Skip to main content
Non-coding RNA Research logoLink to Non-coding RNA Research
. 2022 Dec 14;8(2):135–145. doi: 10.1016/j.ncrna.2022.12.002

lncRNA-mediated ceRNA network in bladder cancer

Kun Li a,1, Tongyue Yao b,1, Ziqiang Wang a,b,
PMCID: PMC9792360  PMID: 36605618

Abstract

Bladder cancer is a common disease associated with high rates of morbidity and mortality. Although immunotherapy approaches such as adoptive T-cell therapy and immune checkpoint blockade have been investigated for the treatment of bladder cancer, their off-target effects and ability to affect only single targets have led to clinical outcomes that are far from satisfactory. Therefore, it is important to identify novel targets that can effectively control tumor growth and metastasis. It is well known that long noncoding RNAs (lncRNAs) are powerful regulators of gene expression. Increasing evidence has shown that dysregulated lncRNAs in bladder cancer are involved in cancer cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). In this review, we focus on the roles and underlying mechanisms of lncRNA-mediated competing endogenous RNA (ceRNA) networks in the regulation of bladder cancer progression. In addition, we discuss the potential of targeting lncRNA-mediated ceRNA networks to overcome cancer treatment resistance and its association with clinicopathological features and outcomes in bladder cancer patients. We hope this review will stimulate research to develop more effective therapeutic approaches for bladder cancer treatment.

Keywords: Bladder cancer, lncRNA, miRNA, Competing endogenous RNA, Therapeutic target

Highlights

  • Numerous lncRNAs are dysregulated in bladder cancer.

  • These lncRNAs involved in cell proliferation, migration, invasion, apoptosis, cell cycle, EMT, metastasis.

  • These lncRNAs act as ceRNA by sponging miRNAs altering expression of their target genes.

  • Feedback loop between lncRNAs/miRNA/target can be targeted for bladder cancer therapy.

1. Introduction

Bladder cancer is the most common and fatal type of urinary tumor, and its incidence has gradually increased in recent years [1]. Currently, surgical resection, radiotherapy, and chemotherapy are the main treatment strategies for bladder cancer. However, patients undergoing these treatments often experience tumor recurrence and metastasis because of muscle invasion of bladder cancer cells and drug resistance [2]. Although immunotherapy approaches including adoptive T-cell therapy and immune checkpoint blockade have been investigated in bladder cancer because of its frequent mutation, the clinical outcomes are far from satisfactory owing to the off-target effects and limitation to a single target [[3], [4], [5]]. Therefore, there is an urgent need to further understand the molecular mechanisms underlying the progression of bladder cancer and develop a more effective therapeutic approach for this disease.

Long non-coding RNAs (lncRNAs) are non-protein-coding RNA molecules that are greater than 200 nucleotides in length. Accumulating evidence suggests that lncRNAs play an important regulatory role in gene expression at the transcriptional and post-transcriptional levels [[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]]. One of the well-characterized mechanisms of lncRNAs is their action as competing endogenous RNAs (ceRNAs) to “sponge” complementary microRNAs (miRNAs), facilitating the de-repression of their target molecules [19]. In bladder cancer, several oncogenic lncRNAs have been demonstrated to exhibit abnormal expression, which contributes to cancer initiation and progression and is associated with poor prognosis and survival rate by regulating various processes, including proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), cell cycle arrest, and apoptosis [20,21]. There is growing evidence that lncRNAs modulate the expression of tumor-related genes by interacting with or sequestering miRNAs, preventing the degradation or translational inhibition of tumor-related gene transcripts [22]. This suggests that lncRNA-mediated ceRNA networks have exciting potential as therapeutic targets for bladder cancer.

In this review, we discuss the roles of lncRNA-mediated ceRNA networks in bladder cancer progression, with an emphasis on the promotion of tumor cell proliferation, migration, invasion, EMT, cell cycle arrest, apoptosis inhibition, cancer cell stemness, and cytoskeleton rearrangement. We also discuss the potential clinical applications of lncRNA-mediated ceRNA networks in overcoming chemo- and radio-resistance in cancer treatment, as well as their association with patients' clinicopathological features and outcomes.

2. The mechanistic function of lncRNAs as ceRNAs in bladder cancer

An increasing number of studies have demonstrated the dysregulation of the expression of more than 100 lncRNAs in bladder cancer tissues, and some studies have shown that the abnormal expression of lncRNAs is strongly associated with bladder cancer progression [23]. To date, lncRNA-mediated ceRNA networks have been reported to be involved in cell proliferation, migration, invasion, apoptosis, cell cycle, EMT, metastasis, cancer cell stemness, cytoskeleton rearrangement, and drug resistance in bladder cancer (Fig. 1). In the following sections, we summarize and discuss the role of the lncRNA-mediated ceRNA network in regulating these cellular processes.

Fig. 1.

Fig. 1

The mechanistic function of lncRNAs as ceRNAs in bladder cancer. This schematic model shows that the lncRNA-mediated ceRNA network is important in the regulation of cell proliferation, migration, invasion, apoptosis, cell cycle, EMT, cancer stem cells, and drug resistance in bladder cancer.

3. lncRNA-mediated ceRNA network in the progression of bladder cancer

To date, numerous lncRNAs have been reported to regulate one or more cellular processes in the progression of bladder cancer, including cell proliferation, invasion, migration, apoptosis, cell cycle, EMT, and tumor metastasis (Table 1). This section describes the functions and mechanisms of several lncRNA-mediated ceRNA networks involved in these cellular processes.

Table 1.

Roles of lncRNA-mediated ceRNA network in the progression of bladder cancer.

LncRNA Expression Downstream target Role Ref.
UCA1 Up miR-145/ZEB1/2/FSCN1 Migration↑, invasion↑ [29]
Up miR-143/HMGB1 EMT↑ [30]
Up miR-195/ARL2 Mitochondrial function↑ [31]
Up miR-16/GLS2 Mitochondrial glutaminolysis↑ [33]
Up miR-143/HK2 Mitochondrial glucose metabolism↑ [32]
XIST Up miR-124/AR Proliferation↑, invasion↑, migration↑ [35]
Up miR-139–5p/Wnt1 Proliferation↑, cells cycle↑, apoptosis↓, metastasis↑ [38]
MALAT1 Up miR-34a/CCND1 Proliferation↑, migration↑ [41]
Up miR-125b/Bcl-2/MMP-13 Invasion↑, apoptosis↓ [40]
PVT1 Up miR-194–5p/BCLAF1 Proliferation↑, migration↑, apoptosis↓ [45]
Up miR-31/CDK1 Proliferation↑, invasion↑, migration↑ [46]
Up miR-128/VEGF-C Proliferation↑, migration↑ [44]
SNHG3 Up miR-515–5p/GINS2 Proliferation↑, invasion↑, migration↑, EMT↑ [49]
SNHG6 Up miR-125b/Snail1/2/NUAK1 Invasion↑, migration↑, EMT↑ [51]
SNHG7 Up miR-2682–5p/ELK1 Proliferation↑, invasion↑, migration↑ [54]
SNHG14 Up miR-211–3p/ESM1 Proliferation↑, invasion↑, migration↑, cells cycle↑, apoptosis↓ [56]
BCAR4 Up miR-370–3p/Wnt7a Proliferation↑, apoptosis↓ [59]
Up miR-644a/TLX1 Proliferation↑, invasion↑, migration↑ [60]
CASC9 Up miR-497–5p/FZD6 Proliferation↑, invasion↑, migration↑, metastasis↑ [64]
Up miR-758–3p/TGFβ2 Proliferation↑, invasion↑, migration↑, EMT↑ [66]
DANCR Up miR-149/MSI2 EMT↑ [70]
Up miR-335/VEGF-C Proliferation↑, invasion↑, migration↑, cells cycle↑, metastasis↑ [72]
KCNQ1OT1 Up miR-145–5p/PCBP2 Proliferation↑, invasion↑, migration↑, cells cycle↑, apoptosis↓ [75]
Up miR-218–5p/HS3ST3B1 Proliferation↑, apoptosis↓,metastasis↑ [76]
PCAT6 Up miR-143–3p/PDIA6 Proliferation↑, invasion↑, migration↑ [80]
Up miR-513a Proliferation↑, invasion↑, migration↑ [79]
MAGI2-AS3 Down miR-15b-5p/CCDC19 Proliferation↓, invasion↓, migration↓, [85]
Down miR-31–5p/TNS1 Migration↓, invasion↓ [84]
PTENP1 / miR-20a/PDCD4 Viability↓, migration↓ [91]
Down miR-17/PTEN Invasion↓, migration↓, apoptosis↑ [90]
ZEB1-AS1 Up miR-200b/FSCN1 Proliferation↑, invasion↑, migration↑, apoptosis↓ [96]
Up miR-27b Proliferation↑, apoptosis↓ [95]
SOX2OT Up miR-200c/SOX2 Proliferation↑, invasion↑, migration↑, EMT↑, metastasis↑ [100]
OXCT1-AS1 Up miR-455–5p/JAK1 Proliferation↑, invasion↑ [119]
RNF144A-AS1 Up miR-455–5p/SOX11 Proliferation↑, invasion↑, migration↑ [120]
lncARSR Up miR-129–5p/SOX4 Proliferation↑, invasion↑, migration↑, EMT↑ [121]
ZNRD1-AS1 Up miR-194/ZEB1 Proliferation↑, invasion↑, migration↑, EMT↑ [122]
VIM-AS1 Up miR-655/ZEB1 Proliferation↑, invasion↑, migration↑, EMT↑ [123]
TUG1 Up miR-142/ZEB2 Proliferation↑, apoptosis↓ [124]
miR143HG Down miR-1275/AXIN2 Proliferation↓, invasion↓, migration↓, cell cycle↓ [125]
RP11-79H23.3 Down miR-107/PTEN Proliferation↓, invasion↓, migration↓, cell cycle↓, apoptosis↑ [110]
MBNL1-AS1 Down miR-135a/PHLPP2/FOXO1 Proliferation↓, apoptosis↑ [126]
PLAC2 Down miR-663/TGF-β1 Invasion↓, migration↓ [127]
AC114812.8 Up miR-371b-5p/FUT4 Proliferation↑, invasion↑, migration↑ [128]
ATB Up miR-126/KRAS Proliferation↑, invasion↑, migration↑ [129]
SPRY4-IT1 Up miR-101–3p/EZH2 Proliferation↑, invasion↑, migration↑, apoptosis↓ [130]
TINCR Up miR-7/mTOR Proliferation↑, invasion↑, migration↑ [131]
TMPO-AS1 Up miR-98–5p/EBF1 Proliferation↑, invasion↑, migration↑ [132]
DLX6-AS1 Up miR-223/HSP90B1 Proliferation↑, invasion↑ [133]
GAS6-AS2 Up miR-298/CDK9 Proliferation↑, cell cycle↑, EMT↑, metastasis↑ [134]
ARAP1-AS1 Up miR-4735–3p/NOTCH2 Proliferation↑, invasion↑, migration↑ [135]
PlncRNA-1 Up miR-136/smad3 Proliferation↑, invasion↑, migration↑ [136]
CALML3-AS1 Up miR-4316/ZBTB2 Proliferation↑, invasion↑, migration↑, cell cycle↑, apoptosis↓ [137]
MNX1-AS1 Up miR-218–5p/RAB1A Proliferation↑, invasion↑, migration↑, EMT↑ [138]
NNT-AS1 Up miR-1301–3p/PODXL Proliferation↓, invasion↓, migration↓, EMT↑, apoptosis↑ [139]
HNF1A-AS1 Up miR-30b-5p/Bcl-2 Proliferation↑, apoptosis↓ [140]
TRPM2-AS Up miR-22–3p/GINS2 Proliferation↑, apoptosis↓ [141]
SLCO4A1-AS1 Up miR-335–5p/OCT4 Proliferation↑, invasion↑, migration↑ [142]
ZNFX1-AS1 Up miR-193a-3p/SDC1 Proliferation↑, invasion↑, migration↑ [143]
KCNMB2-AS1 Up miR-3194–3p/SAMD5 Proliferation↑, invasion↑, migration↑ [104]
GAS5 Down miR-21/PTEN Proliferation↓, apoptosis↑ [144]
LINC00319 Up miR-4492/ROMO1 Proliferation↑, apoptosis↓ [116]
LINC00612 Up miR-590/PHF14 Proliferation↑, invasion↑ [145]
LINC01106 Up miR-3612/ELK3 Proliferation↑, invasion↑, migration↑ [146]
HCP5 Up miR-29b-3p/HMGB1 Proliferation↑, invasion↑, migration↑ [147]
STYK1-2 Down miR-146b-5p/ITGA2 Proliferation↓, invasion↓, migration↓ [148]
H19 Up miR-29b/DNMT3B Proliferation↑, invasion↑, migration↑, EMT↑ [109]

3.1. UCA1

Urothelial carcinoma-associated 1 (UCA1) is a lncRNA that has been previously found to influence the cell cycle, drug resistance, apoptosis, proliferation, migration, and invasion of bladder cancer cells [[24], [25], [26], [27], [28]]. Recent studies have found that UCA1 promotes bladder cancer cell migration and invasion via the miR-145/zinc finger E-box binding homeobox 1 and 2 (ZEB1/2) and miR-145/fascin actin-bundling protein 1 (FSCN1) pathways [29] and promotes the EMT of bladder cancer cells via the miR-143/high mobility group box 1 (HMGB1) pathway [30]. In addition, studies which aimed to understand the roles of lncRNAs in the metabolism of bladder cancer cells found that UCA1 promotes mitochondrial function in bladder cancer via the miR-195/ADP-ribosylation factor-like 2 (ARL2) signaling pathway [31]. Further investigations revealed that UCA1 enhanced mitochondrial glucose metabolism and glutaminolysis by targeting miR-143 to induce the expression of hexokinase 2 (HK2), the major isozyme contributing to aerobic glycolysis, and by targeting miR-16 to induce the expression of mitochondrial glutaminase 2 (GLS2), which is a vital factor for the conversion of glutamine to glutamate [32,33].

3.2. XIST

The X-inactive specific transcript (XIST) is a lncRNA derived from the XIST gene and plays a crucial role in X inactivation [34]. Several studies have reported that XIST expression is upregulated in bladder cancer tissues and functions as an oncogenic gene in cancer development. For example, Xiong et al. [35] found that XIST promoted cell growth, invasion, and migration in bladder cancer by acting as a molecular sponge of miR-124 to enhance the expression of androgen receptor (AR), a vital factor in the progression of bladder cancer [36,37]. Hu et al. [38] found that the XIST/miR-139–5p axis promotes cell proliferation, the cell cycle, and metastasis, and that inhibits cell apoptosis in bladder cancer by activating the Wnt/β-catenin signaling pathway.

3.3. MALAT1

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA that is upregulated in various cancers, such as breast, pancreatic, lung, colon, prostate, liver, and bladder [39]. MALAT1 plays a functional role in cancer initiation and progression. A study which aimed to describe the interaction between MALAT1 and miR-125b in bladder cancer cells and their roles in cancer development found that MALAT1 directly targeted miR-125b and antagonized miR-125b expression, resulting in inhibition of apoptosis and promotion of invasion of bladder cancer cells by upregulation of the expression levels of the anti-apoptotic genes B-cell leukemia 2 (Bcl-2) and matrix metallopeptidase 13 (MMP13) [40]. In addition, Liu et al. [41] found that MALAT1 promoted the proliferation and migration of bladder cancer cells by modulating the miR-34a/cyclin D1 (CCND1) axis.

3.4. PVT1

Plasmacytoma variant translocation 1 (PVT1) expression was reported to be upregulated in various tumors, including lung carcinomas, osteosarcomas, squamous cell carcinomas, stomach carcinomas, liver carcinomas, colorectal carcinomas, and nasopharyngeal carcinomas [42,43]. One study that investigated the relationship between PVT1 and bladder cancer found that PVT1 levels were significantly higher in bladder cancer tissue and were associated with clinical progression and poor prognosis. Further studies demonstrated that PVT1 enhances the proliferation and migration ability of bladder cancer cells by directly interacting with miR-128, increasing the expression of vascular endothelial growth factor C (VEGF-C), a target of miR-128 that functions as a lymphatic vascular system growth factor [44]. In addition, Chen et al. [45] and Tian et al. [46] reported that PVT1 promotes cell growth, migration, and invasion, and that it inhibits cell apoptosis through the miR-194–5p/B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) and miR-31/cyclin-dependent kinase 1 (CDK1) axis.

3.5. SNHGs

Small nucleolar RNA host genes (SNHGs) are a group of lncRNAs that are overexpressed in various cancers and increase the proliferation, invasion, EMT, and metastasis of cancer cells [47,48]. Several SNHGs have been shown to be involved in the progression of bladder cancer. For example, Dai et al. [49] reported that the lncRNA SNHG3 is upregulated in bladder cancer tissues and is associated with poor clinical prognosis. Further investigation showed that SNHG3 significantly enhanced the proliferation, invasion, migration, and EMT of bladder cancer cells in vitro and in vivo through the regulation of GINS complex subunit 2 (GINS2), a member of the GINS complex involved in DNA replication, by “sponging” miR-515–5p [50]. Wang et al. [51] showed that overexpression of SNHG6 promoted the EMT, migration, and invasion capabilities of bladder cancer cells by targeting tumor suppressive hsa-miR-125b, upregulating the expression of Snail1, Snail2, and NUAK family kinase 1 (NUAK1), which are key inducers of EMT and tumor metastasis [52,53]. Wang et al. [54] found that upregulated SNHG7 expression in bladder cancer tissues and cells is positively correlated with poor prognosis in patients with bladder cancer. Mechanistic studies have shown that SNHG7 enhances cell growth, migration, and invasion by increasing the expression level of ELK1, a transcription factor for genes with oncogenic roles in tumorigenesis [55], by acting as a “sponge” of miR-2682–5p. In addition, ELK1 was identified as a transcription factor for SNHG7, suggesting an ELK1/SNHG7/miR-2682–5p feedback loop. Feng et al. [56] reported that SNHG14 enhances cell cycle progression, colony formation, invasion, migration, and proliferation, and that it inhibits apoptosis of bladder cancer cells by targeting miR-211–3p to upregulate the expression of endothelial cell-specific molecule 1 (ESM1), a soluble dermatan sulfate proteoglycan that participates in cancer progression and metastasis [57].

3.6. BCAR4

Breast cancer anti-estrogen receptor 4 (BCAR4) is a lncRNA that has been initially identified as anti-estrogen resistant in breast cancer cells [58]. Subsequent investigations have shown that BCAR4 functions as a promoter for various human malignancies, including bladder cancer. Zhang et al. [59] reported that the expression of lncRNA BCAR4 was elevated in breast cancer tissues and that silencing of BCAR4 inhibited cell proliferation and enhanced cell apoptosis by directly “sponging” miR-370–3p, elevating the expression of Wnt7a, a target of miR-370–3p. Wang et al. [60] showed that high expression of BCAR4 is associated with advanced stage and metastasis of bladder cancer and that BCAR4 significantly promotes cell proliferation, migration, and invasion of bladder cancer by directly binding to miR-644a and upregulating the expression of T cell leukemia homeobox 1 (TLX1), an important transcription factor involved in the progression of many cancers [61,62].

3.7. CASC9

In one study, lncRNA cancer susceptibility candidate 9 (CASC9) was originally identified as a promoter for the migration and invasion of esophageal cancer cells [63]. Recently, Zhan et al. [64] found that CASC9 expression was markedly elevated in bladder cancer tissue and that high expression levels of CASC9 were associated with high histological grade, late tumor size-node location-metastasis status (TNM) stage, and poor prognosis. Further investigation revealed that CASC9 enhances tumor bladder cancer cell proliferation, invasion, migration, and metastasis by positively regulating the expression of frizzled receptor 6 (Fzd6), a trigger for cancer progression through the Wnt-signaling pathway [65], by targeting and decreasing the expression level of miR-497–5p. In addition, Zhang et al. [66] revealed that upregulated CASC9 in bladder cancer cell lines and specimens promoted the proliferation, EMT, migration and invasion of bladder cancer through upregulating expression of transforming growth factor β2 (TGFβ2), an inducer for EMT [67], by “sponging” and decreasing the expression level of miR-758–3p.

3.8. DANCR

Differentiation-antagonizing non-protein coding RNA (DANCR) was first reported to suppress epithelial cell differentiation, and it was recently identified as a promising diagnostic biomarker and therapeutic target for multiple cancers [68,69]. For instance, Zhan et al. [70] found that DANCR expression was significantly upregulated in bladder cancer and positively correlated with advanced TNM stage and higher histological grade. They also demonstrated that the depletion of DANCR inhibited EMT of bladder cancer cells by “sponging” miR-149 and subsequently elevating the expression level of musashi RNA-binding protein 2 (MSI2), a promoter for cancer initiation, progression, and drug resistance [71]. In addition to EMT, another study reported that DANCR significantly promotes the proliferation, invasion, migration, and lymphatic metastasis of bladder cancer cells by targeting miR-335, upregulating the expression of VEGF-C, a target of miR-335 [72].

3.9. KCNQ1OT1

KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) is a novel lncRNA that plays a vital role in cancer progression [73]. A study investigating the function of lncRNA KCNQ1OT1 in bladder cancer found that KCNQ1OT1 was significantly overexpressed in bladder cancer tissues and cell lines and that knockdown of KCNQ1OT1 resulted in repressed proliferation, migration, invasion, and enhanced apoptosis of bladder cancer cells. Mechanistic study demonstrated that KCNQ1OT1 “sponged” miR-145–5p and upregulated the expression of poly (rC)-binding protein 2 (PCBP2), a target of miR-145–5p that functions as an oncogene [74,75]. Li et al. [76] reported that KCNQ1OT1 modulated the malignant phenotypes of bladder cancer cells by specifically binding to miR-218–5p and increasing the expression level of heparan sulfate-glucosamine 3-sulfotransferase 3B1 (HS3ST3B1).

3.10. PCAT6

Prostate cancer-associated transcript 6 (PCAT6) is a lncRNA that was first identified to participate in the pathoetiology of prostate cancer [77,78]. Recently, PCAT6 expression was found to be upregulated in bladder cancer tissues and cell lines, and high expression of PCAT6 was associated with reduced overall survival. Further mechanistic studies have shown that PCAT6 enhances the viability, migration, and invasion of BC cells by directly interacting with miR-513a [79]. In addition, Zhang et al. [80] demonstrated that the knockdown of PCAT6 resulted in the inhibition of the proliferation, migration, and invasion of bladder cancer cell lines T24T and EJ by targeting the miR-143–3p/protein disulfide isomerase family 6 (PDIA6) axis, where PDIA6 was previously reported to be involved in the pathogenesis of human cancers and the sensitivity of cancer cells to chemotherapeutic drugs [81,82].

3.11. MAGI2-AS3

To identify the ceRNAs that regulate bladder cancer progression, a bioinformatic study revealed that MAGI2 antisense RNA 3 (MAGI2-AS3), a dysregulated lncRNA in multiple cancers [83], showed a significantly lower expression in bladder cancer tissues and cell lines and a strong positive correlation with Tensin 1 (TNS1) mRNA expression by targeting miR-31–5p. Further functional experiments demonstrated that the MAGI2-AS3/miR-31–5p/TNS1 axis was correlated with advanced tumor stages and lymph node metastasis through the regulation of the migration and invasion of bladder cancer cells [84]. In addition, Wang et al. [85] found that downregulation of MAGI2-AS3 in bladder cancer tissues promoted proliferation, migration, and invasion of bladder cancer cells by targeting miR-15b-5p and downregulating the expression of CCDC19, which is a potential tumor suppressor in nasopharyngeal carcinoma, non-small cell lung cancers, and lung squamous cell carcinoma [[86], [87], [88]].

3.12. PTENP1

Phosphatase and tensin homolog pseudogene 1 (PTENP1), a pseudogene of the tumor suppressor gene PTEN, was the first pseudogene to be characterized as a ceRNA [89]. In a study that aimed to investigate the role of exosomal lncRNA PTENP1 in bladder cancer, exosomal PTENP1 was found to mediate communication between cells in the tumor microenvironment by transferring PTENP1 from normal cells to bladder cancer cells. This increases apoptosis and inhibits the invasion and migration of cancer cells by upregulating PTEN expression in bladder cancer cells by competitively binding to miR-17 [90]. In addition, Zhong et al. [91] reported that lncRNA PTENP1 “sponged” miR-20a to elevate the expression level of programmed cell death 4 (PDCD4), a tumor suppressor that induces apoptosis and inhibits cell growth, invasion, and metastasis [92], resulting in inhibition of the viability and migration of bladder cancer cells.

3.13. ZEB1-AS

Zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) is a novel tumor-associated lncRNA that functions as an oncogenic regulator in many types of cancer [93]. In a study exploring the role of lncRNA ZEB2-AS1 in bladder cancer, the expression of ZEB2-AS1 was found to be significantly increased in bladder cancer tissues and cell lines. Functional investigation showed that upregulated ZEB2-AS1 significantly enhanced the proliferation and inhibited the apoptosis of bladder cancer cells by “sponging” miR-27b, a tumor-suppressive miRNA, during bladder cancer progression [94,95]. Moreover, Gao et al. [96] found that high expression of ZEB1-AS1 in bladder cancer tissues was positively correlated with high tumor grade and TNM stage. Mechanistic studies revealed that ZEB1-AS1 functions as a “sponge” for miR-200b to regulate the expression of FSCN1, a globular actin-bundling protein that is important in cancer cell migration and invasion during tumor progression [97].

4. lncRNA-mediated ceRNA network in bladder cancer cell stemness

Emerging evidence has shown that cancer cell stemness, the stem cell-like phenotype of cancer cells, is important in tumorigenesis, metastasis, recurrence, and drug resistance [98,99]. lncRNA-mediated ceRNA networks have been confirmed to participate in the formation and maintenance of cancer cell stemness in human cancers, including bladder cancer. Zhan et al. [100] found that the sex-determining region Y-box2 (SOX2) overlapping transcript (SOX2OT) was highly expressed in bladder cancer and that increased SOX2OT expression promoted self-renewal, migration, invasion, and tumorigenicity of bladder cancer stem cells via “sponging” of miR-200c and subsequent enhancement of the expression of SOX2, a vital regulator of cancer stemness [101,102]. Moreover, the oncogenic lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) was found to promote the stemness of bladder cancer cells by elevating the expression levels of the cancer stem cell markers ALDH1A1, CD44, HMGA2, KLF4, and OCT4 by regulating the miR-125b/smad2 axis [103]. In addition, the potassium calcium-activated channel subfamily M regulatory beta subunit 2 (KCNMB2) antisense RNA 1 (KCNMB2-AS1) was reported to enhance the stemness of bladder cancer cells by elevating the expression levels of cancer stem cell markers CD133, Nanog, Oct4, Sox2, and ALDH1 via regulation of the miR-3194–3p/smad5 signal pathway [104].

5. lncRNA-mediated ceRNA network in cytoskeleton rearrangement

The eukaryotic cytoskeleton is a complex fibrous reticular structure consisting of microfilaments, microtubules, and intermediate filaments. Increasing evidence has demonstrated that the cytoskeleton is responsible for cell division, intercellular transport, motility, and signal transduction, resulting in its role in uncontrolled cell proliferation and migration during cancer progression [105,106]. In bladder cancer progression, the lncRNA-mediated ceRNA network has been reported to rearrange the cytoskeleton. For instance, Lv et al. [107] found that lncRNA H19 is highly expressed in bladder cancer tissues and cell lines and that the overexpression of lncRNA H19 results in rearrangement of the cytoskeleton by upregulating the expression of paxillin and F-actin, two cytoskeletal proteins with crucial roles in signal transduction, motor activity, adhesion, and migration in cancer cells [108]. Further investigation revealed that H19 directly bound to miR-29b and upregulated the expression of DNA methyltransferase 3 B (DNMT3B), a target of miR-29b, which is associated with the initiation and progression of bladder cancer [109]. Moreover, Chi et al. [110] found that lncRNA RP11-79H23.3 is another regulator of cytoskeletal rearrangement through the regulation of paxillin and F-actin. They reported that lncRNA RP11-79H23.3 is downregulated in bladder cancer tissues and cell lines. This downregulation promotes the rearrangement of the cytoskeleton and enhances cell proliferation, migration, and cell cycle progression. Mechanistically, lncRNA RP11-79H23.3 is revealed to upregulate the expression of the tumor suppressor PTEN by directly binding to miR-107. These studies suggest that the lncRNA-mediated ceRNA network could be targeted during bladder cancer therapy by regulating cytoskeletal rearrangements.

6. lncRNA-mediated ceRNA network in therapeutic resistance

Conventional treatments for bladder cancer include surgery, chemotherapy, and radiotherapy. However, a subset of patients with bladder cancer are unresponsive to chemotherapy or radiotherapy and consequently experience tumor recurrence [2,111]. Overcoming chemo- and radio-resistance is a major challenge in achieving better outcomes in bladder cancer patients, and several studies have found that lncRNAs are associated with development of resistance to chemotherapy or radiotherapy in bladder cancer through the ceRNA network (Table 2). They found that targeting lncRNA-mediated ceRNA networks could sensitize cancer cells to cisplatin, gemcitabine, and doxorubicin. In addition, TUG1, a lncRNA that is overexpressed in bladder cancer tissues and cell lines, promotes EMT and decreases cancer cell sensitivity to ionizing radiation through the miR-145/ZEB2 axis [112]. Another study revealed TUG1 silencing increased radiosensitivity in a xenograft model by inhibiting expression of HMGB1, a conserved nuclear protein that promotes metastasis in various cancers [113,114]. Moreover, a recent study investigating lncRNA signatures in patients with bladder cancer treated with radiotherapy found that a 10-lncRNA signature is associated with molecular processes involved in radiation responses; knockdown of one of these lncRNAs exhibited a modest increase in radiosensitivity in bladder cancer cells [115]. These studies suggest that targeting the lncRNA/miRNA/target axis is a potential strategy in overcoming therapeutic resistance in bladder cancer.

Table 2.

Roles of lncRNA-mediated ceRNA network in the resistance to chemo- and radio-therapy in bladder cancer.

LncRNA Expression Downstream target Chemical-/radio- resistance Ref.
TUG1 Up miR-194–5p/CCND2 Cisplatin [149]
UCA1 Up CREB/miR-196a-5p/p27Kip1 [150]
DLEU1 Up miR-99b/HS3ST3B1 [151]
MST1P2 Up miR-133b/SIRT1/p53 [152]
MALAT1 Up miR-101–3p/VEGF-C [153]
UCA1 Up CREB/miR-196a-5p/p27Kip1 Gemcitabine [150]
FOXD2-AS1 Up miR-143/ABCC3 [154]
LET Up NF90/miR-145/HMGA2 and KLF4 [155]
NEAT1 Up miR-214–3p/Wnt/β-catenin Doxorubicin [156]
TUG1 Up miR-145/ZEB2 Radiation [112]

7. lncRNA-mediated ceRNA network in patients’ clinical-pathological features and outcomes

In addition to understanding the roles and molecular mechanisms of lncRNA-mediated ceRNA networks in regulating the cellular processes of bladder cancer, researchers have evaluated the association of lncRNA-mediated ceRNA networks with clinicopathological features and prognostic value. As shown in Table 3, dozens of ceRNA networks are reported to be associated with tumor size, grade, TNM stage, prognosis, and survival rate in patients with bladder cancer. Most of the related lncRNA expressions are upregulated in bladder cancer tissues and are positively correlated with large tumor size, high histological grade, advanced TNM stage, poor prognosis, and reduced survival rate. Promotion of cell proliferation, invasion, migration, and EMT via related ceRNA networks was reported, while expressions of lncRNA MAGI2-AS3, LINC00319, LINC00641, HAND2-AS1, and miR-497-HG were decreased and exhibited a negative correlation with bladder cancer patients' high histological grade, advanced TNM stage, poor prognosis, and short survival rate via the miR-31–5p/TNS1 axis [84], miR-15b-5p/CCDC19 axis [85], miR-4492/ROMO1 axis [116], miR-197–3p/KLF10 axis [117], miR-146/RARB axis [118], miR-324–5p/regulator of calcineurin 1 [157], and miR-4738–3p/FosB proto-oncogene, AP-1 transcription factor subunit [157].

Table 3.

LncRNA-mediated ceRNA network is associated with patient's clinic-pathological features and outcomes.

LncRNA mediated ceRNA network Tumor size Grade TNM Prognosis Survival rate Ref.
XIST/miR-124/AR [35]
XIST/miR-139–5p/Wnt1 [38]
MALAT1/miR-34a/CCND1 [41]
BCAR4/miR-644a/TLX1 [60]
CASC9/miR-497–5p/FZD6 [64]
CASC9/miR-758–3p/TGFβ2 [66]
DANCR/miR-149/MSI2 [70]
PCAT6/miR-513a [79]
MAGI2-AS3/miR-15b-5p/CCDC19 [85]
MAGI2-AS3/miR-31–5p/TNS1 [54]
LINC00319/miR-4492/ROMO1 [116]
LINC00641/miR-197–3p/KLF10 [117]
SNHG3/miR-515–5p/GINS2 [50]
SNHG7/miR-2682–5p/ELK1 [55]
HAND2-AS1/miR-146/RARB [118]
ZEB1-AS1/miR-200b/FSCN1 [97]
SOX2OT/miR-200c/SOX2 [100]
RNF144A-AS1/miR-455–5p/SOX11 [120]
lncARSR/miR-129–5p/SOX4 [121]
miR143HG/miR-1275/AXIN2 [125]
PLAC2/miR-663/TGF-β1 [127]
TINCR/miR-7/mTOR [131]
TMPO-AS1/miR-98–5p/EBF1 [132]
GAS6-AS2/miR-298/CDK9 [134]
ARAP1-AS1/miR-4735–3p/NOTCH2 [135]
PlncRNA-1/miR-136/smad3 [136]
CALML3-AS1/miR-4316/ZBTB2 [137]
SLCO4A1-AS1/miR-335–5p/OCT4 [138]
ZNFX1-AS1/miR-193a-3p/SDC1 [143]
GAS5/MiR-21/PTEN [144]

8. Conclusion and future perspectives

Globally, bladder cancer is the leading cause of death from malignancy. Over the past few years, several lncRNAs have been reported to be aberrantly expressed in bladder cancer, most of which promote tumorigenesis and cancer progression. This review summarized the existing information regarding the roles of lncRNA-mediated ceRNA networks in the progression of bladder cancer (Fig. 2). Targeting of lncRNA-mediated ceRNA networks has revealed their therapeutic potential in increasing the efficacy of radiotherapy and chemotherapy. Therefore, lncRNA-mediated ceRNA networks are of relevant research interest, and their role in bladder cancer therapies should be considered. However, as most bladder cancer-related lncRNAs are located in the nucleus, researchers should aim to clarify how these lncRNAs “sponge” miRNAs to regulate their downstream target genes. In addition, more studies are needed to characterize the roles of lncRNA-miRNA networks in tumor microenvironments, such as whether they affect the function of tumor-infiltrating lymphocytes. More importantly, much attention should be directed toward synthesizing a “lncRNA” to sequester oncogenic miRNAs as a therapeutic approach for bladder cancer treatment.

Fig. 2.

Fig. 2

The lncRNA-mediated ceRNA network contributes to the regulation of bladder cancer progression. Numerous lncRNA-mediated ceRNA networks have been reported to regulate tumor cells proliferation (A), invasion (B), migration (C), EMT (D), cell cycle (D), apoptosis (D), metastasis, cancer cell stemness (D), and cytoskeleton rearrangement (D) in bladder cancer. Red characters indicate lncRNAs. The pink part indicates the lncRNA-mediated ceRNA network that promotes these cellular processes, and the green part indicates the lncRNA-mediated ceRNA network with an inhibitory role.

Numerous reports have documented that lncRNAs are a type of less conserved molecule [158,159] and exert their functions in transcriptional and post-transcriptional gene regulation by forming specific structures and interacting with proteins and nucleic acids, indicating that lncRNA structures are vital to their functions [[160], [161], [162]]. In lncRNA-mediated ceRNA networks, lncRNA and mRNA co-regulate each other by competitively binding to shared miRNAs depending on their secondary structure [[163], [164], [165]]. Therefore, to fully understand the impact of lncRNA-mediated ceRNA networks on the development of bladder cancer and design appropriate therapeutic intervention based on ceRNA crosstalk, it is important to resolve lncRNA structures and characterize the interactions of lncRNAs with molecular partners while experimental and computational technology for RNA structure identification is developed. We hope this insight into the roles of lncRNA-mediated ceRNA networks in the progression of bladder cancer will assist in leading to their potential clinical utility in cancer treatment.

Author contributions

Ziqiang Wang, Kun Li, and Tongyue Yao: Conceptualization, Writing - original draft. Ziqiang Wang: Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (32000878), Shandong Provincial Natural Science Foundation (ZR2020LZL008, ZR2021LSW017), and the Academic Promotion Programme of Shandong First Medical University (2019LJ001).

9. Abbreviations

lncRNAs

long noncoding RNAs

EMT

epithelial-mesenchymal transition

ceRNA

competing endogenous RNA

miRNAs

microRNAs

UCA1

urothelial carcinoma-associated 1

ZEB1/2

zinc finger E-box binding homeobox 1 and 2

FSCN1

fascin actin-bundling protein 1

HMGB1

high mobility group box 1

ARL2

ADP-ribosylation factor-like 2

HK2

hexokinase 2

GLS2

glutaminase 2

XIST

X-inactive specific transcript

AR

androgen receptor

MALAT1

metastasis-associated lung adenocarcinoma transcript 1

Bcl-2

B-cell leukemia 2

MMP13

matrix metallopeptidase 13

CCND1

cyclin D1

PVT1

plasmacytoma variant translocation 1

VEGF-C:

vascular endothelial growth factor C

CDK1

cyclin-dependent kinase 1

BCLAF1

b-cell lymphoma-2-associated transcription factor 1

SNHGs

Small nucleolar RNA host genes

GINS2

GINS complex subunit 2

NUAK1

NUAK family kinase 1

ESM1

endothelial cell-specific molecule 1

BCAR4

breast cancer anti-estrogen receptor 4

TLX1

T cell leukemia homeobox 1

CASC9

cancer susceptibility candidate 9

Fzd6

frizzled receptor 6

TGFβ2

transforming growth factor β2

DANCR

differentiation-antagonizing non-protein coding RNA

MSI2

musashi RNA-binding protein 2

KCNQ1OT1

KCNQ1 opposite strand/antisense transcript 1

PCBP2

poly(rC)-binding protein 2

HS3ST3B1

heparan sulfate-glucosamine 3-sulfotransferase 3B1

PCAT6

prostate cancer-associated transcript 6

PDIA6

protein disulfide isomerase family 6

MAGI2-AS3

MAGI2 antisense RNA 3

TNS1

Tensin 1

PTENP1

phosphatase and tensin homolog pseudogene 1

PDCD4

programmed cell death 4

ZEB1-AS1

zinc finger E-box binding homeobox 1 antisense 1

SOX2

sex-determining region Y-box2

SOX2OT

SOX2 overlapping transcript

HOXA-AS2

HOXA cluster antisense RNA 2

KCNMB2

potassium calcium-activated channel subfamily M regulatory beta subunit 2

KCNMB2-AS1

KCNMB2 antisense RNA 1

DNMT3B

DNA methyltransferase 3 B

TNM

Tumor size-Node location-Metastasis status

References

  • 1.Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660. [DOI] [PubMed] [Google Scholar]
  • 2.Patel V.G., Oh W.K., Galsky M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA A Cancer J. Clin. 2020;70(5):404–423. doi: 10.3322/caac.21631. [DOI] [PubMed] [Google Scholar]
  • 3.Lanuza P.M., Pesini C., Arias M.A., Calvo C., Ramirez-Labrada A., Pardo J. Recalling the biological significance of immune checkpoints on NK cells: a chance to overcome LAG3, PD1, and CTLA4 inhibitory pathways by adoptive NK cell transfer? Front. Immunol. 2020;10:3010. doi: 10.3389/fimmu.2019.03010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kawakami Y., Ohta S., Sayem M.A., Tsukamoto N., Yaguchi T. Immune-resistant mechanisms in cancer immunotherapy. Int. J. Clin. Oncol. 2020;25(5):810–817. doi: 10.1007/s10147-019-01611-x. [DOI] [PubMed] [Google Scholar]
  • 5.Palucka A.K., Coussens L.M. The basis of oncoimmunology. Cell. 2016;164(6):1233–1247. doi: 10.1016/j.cell.2016.01.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Li K., Wang Z. Speckles and paraspeckles coordinate to regulate HSV-1 genes transcription. Commun Biol. 2021;4(1):1207. doi: 10.1038/s42003-021-02742-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Li K., Yao T., Zhang Y., Li W., Wang Z. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: role, mechanism and therapeutic potential. Int. J. Biol. Sci. 2021;17(13):3428–3440. doi: 10.7150/ijbs.62728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Wang Z., Zhang S., Li K. LncRNA NEAT1 induces autophagy through epigenetic regulation of autophagy-related gene expression in neuroglial cells. J. Cell. Physiol. 2022;237(1):824–832. doi: 10.1002/jcp.30556. [DOI] [PubMed] [Google Scholar]
  • 9.Wang Z., Li K., Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell. Mol. Life Sci. 2020;77(19):3769–3779. doi: 10.1007/s00018-020-03503-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Wang Z., Zhao Y., Xu N., Zhang S., Wang S., Mao Y., Zhu Y., Li B., Jiang Y., Tan Y., Xie W., Yang B.B., Zhang Y. NEAT1 regulates neuroglial cell mediating Aβ clearance via the epigenetic regulation of endocytosis-related genes expression. Cell. Mol. Life Sci. 2019;76(15):3005–3018. doi: 10.1007/s00018-019-03074-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wang Z., Fan P., Zhao Y., Zhang S., Lu J., Xie W., Jiang Y., Lei F., Xu N., Zhang Y. NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription. Cell. Mol. Life Sci. 2017;74(6):1117–1131. doi: 10.1007/s00018-016-2398-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Wang Z., Zhao Y., Zhang Y. Viral lncRNA: a regulatory molecule for controlling virus life cycle. Noncoding RNA Res. 2017;2(1):38–44. doi: 10.1016/j.ncrna.2017.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Zhao Y., Wang Z., Mao Y., Li B., Zhu Y., Zhang S., Wang S., Jiang Y., Xu N., Xie Y., Xie W., Zhang Y. NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway in SH-SY5Y cells and APP/PS1 mice. Aging (Albany NY) 2020;12(22):23233–23250. doi: 10.18632/aging.104098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Yang T., Wang Y., Liao W., Zhang S., Wang S., Xu N., Xie W., Luo C., Wang Y., Wang Z., Zhang Y. Down-regulation of EPB41L4A-AS1 mediated the brain aging and neurodegenerative diseases via damaging synthesis of NAD+ and ATP. Cell Biosci. 2021;11(1):192. doi: 10.1186/s13578-021-00705-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Li K., Wang Z. Non-coding RNAs: key players in T cell exhaustion. Front. Immunol. 2022;13 doi: 10.3389/fimmu.2022.959729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wang Z., Li K., Wang X., Huang W. MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics. 2019;14(5):494–503. doi: 10.1080/15592294.2019.1600388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Wang Z.Q., Lu Y.Q., Han J.X. MicroRNAs: important mediators of ossification. Chin. Med. J. 2012;125(22):4111–4116. [PubMed] [Google Scholar]
  • 18.Wang Z., Lu Y., Zhang X., Ren X., Wang Y., Li Z., Xu C., Han J. Serum microRNA is a promising biomarker for osteogenesis imperfecta. Intractable Rare Dis Res. 2012;1(2):81–85. doi: 10.5582/irdr.2012.v1.2.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Salmena L., Poliseno L., Tay Y., Kats L., Pandolfi P.P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–358. doi: 10.1016/j.cell.2011.07.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.de Jong J.J., Valderrama B.P., Perera J., Juanpere N., Cejas P., Long H., Albà M.M., Gibb E.A., Bellmunt J. Non-muscle-invasive micropapillary bladder cancer has a distinct lncRNA profile associated with unfavorable prognosis. Br. J. Cancer. 2022 doi: 10.1038/s41416-022-01799-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Li Y., Li G., Guo X., Yao H., Wang G., Li C. Non-coding RNA in bladder cancer. Cancer Lett. 2020;485:38–44. doi: 10.1016/j.canlet.2020.04.023. [DOI] [PubMed] [Google Scholar]
  • 22.Zhang Y., Chen X., Lin J., Jin X. Biological functions and clinical significance of long noncoding RNAs in bladder cancer. Cell Death Dis. 2021;7(1):278. doi: 10.1038/s41420-021-00665-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Li H.J., Gong X., Li Z.K., Qin W., He C.X., Xing L., Zhou X., Zhao D., Cao H.L. Role of long non-coding RNAs on bladder cancer. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.672679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Yang C., Li X., Wang Y., Zhao L., Chen W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene. 2012;496(1):8–16. doi: 10.1016/j.gene.2012.01.012. [DOI] [PubMed] [Google Scholar]
  • 25.Jiang M., Huang O., Xie Z., Wu S., Zhang X., Shen A., Liu H., Chen X., Wu J., Lou Y., Mao Y., Sun K., Hu S., Geng M., Shen K. A novel long non-coding RNA-ARA: adriamycin resistance-associated. Biochem. Pharmacol. 2014;87(2):254–283. doi: 10.1016/j.bcp.2013.10.020. [DOI] [PubMed] [Google Scholar]
  • 26.Han Y., Yang Y.N., Yuan H.H., Zhang T.T., Sui H., Wei X.L., Liu L., Huang P., Zhang W.J., Bai Y.X. UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology. 2014;46(5):396–401. doi: 10.1097/PAT.0000000000000125. [DOI] [PubMed] [Google Scholar]
  • 27.Wu W., Zhang S., Li X., Xue M., Cao S., Chen W. Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS One. 2013;8(9) doi: 10.1371/journal.pone.0073920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Xue M., Li X., Li Z., Chen W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol. 2014;35(7):6901–6912. doi: 10.1007/s13277-014-1925-x. [DOI] [PubMed] [Google Scholar]
  • 29.Xue M., Pang H., Li X., Li H., Pan J., Chen W. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci. 2016;107(1):18–27. doi: 10.1111/cas.12844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Luo J., Chen J., Li H., Yang Y., Yun H., Yang S., Mao X. LncRNA UCA1 promotes the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGB1 pathway. Oncol. Lett. 2017;14(5):5556–5562. doi: 10.3892/ol.2017.6886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Li H.J., Sun X.M., Li Z.K., Yin Q.W., Pang H., Pan J.J., Li X., Chen W. LncRNA UCA1 promotes mitochondrial function of bladder cancer via the MiR-195/ARL2 signaling pathway. Cell. Physiol. Biochem. 2017;43(6):2548–2561. doi: 10.1159/000484507. [DOI] [PubMed] [Google Scholar]
  • 32.Li Z., Li X., Wu S., Xue M., Chen W. Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 2014;105(8):951–955. doi: 10.1111/cas.12461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Li H.J., Li X., Pang H., Pan J.J., Xie X.J., Chen W. Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn. J. Clin. Oncol. 2015;45(11):1055–1063. doi: 10.1093/jjco/hyv132. [DOI] [PubMed] [Google Scholar]
  • 34.Brown C.J., Ballabio A., Rupert J.L., Lafreniere R.G., Grompe M., Tonlorenzi R., Willard H.F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349(6304):38–44. doi: 10.1038/349038a0. [DOI] [PubMed] [Google Scholar]
  • 35.Xiong Y., Wang L., Li Y., Chen M., He W., Qi L. The long non-coding RNA XIST interacted with MiR-124 to modulate bladder cancer growth, invasion and migration by targeting androgen receptor (AR) Cell. Physiol. Biochem. 2017;43(1):405–418. doi: 10.1159/000480419. [DOI] [PubMed] [Google Scholar]
  • 36.Mashhadi R., Pourmand G., Kosari F., Mehrsai A., Salem S., Pourmand M.R., Alatab S., Khonsari M., Heydari F., Beladi L., Alizadeh F. Role of steroid hormone receptors in formation and progression of bladder carcinoma: a case-control study. Urol. J. 2014;11(6):1968–1973. [PubMed] [Google Scholar]
  • 37.Lombard A.P., Mudryj M. The emerging role of the androgen receptor in bladder cancer. Endocr. Relat. Cancer. 2015;22(5):R265–R277. doi: 10.1530/ERC-15-0209. [DOI] [PubMed] [Google Scholar]
  • 38.Hu Y., Deng C., Zhang H., Zhang J., Peng B., Hu C. Long non-coding RNA XIST promotes cell growth and metastasis through regulating miR-139-5p mediated Wnt/β-catenin signaling pathway in bladder cancer. Oncotarget. 2017;8(55):94554–94568. doi: 10.18632/oncotarget.21791. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 39.Goyal B., Yadav S.R.M., Awasthee N., Gupta S., Kunnumakkara A.B., Gupta S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Canc. 2021;1875(2) doi: 10.1016/j.bbcan.2021.188502. [DOI] [PubMed] [Google Scholar]
  • 40.Xie H., Liao X., Chen Z., Fang Y., He A., Zhong Y., Gao Q., Xiao H., Li J., Huang W., Liu Y. LncRNA MALAT1 inhibits apoptosis and promotes invasion by antagonizing miR-125b in bladder cancer cells. J. Cancer. 2017;8(18):3803–3811. doi: 10.7150/jca.21228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Liu Y., Gao S., Du Q., Zhao Q. Knockdown of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 inhibits the proliferation and migration of bladder cancer cells by modulating the microRNA-34a/cyclin D1 axis. Int. J. Mol. Med. 2019;43(1):547–556. doi: 10.3892/ijmm.2018.3959. [DOI] [PubMed] [Google Scholar]
  • 42.Wang W., Zhou R., Wu Y., Liu Y., Su W., Xiong W., Zeng Z. PVT1 promotes cancer progression via MicroRNAs. Front. Oncol. 2019;9:609. doi: 10.3389/fonc.2019.00609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Onagoruwa O.T., Pal G., Ochu C., Ogunwobi O.O. Oncogenic role of PVT1 and therapeutic implications. Front. Oncol. 2020;10:17. doi: 10.3389/fonc.2020.00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yu C., Longfei L., Long W., Feng Z., Chen J., Chao L., Peihua L., Xiongbing Z., Hequn C. LncRNA PVT1 regulates VEGFC through inhibiting miR-128 in bladder cancer cells. J. Cell. Physiol. 2019;234(2):1346–1353. doi: 10.1002/jcp.26929. [DOI] [PubMed] [Google Scholar]
  • 45.Chen M., Zhang R., Lu L., Du J., Chen C., Ding K., Wei X., Zhang G., Huang Y., Hou J. LncRNA PVT1 accelerates malignant phenotypes of bladder cancer cells by modulating miR-194-5p/BCLAF1 axis as a ceRNA. Aging (Albany NY) 2020;12(21):22291–22312. doi: 10.18632/aging.202203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Tian Z., Cao S., Li C., Xu M., Wei H., Yang H., Sun Q., Ren Q., Zhang L. LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/CDK1. J. Cell. Physiol. 2019;234(4):4799–4811. doi: 10.1002/jcp.27279. [DOI] [PubMed] [Google Scholar]
  • 47.Zimta A.A., Tigu A.B., Braicu C., Stefan C., Ionescu C., Berindan-Neagoe I. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front. Oncol. 2020;10:389. doi: 10.3389/fonc.2020.00389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Biagioni A., Tavakol S., Ahmadirad N., Zahmatkeshan M., Magnelli L., Mandegary A., Samareh Fekri H., Asadi M.H., Mohammadinejad R., Ahn K.S. Small nucleolar RNA host genes promoting epithelial-mesenchymal transition lead cancer progression and metastasis. IUBMB Life. 2021;73(6):825–842. doi: 10.1002/iub.2501. [DOI] [PubMed] [Google Scholar]
  • 49.Dai G., Huang C., Yang J., Jin L., Fu K., Yuan F., Zhu J., Xue B. LncRNA SNHG3 promotes bladder cancer proliferation and metastasis through miR-515-5p/GINS2 axis. J. Cell Mol. Med. 2020;24(16):9231–9243. doi: 10.1111/jcmm.15564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Gambus A., Jones R.C., Sanchez-Diaz A., Kanemaki M., van Deursen F., Edmondson R.D., Labib K. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 2006;8(4):358–366. doi: 10.1038/ncb1382. [DOI] [PubMed] [Google Scholar]
  • 51.Wang C., Tao W., Ni S., Chen Q. Upregulation of lncRNA snoRNA host gene 6 regulates NUAK family SnF1-like kinase-1 expression by competitively binding microRNA-125b and interacting with Snail1/2 in bladder cancer. J. Cell. Biochem. 2019;120(1):357–367. doi: 10.1002/jcb.27387. [DOI] [PubMed] [Google Scholar]
  • 52.Tang X., Sui X., Weng L., Liu Y. SNAIL1: linking tumor metastasis to immune evasion. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.724200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Molina E., Hong L., Chefetz I. NUAK kinases: brain-ovary Axis. Cells. 2021;10(10):2760. doi: 10.3390/cells10102760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Wang W., Chen S., Song X., Gui J., Li Y., Li M. ELK1/lncRNA-SNHG7/miR-2682-5p feedback loop enhances bladder cancer cell growth. Life Sci. 2020;262 doi: 10.1016/j.lfs.2020.118386. [DOI] [PubMed] [Google Scholar]
  • 55.Maicas M., Vázquez I., Vicente C., García-Sánchez M.A., Marcotegui N., Urquiza L., Calasanz M.J., Odero M.D. Functional characterization of the promoter region of the human EVI1 gene in acute myeloid leukemia: RUNX1 and ELK1 directly regulate its transcription. Oncogene. 2013;32(16):2069–2078. doi: 10.1038/onc.2012.222. [DOI] [PubMed] [Google Scholar]
  • 56.Feng R., Li Z., Wang X., Ge G., Jia Y., Wu D., Ji Y., Wang C. Silenced lncRNA SNHG14 restrains the biological behaviors of bladder cancer cells via regulating microRNA-211-3p/ESM1 axis. Cancer Cell Int. 2021;21(1):67. doi: 10.1186/s12935-020-01717-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Zhang H., Shen Y.W., Zhang L.J., Chen J.J., Bian H.T., Gu W.J., Zhang H., Chen H.Z., Zhang W.D., Luan X. Targeting endothelial cell-specific molecule 1 protein in cancer: a promising therapeutic approach. Front. Oncol. 2021;11 doi: 10.3389/fonc.2021.687120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Meijer D., van Agthoven T., Bosma P.T., Nooter K., Dorssers L.C. Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Mol. Cancer Res. 2006;4(6):379–386. doi: 10.1158/1541-7786.MCR-05-0156. [DOI] [PubMed] [Google Scholar]
  • 59.Zhang R., Wang J., Jia E., Zhang J., Liu N., Chi C. lncRNA BCAR4 sponges miR-370-3p to promote bladder cancer progression via Wnt signaling. Int. J. Mol. Med. 2020;45(2):578–588. doi: 10.3892/ijmm.2019.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wang X., He H., Rui W., Xie X., Wang D., Zhu Y. Long non-coding RNA BCAR4 binds to miR-644a and targets TLX1 to promote the progression of bladder cancer. OncoTargets Ther. 2020;13:2483–2490. doi: 10.2147/OTT.S232965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Riz I., Hawley T.S., Luu T.V., Lee N.H., Hawley R.G. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells. Mol. Cancer. 2010;9:181. doi: 10.1186/1476-4598-9-181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Vanden Bempt M., Demeyer S., Broux M., De Bie J., Bornschein S., Mentens N., Vandepoel R., Geerdens E., Radaelli E., Bornhauser B.C., Kulozik A.E., Meijerink J.P., Bourquin J.P., de Bock C.E., Cools J. Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia. Cancer Cell. 2018;34(2):271–285. doi: 10.1016/j.ccell.2018.07.007. e7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Pan Z., Mao W., Bao Y., Zhang M., Su X., Xu X. The long noncoding RNA CASC9 regulates migration and invasion in esophageal cancer. Cancer Med. 2016;5(9):2442–2447. doi: 10.1002/cam4.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Zhan Y., Zhang L., Yu S., Wen J., Liu Y., Zhang X. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer. J. Exp. Clin. Cancer Res. 2020;39(1):136. doi: 10.1186/s13046-020-01624-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Corda G., Sala A. Non-canonical WNT/PCP signalling in cancer: fzd6 takes centre stage. Oncogenesis. 2017;6(7):e364. doi: 10.1038/oncsis.2017.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Zhang Z., Chen F., Zhan H., Chen L., Deng Q., Xiong T., Li Y., Ye J. lncRNA CASC9 sponges miR-758-3p to promote proliferation and EMT in bladder cancer by upregulating TGF-β2. Oncol. Rep. 2021;45(1):265–277. doi: 10.3892/or.2020.7852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Peng D., Fu M., Wang M., Wei Y., Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer. 2022;21(1):104. doi: 10.1186/s12943-022-01569-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Kretz M., Webster D.E., Flockhart R.J., Lee C.S., Zehnder A., Lopez-Pajares V., Qu K., Zheng G.X., Chow J., Kim G.E., Rinn J.L., Chang H.Y., Siprashvili Z., Khavari P.A. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012;26(4):338–343. doi: 10.1101/gad.182121.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Wang M., Gu J., Zhang X., Yang J., Zhang X., Fang X. Long non-coding RNA DANCR in cancer: roles, mechanisms, and implications. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.753706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Zhan Y., Chen Z., Li Y., He A., He S., Gong Y., Li X., Zhou L. Long non-coding RNA DANCR promotes malignant phenotypes of bladder cancer cells by modulating the miR-149/MSI2 axis as a ceRNA. J. Exp. Clin. Cancer Res. 2018;37(1):273. doi: 10.1186/s13046-018-0921-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kudinov A.E., Karanicolas J., Golemis E.A., Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin. Cancer Res. 2017;23(9):2143–2153. doi: 10.1158/1078-0432.CCR-16-2728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Ping Q., Shi Y., Yang M., Li H., Zhong Y., Li J., Bi X., Wang C. LncRNA DANCR regulates lymphatic metastasis of bladder cancer via the miR-335/VEGF-C axis. Transl. Androl. Urol. 2021;10(4):1743–1753. doi: 10.21037/tau-21-226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Cagle P., Qi Q., Niture S., Kumar D. KCNQ1OT1: an oncogenic long noncoding RNA. Biomolecules. 2021;11(11):1602. doi: 10.3390/biom11111602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Yuan C., Chen M., Cai X. Advances in poly(rC)-binding protein 2: structure, molecular function, and roles in cancer. Biomed. Pharmacother. 2021;139 doi: 10.1016/j.biopha.2021.111719. [DOI] [PubMed] [Google Scholar]
  • 75.Wang J., Zhang H., Situ J., Li M., Sun H. KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis. Cancer Cell Int. 2019;19:325. doi: 10.1186/s12935-019-1039-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Li Y., Shi B., Dong F., Zhu X., Liu B., Liu Y. LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1. Cancer Gene Ther. 2021;28(3–4):212–220. doi: 10.1038/s41417-020-00211-6. [DOI] [PubMed] [Google Scholar]
  • 77.Ghafouri-Fard S., Khoshbakht T., Taheri M., Ebrahimzadeh K. A review on the role of PCAT6 lncRNA in tumorigenesis. Biomed. Pharmacother. 2021;142 doi: 10.1016/j.biopha.2021.112010. [DOI] [PubMed] [Google Scholar]
  • 78.Du Z., Fei T., Verhaak R.G., Su Z., Zhang Y., Brown M., Chen Y., Liu X.S. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol. 2013;20(7):908–913. doi: 10.1038/nsmb.2591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Xia W., Chen C., Zhang M.R., Zhu L.N. LncRNA PCAT6 aggravates the progression of bladder cancer cells by targeting miR-513a-5p. Eur. Rev. Med. Pharmacol. Sci. 2020;24(19):9908–9914. doi: 10.26355/eurrev_202010_23201. [DOI] [PubMed] [Google Scholar]
  • 80.Zhang Y., Chen L., Luo G. Long non-coding RNA PCAT6 regulates bladder cancer progression via the microRNA-143-3p/PDIA6 axis. Exp. Ther. Med. 2021;22(3):947. doi: 10.3892/etm.2021.10379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Tufo G., Jones A.W., Wang Z., Hamelin J., Tajeddine N., Esposti D.D., Martel C., Boursier C., Gallerne C., Migdal C., Lemaire C., Szabadkai G., Lemoine A., Kroemer G., Brenner C. The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death Differ. 2014;21(5):685–695. doi: 10.1038/cdd.2013.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Bai Y., Liu X., Qi X., Liu X., Peng F., Li H., Fu H., Pei S., Chen L., Chi X., Zhang L., Zhu X., Song Y., Wang Y., Meng S., Jiang T., Shao S. PDIA6 modulates apoptosis and autophagy of non-small cell lung cancer cells via the MAP4K1/JNK signaling pathway. EBioMedicine. 2019;42:311–325. doi: 10.1016/j.ebiom.2019.03.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Kai-Xin L., Cheng C., Rui L., Zheng-Wei S., Wen-Wen T., Peng X. Roles of lncRNA MAGI2-AS3 in human cancers. Biomed. Pharmacother. 2021;141 doi: 10.1016/j.biopha.2021.111812. [DOI] [PubMed] [Google Scholar]
  • 84.Tang C., Cai Y., Jiang H., Lv Z., Yang C., Xu H., Li Z., Li Y. LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging (Albany NY) 2020;12(24):25547–25563. doi: 10.18632/aging.104162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Wang F., Zu Y., Zhu S., Yang Y., Huang W., Xie H., Li G. Long noncoding RNA MAGI2-AS3 regulates CCDC19 expression by sponging miR-15b-5p and suppresses bladder cancer progression. Biochem. Biophys. Res. Commun. 2018;507(1–4):231–235. doi: 10.1016/j.bbrc.2018.11.013. [DOI] [PubMed] [Google Scholar]
  • 86.Liu Z., Li X., He X., Jiang Q., Xie S., Yu X., Zhen Y., Xiao G., Yao K., Fang W. Decreased expression of updated NESG1 in nasopharyngeal carcinoma: its potential role and preliminarily functional mechanism. Int. J. Cancer. 2011;128(11):2562–2571. doi: 10.1002/ijc.25595. [DOI] [PubMed] [Google Scholar]
  • 87.Liu Z., Mai C., Yang H., Zhen Y., Yu X., Hua S., Wu Q., Jiang Q., Zhang Y., Song X., Fang W. Candidate tumour suppressor CCDC19 regulates miR-184 direct targeting of C-Myc thereby suppressing cell growth in non-small cell lung cancers. J. Cell Mol. Med. 2014;18(8):1667–1679. doi: 10.1111/jcmm.12317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Wang Y., Liu Z., Luo R., Xie Y. Decreased CCDC19 is correlated with unfavorable outcome in lung squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2018;11(2):802–807. [PMC free article] [PubMed] [Google Scholar]
  • 89.Guo X., Lin M., Rockowitz S., Lachman H.M., Zheng D. Characterization of human pseudogene-derived non-coding RNAs for functional potential. PLoS One. 2014;9(4) doi: 10.1371/journal.pone.0093972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Zheng R., Du M., Wang X., Xu W., Liang J., Wang W., Lv Q., Qin C., Chu H., Wang M., Yuan L., Qian J., Zhang Z. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol. Cancer. 2018;17(1):143. doi: 10.1186/s12943-018-0880-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Zhong X.L., Wang L., Yan X., Yang X.K., Xiu H., Zhao M., Wang X.N., Liu J.X. MiR-20a acted as a ceRNA of lncRNA PTENPL and promoted bladder cancer cell proliferation and migration by regulating PDCD4. Eur. Rev. Med. Pharmacol. Sci. 2020;24(6):2955–2964. doi: 10.26355/eurrev_202003_20660. [DOI] [PubMed] [Google Scholar]
  • 92.Matsuhashi S., Manirujjaman M., Hamajima H., Ozaki I. Control mechanisms of the tumor suppressor PDCD4: expression and functions. Int. J. Mol. Sci. 2019;20(9):2304. doi: 10.3390/ijms20092304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Li J., Li Z., Leng K., Xu Y., Ji D., Huang L., Cui Y., Jiang X. ZEB1-AS1: a crucial cancer-related long non-coding RNA. Cell Prolif. 2018;51(1) doi: 10.1111/cpr.12423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Drayton R.M., Dudziec E., Peter S., Bertz S., Hartmann A., Bryant H.E., Catto J.W. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin. Cancer Res. 2014;20(7):1990–2000. doi: 10.1158/1078-0432.CCR-13-2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Wu X., Yan T., Wang Z., Wu X., Cao G., Zhang C. LncRNA ZEB2-AS1 promotes bladder cancer cell proliferation and inhibits apoptosis by regulating miR-27b. Biomed. Pharmacother. 2017;96:299–304. doi: 10.1016/j.biopha.2017.08.060. [DOI] [PubMed] [Google Scholar]
  • 96.Gao R., Zhang N., Yang J., Zhu Y., Zhang Z., Wang J., Xu X., Li Z., Liu X., Li Z., Li J., Kong C., Bi J. Long non-coding RNA ZEB1-AS1 regulates miR-200b/FSCN1 signaling and enhances migration and invasion induced by TGF-β1 in bladder cancer cells. J. Exp. Clin. Cancer Res. 2019;38(1):111. doi: 10.1186/s13046-019-1102-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Ristic B., Kopel J., Sherazi S.A.A., Gupta S., Sachdeva S., Bansal P., Ali A., Perisetti A., Goyal H. Emerging role of fascin-1 in the pathogenesis, diagnosis, and treatment of the gastrointestinal cancers. Cancers. 2021;13(11):2536. doi: 10.3390/cancers13112536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Tsui Y.M., Chan L.K., Ng I.O. Cancer stemness in hepatocellular carcinoma: mechanisms and translational potential. Br. J. Cancer. 2020;122(10):1428–1440. doi: 10.1038/s41416-020-0823-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Lee T.K., Guan X.Y., Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2022;19(1):26–44. doi: 10.1038/s41575-021-00508-3. [DOI] [PubMed] [Google Scholar]
  • 100.Zhan Y., Chen Z., He S., Gong Y., He A., Li Y., Zhang L., Zhang X., Fang D., Li X., Zhou L. Long non-coding RNA SOX2OT promotes the stemness phenotype of bladder cancer cells by modulating SOX2. Mol. Cancer. 2020;19(1):25. doi: 10.1186/s12943-020-1143-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Zhu Y., Huang S., Chen S., Chen J., Wang Z., Wang Y., Zheng H. SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Cell Death Dis. 2021;12(5):449. doi: 10.1038/s41419-021-03733-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Mamun M.A., Mannoor K., Cao J., Qadri F., Song X. SOX2 in cancer stemness: tumor malignancy and therapeutic potentials. J. Mol. Cell Biol. 2020;12(2):85–98. doi: 10.1093/jmcb/mjy080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Wang F., Wu D., Chen J., Chen S., He F., Fu H., Wu Q., Liu S., Li X., Wang W. Long non-coding RNA HOXA-AS2 promotes the migration, invasion and stemness of bladder cancer via regulating miR-125b/Smad2 axis. Exp. Cell Res. 2019;375(1):1–10. doi: 10.1016/j.yexcr.2018.11.005. [DOI] [PubMed] [Google Scholar]
  • 104.Chen Y.S., Xu Y.P., Liu W.H., Li D.C., Wang H., Li C.F. Long noncoding RNA KCNMB2-AS1 promotes SMAD5 by targeting miR-3194-3p to induce bladder cancer progression. Front. Oncol. 2021;11 doi: 10.3389/fonc.2021.649778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Eli S., Castagna R., Mapelli M., Parisini E. Recent approaches to the identification of novel microtubule-targeting agents. Front. Mol. Biosci. 2022;9 doi: 10.3389/fmolb.2022.841777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Datta A., Deng S., Gopal V., Yap K.C., Halim C.E., Lye M.L., Ong M.S., Tan T.Z., Sethi G., Hooi S.C., Kumar A.P., Yap C.T. Cytoskeletal dynamics in epithelial-mesenchymal transition: insights into therapeutic targets for cancer metastasis. Cancers. 2021;13(8):1882. doi: 10.3390/cancers13081882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Lv M., Zhong Z., Huang M., Tian Q., Jiang R., Chen J. lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864(10):1887–1899. doi: 10.1016/j.bbamcr.2017.08.001. [DOI] [PubMed] [Google Scholar]
  • 108.Kim L.C., Song L., Haura E.B. Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol. 2009;6(10):587–595. doi: 10.1038/nrclinonc.2009.129. [DOI] [PubMed] [Google Scholar]
  • 109.Xu K., Chen B., Li B., Li C., Zhang Y., Jiang N., Lang B. DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer. Aging (Albany NY) 2020;12(23):23668–23683. doi: 10.18632/aging.103820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Chi H., Yang R., Zheng X., Zhang L., Jiang R., Chen J. LncRNA RP11-79H23.3 functions as a competing endogenous RNA to regulate PTEN expression through sponging hsa-miR-107 in the development of bladder cancer. Int. J. Mol. Sci. 2018;19(9):2531. doi: 10.3390/ijms19092531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Hensley P.J., Panebianco V., Pietzak E., Kutikov A., Vikram R., Galsky M.D., Shariat S., Roupret M., Kamat A.M. Contemporary staging for muscle-invasive bladder cancer: accuracy and limitations. Eur Urol Oncol. 2022;S2588–9311(22) doi: 10.1016/j.euo.2022.04.008. 00066-00069. [DOI] [PubMed] [Google Scholar]
  • 112.Tan J., Qiu K., Li M., Liang Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 2015;589(20 Pt B):3175–3181. doi: 10.1016/j.febslet.2015.08.020. [DOI] [PubMed] [Google Scholar]
  • 113.Jiang H., Hu X., Zhang H., Li W. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat. Oncol. 2017;12(1):65. doi: 10.1186/s13014-017-0802-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Tripathi A., Shrinet K., Kumar A. HMGB1 protein as a novel target for cancer. Toxicol Rep. 2019;6:253–261. doi: 10.1016/j.toxrep.2019.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Khan M.T., Yang L., More E., Irlam-Jones J.J., Valentine H.R., Hoskin P., Choudhury A., West C.M.L. Developing tumor radiosensitivity signatures using LncRNAs. Radiat. Res. 2021;195(4):324–333. doi: 10.1667/RADE-20-00157.1. [DOI] [PubMed] [Google Scholar]
  • 116.Yang Y., Zhang F., Huang H., Xie Z., Huang W., Xie H., Wang F. Long noncoding RNA LINC00319 regulates ROMO1 expression and promotes bladder cancer progression via miR-4492/ROMO1 axis. J. Cell. Physiol. 2020;235(4):3768–3775. doi: 10.1002/jcp.29271. [DOI] [PubMed] [Google Scholar]
  • 117.Li Z., Hong S., Liu Z. LncRNA LINC00641 predicts prognosis and inhibits bladder cancer progression through miR-197-3p/KLF10/PTEN/PI3K/AKT cascade. Biochem. Biophys. Res. Commun. 2018;503(3):1825–1829. doi: 10.1016/j.bbrc.2018.07.120. [DOI] [PubMed] [Google Scholar]
  • 118.Shan L., Liu W., Zhan Y. LncRNA HAND2-AS1 exerts anti-oncogenic effects on bladder cancer via restoration of RARB as a sponge of microRNA-146. Cancer Cell Int. 2021;21(1):361. doi: 10.1186/s12935-021-02063-y. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 119.Chen J.B., Zhu Y.W., Guo X., Yu C., Liu P.H., Li C., Hu J., Li H.H., Liu L.F., Chen M.F., Chen H.Q., Xiong-Bing Z. Microarray expression profiles analysis revealed lncRNA OXCT1-AS1 promoted bladder cancer cell aggressiveness via miR-455-5p/JAK1 signaling. J. Cell. Physiol. 2019;234(8):13592–13601. doi: 10.1002/jcp.28037. [DOI] [PubMed] [Google Scholar]
  • 120.Bi H., Shang Z., Jia C., Wu J., Cui B., Wang Q., Ou T. LncRNA rnf144a-AS1 promotes bladder cancer progression via rnf144a-AS1/miR-455-5p/SOX11 Axis. OncoTargets Ther. 2020;13:11277–11288. doi: 10.2147/OTT.S266067. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 121.Liao C., Long Z., Zhang X., Cheng J., Qi F., Wu S., Huang T. LncARSR sponges miR-129-5p to promote proliferation and metastasis of bladder cancer cells through increasing SOX4 expression. Int. J. Biol. Sci. 2020;16(1):1–11. doi: 10.7150/ijbs.39461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Gao Z., Li S., Zhou X., Li H., He S. Knockdown of lncRNA ZNRD1-AS1 inhibits progression of bladder cancer by regulating miR-194 and ZEB1. Cancer Med. 2020;9(20):7695–7705. doi: 10.1002/cam4.3373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Xiong Y., Zu X., Wang L., Li Y., Chen M., He W., Qi L. The VIM-AS1/miR-655/ZEB1 axis modulates bladder cancer cell metastasis by regulating epithelial-mesenchymal transition. Cancer Cell Int. 2021;21(1):233. doi: 10.1186/s12935-021-01841-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Liu Q., Liu H., Cheng H., Li Y., Li X., Zhu C. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. OncoTargets Ther. 2017;10:2461–2471. doi: 10.2147/OTT.S124595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Xie H., Huang H., Huang W., Xie Z., Yang Y., Wang F. LncRNA miR143HG suppresses bladder cancer development through inactivating Wnt/β-catenin pathway by modulating miR-1275/AXIN2 axis. J. Cell. Physiol. 2019;234(7):11156–11164. doi: 10.1002/jcp.27764. [DOI] [PubMed] [Google Scholar]
  • 126.Wei X., Yang X., Wang B., Yang Y., Fang Z., Yi C., Shi L., Song D. LncRNA MBNL1-AS1 represses cell proliferation and enhances cell apoptosis via targeting miR-135a-5p/PHLPP2/FOXO1 axis in bladder cancer. Cancer Med. 2020;9(2):724–736. doi: 10.1002/cam4.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Zhang Z., Ao P., Han H., Zhang Q., Chen Y., Han J., Huang Q., Huang H., Zhuo D. LncRNA PLAC2 upregulates miR-663 to downregulate TGF-β1 and suppress bladder cancer cell migration and invasion. BMC Urol. 2020;20(1):94. doi: 10.1186/s12894-020-00663-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Li W., Li Y., Ma W., Zhou J., Sun Z., Yan X. Long noncoding RNA AC114812.8 promotes the progression of bladder cancer through miR-371b-5p/FUT4 axis. Biomed. Pharmacother. 2020;121 doi: 10.1016/j.biopha.2019.109605. [DOI] [PubMed] [Google Scholar]
  • 129.Zhai X., Xu W. Long noncoding RNA ATB promotes proliferation, migration, and invasion in bladder cancer by suppressing MicroRNA-126. Oncol. Res. 2018;26(7):1063–1072. doi: 10.3727/096504018X15152072098476. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 130.Liu D., Li Y., Luo G., Xiao X., Tao D., Wu X., Wang M., Huang C., Wang L., Zeng F., Jiang G. LncRNA SPRY4-IT1 sponges miR-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett. 2017;388:281–291. doi: 10.1016/j.canlet.2016.12.005. [DOI] [PubMed] [Google Scholar]
  • 131.Xu G., Yang H., Liu M., Niu J., Chen W., Tan X., Sun L. lncRNA TINCR facilities bladder cancer progression via regulating miR-7 and mTOR. Mol. Med. Rep. 2020;22(5):4243–4253. doi: 10.3892/mmr.2020.11530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Luo H., Yang L., Liu C., Wang X., Dong Q., Liu L., Wei Q. TMPO-AS1/miR-98-5p/EBF1 feedback loop contributes to the progression of bladder cancer. Int. J. Biochem. Cell Biol. 2020;122 doi: 10.1016/j.biocel.2020.105702. [DOI] [PubMed] [Google Scholar]
  • 133.Fang C., Xu L., He W., Dai J., Sun F. Long noncoding RNA DLX6-AS1 promotes cell growth and invasiveness in bladder cancer via modulating the miR-223-HSP90B1 axis. Cell Cycle. 2019;18(23):3288–3299. doi: 10.1080/15384101.2019.1673633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Rui X., Wang L., Pan H., Gu T., Shao S., Leng J. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis. J. Cell Mol. Med. 2019;23(2):865–876. doi: 10.1111/jcmm.13986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Teng J., Ai X., Jia Z., Wang K., Guan Y., Guo Y. Long non-coding RNA ARAP1-AS1 promotes the progression of bladder cancer by regulating miR-4735-3p/NOTCH2 axis. Cancer Biol. Ther. 2019;20(4):552–561. doi: 10.1080/15384047.2018.1538613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Kang W., Wang Q., Dai Y., Wang H., Wang M., Wang J., Zhang D., Sun P., Qi T., Jin X., Cui Z. Hypomethylation of PlncRNA-1 promoter enhances bladder cancer progression through the miR-136-5p/Smad3 axis. Cell Death Dis. 2020;11(12):1038. doi: 10.1038/s41419-020-03240-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Wang F., Zu Y., Huang W., Chen H., Xie H., Yang Y. LncRNA CALML3-AS1 promotes tumorigenesis of bladder cancer via regulating ZBTB2 by suppression of microRNA-4316. Biochem. Biophys. Res. Commun. 2018;504(1):171–176. doi: 10.1016/j.bbrc.2018.08.150. [DOI] [PubMed] [Google Scholar]
  • 138.Wang J., Xing H., Nikzad A.A., Liu B., Zhang Y., Li S., Zhang E., Jia Z. Long noncoding RNA MNX1 antisense RNA 1 exerts oncogenic functions in bladder cancer by regulating miR-218-5p/rab1a Axis. J. Pharmacol. Exp. Therapeut. 2020;372(3):237–247. doi: 10.1124/jpet.119.262949. [DOI] [PubMed] [Google Scholar]
  • 139.Liu Y., Wu G. NNT-AS1 enhances bladder cancer cell growth by targeting miR-1301-3p/PODXL axis and activating Wnt pathway. Neurourol. Urodyn. 2020;39(2):547–557. doi: 10.1002/nau.24238. [DOI] [PubMed] [Google Scholar]
  • 140.Zhan Y., Li Y., Guan B., Wang Z., Peng D., Chen Z., He A., He S., Gong Y., Li X., Zhou L. Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2. Oncotarget. 2017;8(44):76656–76665. doi: 10.18632/oncotarget.20795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Tian Y., Guan Y., Su Y., Yang T., Yu H. TRPM2-AS promotes bladder cancer by targeting miR-22-3p and regulating GINS2 mRNA expression. OncoTargets Ther. 2021;14:1219–1237. doi: 10.2147/OTT.S282151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Yang Y., Wang F., Huang H., Zhang Y., Xie H., Men T. lncRNA SLCO4A1-AS1 promotes growth and invasion of bladder cancer through sponging miR-335-5p to upregulate OCT4. OncoTargets Ther. 2019;12:1351–1358. doi: 10.2147/OTT.S191740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Wu J.P., Zhang G.Y., Sun X.Z. LncRNA ZNFX1-AS1 targeting miR-193a-3p/SDC1 regulates cell proliferation, migration and invasion of bladder cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2020;24(9):4719–4728. doi: 10.26355/eurrev_202005_21160. [DOI] [PubMed] [Google Scholar]
  • 144.Chen D., Guo Y., Chen Y., Guo Q., Chen J., Li Y., Zheng Q., Jiang M., Xi M., Cheng L. LncRNA growth arrest-specific transcript 5 targets miR-21 gene and regulates bladder cancer cell proliferation and apoptosis through PTEN. Cancer Med. 2020;9(8):2846–2858. doi: 10.1002/cam4.2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Miao L., Liu H.Y., Zhou C., He X. LINC00612 enhances the proliferation and invasion ability of bladder cancer cells as ceRNA by sponging miR-590 to elevate expression of PHF14. J. Exp. Clin. Cancer Res. 2019;38(1):143. doi: 10.1186/s13046-019-1149-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Meng L., Xing Z., Guo Z., Liu Z. LINC01106 post-transcriptionally regulates ELK3 and HOXD8 to promote bladder cancer progression. Cell Death Dis. 2020;11(12):1063. doi: 10.1038/s41419-020-03236-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Zhao C., Li Y., Hu X., Wang R., He W., Wang L., Qi L., Tong S. LncRNA HCP5 promotes cell invasion and migration by sponging miR-29b-3p in human bladder cancer. OncoTargets Ther. 2020;13:11827–11838. doi: 10.2147/OTT.S249770. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 148.Dai R., Jiang Q., Zhou Y., Lin R., Lin H., Zhang Y., Zhang J., Gao X. Lnc-STYK1-2 regulates bladder cancer cell proliferation, migration, and invasion by targeting miR-146b-5p expression and AKT/STAT3/NF-kB signaling. Cancer Cell Int. 2021;21(1):408. doi: 10.1186/s12935-021-02114-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Yu G., Zhou H., Yao W., Meng L., Lang B. lncRNA TUG1 promotes cisplatin resistance by regulating CCND2 via epigenetically silencing miR-194-5p in bladder cancer. Mol. Ther. Nucleic Acids. 2019;16:257–271. doi: 10.1016/j.omtn.2019.02.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Pan J., Li X., Wu W., Xue M., Hou H., Zhai W., Chen W. Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Lett. 2016;382(1):64–76. doi: 10.1016/j.canlet.2016.08.015. [DOI] [PubMed] [Google Scholar]
  • 151.Li Y., Shi B., Dong F., Zhu X., Liu B., Liu Y. Long non-coding RNA DLEU1 promotes cell proliferation, invasion, and confers cisplatin resistance in bladder cancer by regulating the miR-99b/HS3ST3B1 Axis. Front. Genet. 2019;10:280. doi: 10.3389/fgene.2019.00280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Chen J., Li Y., Li Z., Cao L. LncRNA MST1P2/miR-133b axis affects the chemoresistance of bladder cancer to cisplatin-based therapy via Sirt1/p53 signaling. J. Biochem. Mol. Toxicol. 2020;34(4) doi: 10.1002/jbt.22452. [DOI] [PubMed] [Google Scholar]
  • 153.Liu P., Li X., Cui Y., Chen J., Li C., Li Q., Li H., Zhang X., Zu X. LncRNA-MALAT1 mediates cisplatin resistance via miR-101-3p/VEGF-C pathway in bladder cancer. Acta Biochim. Biophys. Sin. 2019;51(11):1148–1157. doi: 10.1093/abbs/gmz112. [DOI] [PubMed] [Google Scholar]
  • 154.An Q., Zhou L., Xu N. Long noncoding RNA FOXD2-AS1 accelerates the gemcitabine-resistance of bladder cancer by sponging miR-143. Biomed. Pharmacother. 2018;103:415–420. doi: 10.1016/j.biopha.2018.03.138. [DOI] [PubMed] [Google Scholar]
  • 155.Zhuang J., Shen L., Yang L., Huang X., Lu Q., Cui Y., Zheng X., Zhao X., Zhang D., Huang R., Guo H., Yan J. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling Axis in bladder cancer. Theranostics. 2017;7(12):3053–3067. doi: 10.7150/thno.19542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Guo Y., Zhang H., Xie D., Hu X., Song R., Zhu L. Non-coding RNA NEAT1/miR-214-3p contribute to doxorubicin resistance of urothelial bladder cancer preliminary through the Wnt/β-catenin pathway. Cancer Manag. Res. 2018;10:4371–4380. doi: 10.2147/CMAR.S171126. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 157.Eissa S., Safwat M., Matboli M., Zaghloul A., El-Sawalhi M., Shaheen A. Measurement of urinary level of a specific competing endogenous RNA network (FOS and RCAN mRNA/miR-324-5p, miR-4738-3p,/lncRNA miR-497-HG) enables diagnosis of bladder cancer. Urol. Oncol. 2019;37(4):292.e19–292.e27. doi: 10.1016/j.urolonc.2018.12.024. [DOI] [PubMed] [Google Scholar]
  • 158.Quinn J.J., Chang H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016;17(1):47–62. doi: 10.1038/nrg.2015.10. [DOI] [PubMed] [Google Scholar]
  • 159.Johnsson P., Lipovich L., Grandér D., Morris K.V. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim. Biophys. Acta. 2014;1840(3):1063–1071. doi: 10.1016/j.bbagen.2013.10.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Wang C., Wang L., Ding Y., Lu X., Zhang G., Yang J., Zheng H., Wang H., Jiang Y., Xu L. LncRNA structural characteristics in epigenetic regulation. Int. J. Mol. Sci. 2017;18(12):2659. doi: 10.3390/ijms18122659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Graf J., Kretz M. From structure to function: route to understanding lncRNA mechanism. Bioessays. 2020;42(12) doi: 10.1002/bies.202000027. [DOI] [PubMed] [Google Scholar]
  • 162.Mercer T.R., Mattick J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 2013;20(3):300–307. doi: 10.1038/nsmb.2480. [DOI] [PubMed] [Google Scholar]
  • 163.Ala U., Karreth F.A., Bosia C., Pagnani A., Taulli R., Léopold V., Tay Y., Provero P., Zecchina R., Pandolfi P.P. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. U. S. A. 2013;110(18):7154–7159. doi: 10.1073/pnas.1222509110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Sumazin P., Yang X., Chiu H.S., Chung W.J., Iyer A., Llobet-Navas D., Rajbhandari P., Bansal M., Guarnieri P., Silva J., Califano A. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011;147(2):370–381. doi: 10.1016/j.cell.2011.09.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Tay Y., Rinn J., Pandolfi P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–352. doi: 10.1038/nature12986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Non-coding RNA Research are provided here courtesy of KeAi Publishing

RESOURCES