Ruiz-Padilla A., Rodriguez-Romero J., Gomez-Cid I., Pacifico D., Ayllon M.A. Novel Mycoviruses Discovered in the Mycovirome of a Necrotrophic Fungus. mBio. 2021;12:e03705-20. doi: 10.1128/mBio.03705-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Saad N., Olmstead J.W., Varsani A., Polston J.E., Jones J.B., Folimonova S.Y., Harmon P.F. Discovery of Known and Novel Viruses in Wild and Cultivated Blueberry in Florida through Viral Metagenomic Approaches. Viruses. 2021;13:1165. doi: 10.3390/v13061165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Oh S., Yoo D., Liu W.T. Metagenomics Reveals a Novel Virophage Population in a Tibetan Mountain Lake. Microbes Environ. 2016;31:173–177. doi: 10.1264/jsme2.ME16003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Miranda J.A., Culley A.I., Schvarcz C.R., Steward G.F. RNA viruses as major contributors to Antarctic virioplankton. Environ. Microbiol. 2016;18:3714–3727. doi: 10.1111/1462-2920.13291. [DOI] [PubMed] [Google Scholar]
  • 227.Molnar J., Magyar B., Schneider G., Laczi K., Valappil S.K., Kovacs A.L., Nagy I.K., Rakhely G., Kovacs T. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLoS ONE. 2020;15:e0231864. doi: 10.1371/journal.pone.0231864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Nishimura Y., Watai H., Honda T., Mihara T., Omae K., Roux S., Blanc-Mathieu R., Yamamoto K., Hingamp P., Sako Y., et al. Environmental Viral Genomes Shed New Light on Virus-Host Interactions in the Ocean. mSphere. 2017;2:e00359-16. doi: 10.1128/mSphere.00359-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Fukasawa Y., Ermini L., Wang H., Carty K., Cheung M.S. LongQC: A Quality Control Tool for Third Generation Sequencing Long Read Data. G3 (Bethesda) 2020;10:1193–1196. doi: 10.1534/g3.119.400864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. [(accessed on 28 June 2022)]. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  • 231.Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Krueger F. Trim Galore! [(accessed on 28 June 2022)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
  • 233.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12. doi: 10.14806/ej.17.1.200. [DOI] [Google Scholar]
  • 234.Insights Q.D. QIAGEN CLC Genomics Workbench, Online Resource. [(accessed on 28 June 2022)]. Available online: https://digitalinsights.qiagen.com.
  • 235.BBMap–Bushnell B. [(accessed on 28 June 2022)]. Available online: sourceforge.net/projects/bbmap/
  • 236.Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  • 239.Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Coordinators N.R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016;44:D7–D19. doi: 10.1093/nar/gkv1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Goodacre N., Aljanahi A., Nandakumar S., Mikailov M., Khan A.S. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection. mSphere. 2018;3:e00069-18. doi: 10.1128/mSphereDirect.00069-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Breitwieser F.P., Lu J., Salzberg S.L. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform. 2019;20:1125–1136. doi: 10.1093/bib/bbx120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244.Nurk S., Meleshko D., Korobeynikov A., Pevzner P.A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017;27:824–834. doi: 10.1101/gr.213959.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Li D., Liu C.M., Luo R., Sadakane K., Lam T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–1676. doi: 10.1093/bioinformatics/btv033. [DOI] [PubMed] [Google Scholar]
  • 246.Zerbino D.R., Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., Liu Y., et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1:18. doi: 10.1186/2047-217X-1-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Deng X., Naccache S.N., Ng T., Federman S., Li L., Chiu C.Y., Delwart E.L. An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res. 2015;43:e46. doi: 10.1093/nar/gkv002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Chevreux B., Pfisterer T., Drescher B., Driesel A.J., Muller W.E., Wetter T., Suhai S. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 2004;14:1147–1159. doi: 10.1101/gr.1917404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Ruby J.G., Bellare P., Derisi J.L. PRICE: Software for the targeted assembly of components of (Meta) genomic sequence data. G3 (Bethesda) 2013;3:865–880. doi: 10.1534/g3.113.005967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.CodonCode Aligner-DNA Sequence Assembly and Alignment on Windows and Mac OS X. CodonCode Corporation, Dedham, MA, USA. Online Resource. [(accessed on 28 June 2022)]. Available online: http://www.codoncode.com/
  • 253.Simpson J.T., Wong K., Jackman S.D., Schein J.E., Jones S.J., Birol I. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. doi: 10.1101/gr.089532.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Boisvert S., Raymond F., Godzaridis E., Laviolette F., Corbeil J. Ray Meta: Scalable de novo metagenome assembly and profiling. Genome Biol. 2012;13:R122. doi: 10.1186/gb-2012-13-12-r122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Huang X., Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Bradnam K.R., Fass J.N., Alexandrov A., Baranay P., Bechner M., Birol I., Boisvert S., Chapman J.A., Chapuis G., Chikhi R., et al. Assemblathon 2: Evaluating de novo methods of genome assembly in three vertebrate species. GigaScience. 2013;2:10. doi: 10.1186/2047-217X-2-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Salzberg S.L., Phillippy A.M., Zimin A., Puiu D., Magoc T., Koren S., Treangen T.J., Schatz M.C., Delcher A.L., Roberts M., et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Res. 2012;22:557–567. doi: 10.1101/gr.131383.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Simao F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. [DOI] [PubMed] [Google Scholar]
  • 260.Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. [DOI] [PubMed] [Google Scholar]
  • 261.Finn R.D., Clements J., Arndt W., Miller B.L., Wheeler T.J., Schreiber F., Bateman A., Eddy S.R. HMMER web server: 2015 update. Nucleic Acids Res. 2015;43:W30–W38. doi: 10.1093/nar/gkv397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Eddy S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.EBI Multiple Sequence Alignment. Online Resource. [(accessed on 28 June 2022)]. Available online: https://www.ebi.ac.uk/Tools/msa/
  • 264.Huson D.H., Auch A.F., Qi J., Schuster S.C. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–386. doi: 10.1101/gr.5969107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Felsenstein J. Taking variation of evolutionary rates between sites into account in inferring phylogenies. J. Mol. Evol. 2001;53:447–455. doi: 10.1007/s002390010234. [DOI] [PubMed] [Google Scholar]
  • 266.Hall B.G., Pikis A., Thompson J. Evolution and biochemistry of family 4 glycosidases: Implications for assigning enzyme function in sequence annotations. Mol. Biol. Evol. 2009;26:2487–2497. doi: 10.1093/molbev/msp162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Hall B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013;30:1229–1235. doi: 10.1093/molbev/mst012. [DOI] [PubMed] [Google Scholar]
  • 268.Capobianchi M.R., Giombini E., Rozera G. Next-generation sequencing technology in clinical virology. Clin. Microbiol. Infect. 2013;19:15–22. doi: 10.1111/1469-0691.12056. [DOI] [PubMed] [Google Scholar]
  • 269.Temmam S., Davoust B., Berenger J.M., Raoult D., Desnues C. Viral metagenomics on animals as a tool for the detection of zoonoses prior to human infection? Int. J. Mol. Sci. 2014;15:10377–10397. doi: 10.3390/ijms150610377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Aarestrup F.M., Koopmans M.G. Sharing Data for Global Infectious Disease Surveillance and Outbreak Detection. Trends Microbiol. 2016;24:241–245. doi: 10.1016/j.tim.2016.01.009. [DOI] [PubMed] [Google Scholar]
  • 271.Gardy J.L., Loman N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018;19:9–20. doi: 10.1038/nrg.2017.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 272.Destoumieux-Garzon D., Mavingui P., Boetsch G., Boissier J., Darriet F., Duboz P., Fritsch C., Giraudoux P., Le Roux F., Morand S., et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018;5:14. doi: 10.3389/fvets.2018.00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Andreani J., Schulz F., Di Pinto F., Levasseur A., Woyke T., La Scola B. Morphological and Genomic Features of the New Klosneuvirinae Isolate Fadolivirus IHUMI-VV54. Front. Microbiol. 2021;12:719703. doi: 10.3389/fmicb.2021.719703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Zakham F., Albalawi A.E., Alanazi A.D., Truong Nguyen P., Alouffi A.S., Alaoui A., Sironen T., Smura T., Vapalahti O. Viral RNA Metagenomics of Hyalomma Ticks Collected from Dromedary Camels in Makkah Province, Saudi Arabia. Viruses. 2021;13:1396. doi: 10.3390/v13071396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275.Guajardo-Leiva S., Pedrós-Alió C., Salgado O., Pinto F., Díez B. Active Crossfire Between Cyanobacteria and Cyanophages in Phototrophic Mat Communities Within Hot Springs. Front. Microbiol. 2018;9:2039. doi: 10.3389/fmicb.2018.02039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Muhamad Rizal N.S., Neoh H.M., Ramli R., PR A.L.K.P., Hanafiah A., Abdul Samat M.N., Tan T.L., Wong K.K., Nathan S., Chieng S., et al. Advantages and Limitations of 16S rRNA Next-Generation Sequencing for Pathogen Identification in the Diagnostic Microbiology Laboratory: Perspectives from a Middle-Income Country. Diagnostics. 2020;10:816. doi: 10.3390/diagnostics10100816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Harvey E., Holmes E.C. Diversity and evolution of the animal virome. Nat. Rev. Microbiol. 2022;20:321–334. doi: 10.1038/s41579-021-00665-x. [DOI] [PubMed] [Google Scholar]
  • 278.Graf E.H., Simmon K.E., Tardif K.D., Hymas W., Flygare S., Eilbeck K., Yandell M., Schlaberg R. Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: A Systematic Comparison to a Commercial PCR Panel. J. Clin. Microbiol. 2016;54:1000–1007. doi: 10.1128/JCM.03060-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Siddaway A.P., Wood A.M., Hedges L.V. How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annu. Rev. Psychol. 2019;70:747–770. doi: 10.1146/annurev-psych-010418-102803. [DOI] [PubMed] [Google Scholar]
  • 280.Snyder H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019;104:333–339. doi: 10.1016/j.jbusres.2019.07.039. [DOI] [Google Scholar]
  • 281.Walden C., Carbonero F., Zhang W. Assessing impacts of DNA extraction methods on next generation sequencing of water and wastewater samples. J. Microbiol. Methods. 2017;141:10–16. doi: 10.1016/j.mimet.2017.07.007. [DOI] [PubMed] [Google Scholar]
  • 282.Klenner J., Kohl C., Dabrowski P.W., Nitsche A. Comparing Viral Metagenomic Extraction Methods. Curr. Issues Mol. Biol. 2017;24:59–70. doi: 10.21775/cimb.024.059. [DOI] [PubMed] [Google Scholar]
  • 283.Hjelmso M.H., Hellmer M., Fernandez-Cassi X., Timoneda N., Lukjancenko O., Seidel M., Elsasser D., Aarestrup F.M., Lofstrom C., Bofill-Mas S., et al. Evaluation of Methods for the Concentration and Extraction of Viruses from Sewage in the Context of Metagenomic Sequencing. PLoS ONE. 2017;12:e0170199. doi: 10.1371/journal.pone.0170199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Li Q., Chen Y., Zhang S., Lyu Y., Zou Y., Li J. DNA Enrichment Methods for Microbial Symbionts in Marine Bivalves. Microorganisms. 2022;10:393. doi: 10.3390/microorganisms10020393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285.Parras-Molto M., Rodriguez-Galet A., Suarez-Rodriguez P., Lopez-Bueno A. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome. 2018;6:119. doi: 10.1186/s40168-018-0507-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Conceicao-Neto N., Zeller M., Lefrere H., De Bruyn P., Beller L., Deboutte W., Yinda C.K., Lavigne R., Maes P., Van Ranst M., et al. Modular approach to customise sample preparation procedures for viral metagenomics: A reproducible protocol for virome analysis. Sci. Rep. 2015;5:16532. doi: 10.1038/srep16532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287.Sun S., Shi Y., Tong H.I., Kang W., Wang Z., Allmann E., Lu Y. Effective concentration, recovery, and detection of infectious adenoviruses from environmental waters. J. Virol. Methods. 2016;229:78–85. doi: 10.1016/j.jviromet.2016.01.002. [DOI] [PubMed] [Google Scholar]
  • 288.Shi X., Shao C., Luo C., Chu Y., Wang J., Meng Q., Yu J., Gao Z., Kang Y. Microfluidics-Based Enrichment and Whole-Genome Amplification Enable Strain-Level Resolution for Airway Metagenomics. mSystems. 2019;4 doi: 10.1128/mSystems.00198-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Marotz C.A., Sanders J.G., Zuniga C., Zaramela L.S., Knight R., Zengler K. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome. 2018;6:42. doi: 10.1186/s40168-018-0426-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Nelson M.T., Pope C.E., Marsh R.L., Wolter D.J., Weiss E.J., Hager K.R., Vo A.T., Brittnacher M.J., Radey M.C., Hayden H.S., et al. Human and Extracellular DNA Depletion for Metagenomic Analysis of Complex Clinical Infection Samples Yields Optimized Viable Microbiome Profiles. Cell Rep. 2019;26:2227–2240.e5. doi: 10.1016/j.celrep.2019.01.091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Thoendel M., Jeraldo P.R., Greenwood-Quaintance K.E., Yao J.Z., Chia N., Hanssen A.D., Abdel M.P., Patel R. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J. Microbiol. Methods. 2016;127:141–145. doi: 10.1016/j.mimet.2016.05.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292.Yap M., Feehily C., Walsh C.J., Fenelon M., Murphy E.F., McAuliffe F.M., van Sinderen D., O’Toole P.W., O’Sullivan O., Cotter P.D. Evaluation of methods for the reduction of contaminating host reads when performing shotgun metagenomic sequencing of the milk microbiome. Sci. Rep. 2020;10:21665. doi: 10.1038/s41598-020-78773-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 293.Ahannach S., Delanghe L., Spacova I., Wittouck S., Van Beeck W., De Boeck I., Lebeer S. Microbial enrichment and storage for metagenomics of vaginal, skin, and saliva samples. iScience. 2021;24:103306. doi: 10.1016/j.isci.2021.103306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294.Jose L., Sanz T.K.C. Next-generation sequencing and waste/wastewater treatment: A comprehensive overview. Rev. Env. Sci. Biotechnol. 2019;18:635–680. doi: 10.1007/s11157-019-09513-0. [DOI] [Google Scholar]
  • 295.Ayling M., Clark M.D., Leggett R.M. New approaches for metagenome assembly with short reads. Brief. Bioinform. 2020;21:584–594. doi: 10.1093/bib/bbz020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 296.Arroyo Muhr L.S., Lagheden C., Hassan S.S., Kleppe S.N., Hultin E., Dillner J. De novo sequence assembly requires bioinformatic checking of chimeric sequences. PLoS ONE. 2020;15:e0237455. doi: 10.1371/journal.pone.0237455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 297.Somerville V., Lutz S., Schmid M., Frei D., Moser A., Irmler S., Frey J.E., Ahrens C.H. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system. BMC Microbiol. 2019;19:143. doi: 10.1186/s12866-019-1500-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Stewart R.D., Auffret M.D., Warr A., Wiser A.H., Press M.O., Langford K.W., Liachko I., Snelling T.J., Dewhurst R.J., Walker A.W., et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 2018;9:870. doi: 10.1038/s41467-018-03317-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Daims H., Lebedeva E.V., Pjevac P., Han P., Herbold C., Albertsen M., Jehmlich N., Palatinszky M., Vierheilig J., Bulaev A., et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–509. doi: 10.1038/nature16461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 300.Frank J.A., Pan Y., Tooming-Klunderud A., Eijsink V.G.H., McHardy A.C., Nederbragt A.J., Pope P.B. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci. Rep. 2016;6:25373. doi: 10.1038/srep25373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Porubsky D., Garg S., Sanders A.D., Korbel J.O., Guryev V., Lansdorp P.M., Marschall T. Dense and accurate whole-chromosome haplotyping of individual genomes. Nat. Commun. 2017;8:1293. doi: 10.1038/s41467-017-01389-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Favale N., Costa S., Scapoli C., Carrieri A., Sabbioni S., Tamburini E., Benazzo A., Bernacchia G. Reconstruction of Acinetobacter johnsonii ICE_NC genome using hybrid de novo genome assemblies and identification of the 12alpha-hydroxysteroid dehydrogenase gene. J. Appl. Microbiol. 2022;133:1506–1519. doi: 10.1111/jam.15657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 303.Frey K.G., Herrera-Galeano J.E., Redden C.L., Luu T.V., Servetas S.L., Mateczun A.J., Mokashi V.P., Bishop-Lilly K.A. Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genom. 2014;15:96. doi: 10.1186/1471-2164-15-96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 304.Be N.A., Thissen J.B., Gardner S.N., McLoughlin K.S., Fofanov V.Y., Koshinsky H., Ellingson S.R., Brettin T.S., Jackson P.J., Jaing C.J. Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing. PLoS ONE. 2013;8:e73455. doi: 10.1371/journal.pone.0073455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Bukowska-Osko I., Perlejewski K., Nakamura S., Motooka D., Stokowy T., Kosinska J., Popiel M., Ploski R., Horban A., Lipowski D., et al. Sensitivity of Next-Generation Sequencing Metagenomic Analysis for Detection of RNA and DNA Viruses in Cerebrospinal Fluid: The Confounding Effect of Background Contamination. Adv. Exp. Med. Biol. 2016;2021;944:53–62. doi: 10.1007/5584_2016_42. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

All data generated or analyzed during this study are included in this published article and its supplementary information files. The dataset supporting the conclusion of this article is included within the article and its additional files.


Articles from Life are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES