Skip to main content
IUCrData logoLink to IUCrData
. 2022 Dec 6;7(Pt 12):x221148. doi: 10.1107/S2414314622011488

(Nitrito-κ2 O,O′)bis­[tris­(4-methyl­phen­yl)phosphane-κP]silver(I)

Frederick P Malan a, Kariska Potgieter b, Reinout Meijboom b,*
Editor: M Weilc
PMCID: PMC9815127  PMID: 36628189

The synthesis and single-crystal structure are described of a μ-NO2 silver(I) tris-p-tolyl­phosphine complex to be applied as an potential anti­cancer agent.

Keywords: crystal structure, silver(I) complex, p-tolyl phosphine

Abstract

The mol­ecular structure of the title compound, [Ag(NO2)(C21H21P)2], exhibits a pseudo-tetra­hedral coordination around the central AgI atom. The compound crystallizes with one mol­ecule in the asymmetric unit in the monoclinic space group P21/n with a rather long b axis [33.8752 (2) Å]. Weak C—H⋯O and C—H⋯N inter­actions consolidate the crystal packing. The nitrite-O atoms each occupy a single position in the coordination geometry. graphic file with name x-07-x221148-scheme1-3D1.jpg

Structure description

Silver is oligodynamic as a result of its excellent anti­microbial, anti­bacterial and anti­cancer properties (Meijboom et al., 2009). Continuous development of phosphine silver(I) complexes has resulted in this class of compounds being evaluated against numerous cancer cell lines (Potgieter et al., 2016). In this context, we report another phosphine silver(I) complex with nitrite as a co-ligand.

The mol­ecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one complex mol­ecule, featuring a central AgI atom, two tris-p-tolyl­phosphine ligands, and one chelating nitrito ligand. Minor differences in the two Ag—P bond lengths are observed [Ag1—P1 = 2.4287 (5) Å; Ag1—P2 = 2.4570 (5) Å]. The nitrito ligand coordinates in a near symmetric fashion with similar bond lengths [Ag1—O1 = 2.4125 (19) Å; Ag1—O2 = 2.4227 (16) Å; N1—O1 = 1.249 (3) Å; N1—O2 = 1.233 (3) Å]. The pseudo-tetra­hedral coordination environment exhibited around the AgI atom stems from the three coordinating ligands, with corresponding bond angles of P1—Ag1—P2 [124.597 (16)°], P1—Ag1—O1 [116.26 (6)°], P1—Ag1—O2 [125.62 (4)°], P2—Ag1—O1 [107.68 (7)°], and P2—Ag1—O2 [107.83 (4)°]. The bidentate coordination of the nitrito ligand is underpinned by the O1—Ag1—O2 bite angle of 50.80 (7)°. The ipso-aryl carbon atoms of each of the phosphine ligands overlap in a near-staggered fashion when viewed down the P1—Ag1—P2 axis, presumably due to the steric effect of the bulky phosphine ligands. Corresponding torsion angles are P2—Ag1—P1—C1 = 9.90 (7)°, P2—Ag1—P1—C8 = −108.02 (8)°, P2—Ag1—P1—C15 = 128.73 (9)°, P1—Ag1—P2—C22 = −172.57 (7)°, P1—Ag1—P2—C36 = 70.75 (8)°, and P1—Ag1—P2—C29 = −47.35 (7)°. All of the aforementioned bond lengths and angles closely correspond to those of related AgI phosphine complexes (Meijboom et al., 2009).

Figure 1.

Figure 1

Perspective view of the mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

The complex packs in three dimensions as ribbons of isolated mol­ecular complexes. The mol­ecular packing is consolidated through weak inter­molecular C—H⋯O and C—H⋯N inter­actions (Fig. 2, Table 1) involving methyl donor groups and the N and O atom of the nitrito ligand as acceptor atoms; π-stacking inter­actions are not observed.

Figure 2.

Figure 2

Packing diagram viewed along the a axis indicating two non-classical C—H⋯N and C—H⋯O hydrogen bonds as cyan dotted lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28B⋯O2i 0.98 2.34 3.292 (3) 165
C42—H42B⋯N1ii 0.98 2.52 3.491 (4) 170

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Synthesis and crystallization

Tris-p-tolyl­phosphine (2 mmol) and silver nitrite (1 mmol) were dissolved separately in aceto­nitrile (10 ml). The two solutions were carefully mixed together and heated to 353 K for approximately 2 h. The solution was left to crystallize, and small clear colourless crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Ag(NO2)(C21H21P)2]
M r 762.57
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.8253 (1), 33.8752 (2), 11.3921 (1)
β (°) 116.880 (1)
V3) 3726.22 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.43
Crystal size (mm) 0.21 × 0.15 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.524, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46007, 7335, 7025
R int 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.066, 1.03
No. of reflections 7335
No. of parameters 439
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.55

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622011488/wm4174sup1.cif

x-07-x221148-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622011488/wm4174Isup2.hkl

x-07-x221148-Isup2.hkl (582.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622011488/wm4174Isup3.cdx

CCDC reference: 2223249

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We greatly acknowledge the National Research Foundation (NRF, SA), the University of Pretoria and the University of Johannesburg for funding provided.

full crystallographic data

Crystal data

[Ag(NO2)(C21H21P)2] F(000) = 1576
Mr = 762.57 Dx = 1.359 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 10.8253 (1) Å Cell parameters from 37839 reflections
b = 33.8752 (2) Å θ = 2.6–78.9°
c = 11.3921 (1) Å µ = 5.43 mm1
β = 116.880 (1)° T = 150 K
V = 3726.22 (6) Å3 Block, colourless
Z = 4 0.21 × 0.15 × 0.12 mm

Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer 7335 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source 7025 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.037
Detector resolution: 10.0000 pixels mm-1 θmax = 72.1°, θmin = 2.6°
ω scans h = −13→13
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −33→41
Tmin = 0.524, Tmax = 1.000 l = −13→14
46007 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0325P)2 + 2.634P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
7335 reflections Δρmax = 0.45 e Å3
439 parameters Δρmin = −0.55 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.65533 (2) 0.63978 (2) 0.42841 (2) 0.02180 (5)
P1 0.77595 (5) 0.57779 (2) 0.44820 (5) 0.02163 (10)
P2 0.65036 (5) 0.69483 (2) 0.28591 (4) 0.01930 (10)
O2 0.57699 (19) 0.66458 (5) 0.58283 (16) 0.0448 (4)
C29 0.81563 (18) 0.70936 (5) 0.29381 (18) 0.0199 (4)
C2 1.0300 (2) 0.57988 (6) 0.43210 (18) 0.0244 (4)
H2 1.0744 0.5726 0.5224 0.029*
C25 0.44352 (19) 0.80859 (5) 0.34053 (19) 0.0235 (4)
C1 0.8860 (2) 0.58141 (5) 0.36531 (18) 0.0220 (4)
C36 0.54431 (19) 0.68106 (5) 0.11468 (18) 0.0210 (4)
C26 0.52576 (19) 0.78451 (6) 0.44557 (19) 0.0244 (4)
H26 0.5396 0.7912 0.5316 0.029*
C22 0.57132 (18) 0.74079 (5) 0.30246 (18) 0.0204 (4)
C37 0.5988 (2) 0.67381 (6) 0.02701 (19) 0.0252 (4)
H37 0.6954 0.6768 0.0553 0.030*
C27 0.58811 (19) 0.75088 (6) 0.42752 (18) 0.0228 (4)
H27 0.6426 0.7346 0.5007 0.027*
C15 0.8942 (2) 0.55952 (6) 0.61134 (18) 0.0228 (4)
C23 0.49327 (19) 0.76552 (5) 0.19701 (18) 0.0223 (4)
H23 0.4833 0.7596 0.1117 0.027*
C3 1.1093 (2) 0.58891 (6) 0.3678 (2) 0.0281 (4)
H3 1.2075 0.5882 0.4153 0.034*
C8 0.6598 (2) 0.53656 (6) 0.37059 (19) 0.0255 (4)
C24 0.42994 (19) 0.79888 (5) 0.21635 (19) 0.0245 (4)
H24 0.3764 0.8154 0.1435 0.029*
C40 0.3180 (2) 0.66502 (6) −0.0583 (2) 0.0295 (4)
H40 0.2212 0.6624 −0.0871 0.035*
C39 0.3715 (2) 0.65788 (6) −0.14628 (19) 0.0257 (4)
C30 0.93294 (19) 0.68737 (6) 0.37074 (18) 0.0235 (4)
H30 0.9262 0.6656 0.4202 0.028*
C34 0.8276 (2) 0.74140 (6) 0.2224 (2) 0.0283 (4)
H34 0.7484 0.7568 0.1699 0.034*
O1 0.4291 (2) 0.63526 (8) 0.4201 (2) 0.0757 (7)
C38 0.5131 (2) 0.66231 (6) −0.10136 (19) 0.0279 (4)
H38 0.5522 0.6574 −0.1597 0.033*
C5 0.9032 (2) 0.59927 (6) 0.16815 (19) 0.0288 (4)
H5 0.8589 0.6050 0.0767 0.035*
C31 1.0598 (2) 0.69698 (6) 0.37583 (19) 0.0285 (4)
H31 1.1391 0.6816 0.4282 0.034*
C4 1.0474 (2) 0.59896 (6) 0.2356 (2) 0.0277 (4)
C16 0.9020 (2) 0.52008 (6) 0.6477 (2) 0.0289 (4)
H16 0.8397 0.5015 0.5877 0.035*
C9 0.5328 (2) 0.53614 (6) 0.3729 (2) 0.0296 (4)
H9 0.5054 0.5582 0.4072 0.035*
C20 0.9859 (2) 0.58611 (6) 0.7025 (2) 0.0298 (4)
H20 0.9801 0.6134 0.6810 0.036*
C41 0.4026 (2) 0.67585 (6) 0.0705 (2) 0.0286 (4)
H41 0.3637 0.6798 0.1295 0.034*
N1 0.4549 (3) 0.65427 (8) 0.5226 (3) 0.0564 (6)
C6 0.8232 (2) 0.59131 (6) 0.23182 (19) 0.0270 (4)
H6 0.7251 0.5926 0.1845 0.032*
C32 1.0722 (2) 0.72882 (6) 0.30523 (19) 0.0276 (4)
C33 0.9545 (2) 0.75080 (6) 0.2280 (2) 0.0302 (4)
H33 0.9614 0.7725 0.1786 0.036*
C28 0.3653 (2) 0.84282 (6) 0.3593 (2) 0.0340 (5)
H28A 0.3499 0.8380 0.4365 0.051*
H28B 0.2759 0.8456 0.2811 0.051*
H28C 0.4193 0.8671 0.3725 0.051*
C19 1.0855 (2) 0.57326 (7) 0.8241 (2) 0.0352 (5)
H19 1.1491 0.5917 0.8837 0.042*
C17 0.9994 (2) 0.50771 (6) 0.7705 (2) 0.0349 (5)
H17 1.0019 0.4807 0.7941 0.042*
C18 1.0939 (2) 0.53389 (7) 0.8601 (2) 0.0353 (5)
C10 0.4457 (2) 0.50374 (7) 0.3256 (2) 0.0355 (5)
H10 0.3595 0.5038 0.3287 0.043*
C13 0.6959 (2) 0.50441 (6) 0.3161 (2) 0.0363 (5)
H13 0.7814 0.5045 0.3116 0.044*
C11 0.4816 (2) 0.47134 (7) 0.2740 (2) 0.0381 (5)
C42 0.2782 (2) 0.64668 (7) −0.2869 (2) 0.0362 (5)
H42A 0.2573 0.6184 −0.2918 0.054*
H42B 0.3248 0.6525 −0.3414 0.054*
H42C 0.1920 0.6618 −0.3191 0.054*
C12 0.6074 (3) 0.47235 (7) 0.2686 (3) 0.0424 (6)
H12 0.6332 0.4506 0.2316 0.051*
C35 1.2110 (2) 0.73985 (9) 0.3151 (3) 0.0476 (6)
H35A 1.2694 0.7508 0.4025 0.071*
H35B 1.1987 0.7596 0.2478 0.071*
H35C 1.2555 0.7163 0.3013 0.071*
C7 1.1342 (3) 0.60951 (8) 0.1673 (2) 0.0437 (6)
H7A 1.1357 0.6382 0.1581 0.066*
H7B 1.0944 0.5973 0.0799 0.066*
H7C 1.2289 0.5998 0.2194 0.066*
C21 1.2034 (3) 0.51936 (9) 0.9912 (2) 0.0580 (8)
H21A 1.2733 0.5400 1.0327 0.087*
H21B 1.2477 0.4957 0.9779 0.087*
H21C 1.1605 0.5129 1.0483 0.087*
C14 0.3882 (3) 0.43554 (8) 0.2267 (3) 0.0555 (7)
H14A 0.4229 0.4150 0.2944 0.083*
H14B 0.3873 0.4255 0.1456 0.083*
H14C 0.2940 0.4429 0.2095 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.02209 (8) 0.02094 (8) 0.02489 (8) 0.00118 (5) 0.01282 (6) 0.00266 (5)
P1 0.0233 (2) 0.0191 (2) 0.0242 (2) 0.00116 (17) 0.01238 (19) 0.00274 (18)
P2 0.0196 (2) 0.0189 (2) 0.0222 (2) 0.00115 (17) 0.01191 (18) 0.00183 (17)
O2 0.0480 (10) 0.0589 (11) 0.0329 (8) 0.0042 (8) 0.0229 (8) −0.0024 (8)
C29 0.0199 (9) 0.0200 (9) 0.0224 (9) −0.0014 (7) 0.0118 (7) −0.0016 (7)
C2 0.0266 (10) 0.0256 (9) 0.0213 (9) 0.0021 (8) 0.0111 (8) 0.0004 (7)
C25 0.0188 (9) 0.0212 (9) 0.0323 (10) −0.0035 (7) 0.0132 (8) −0.0059 (8)
C1 0.0275 (10) 0.0165 (8) 0.0245 (9) −0.0008 (7) 0.0138 (8) 0.0010 (7)
C36 0.0220 (9) 0.0174 (8) 0.0257 (9) 0.0015 (7) 0.0127 (7) 0.0003 (7)
C26 0.0240 (9) 0.0279 (10) 0.0244 (9) −0.0057 (8) 0.0136 (8) −0.0070 (8)
C22 0.0191 (8) 0.0200 (8) 0.0246 (9) −0.0016 (7) 0.0122 (7) −0.0004 (7)
C37 0.0200 (9) 0.0309 (10) 0.0266 (9) 0.0010 (8) 0.0122 (8) 0.0008 (8)
C27 0.0208 (9) 0.0252 (9) 0.0217 (9) −0.0007 (7) 0.0090 (7) 0.0013 (7)
C15 0.0266 (9) 0.0226 (9) 0.0242 (9) 0.0033 (7) 0.0159 (8) 0.0027 (7)
C23 0.0232 (9) 0.0227 (9) 0.0218 (9) 0.0002 (7) 0.0110 (7) −0.0012 (7)
C3 0.0244 (10) 0.0321 (10) 0.0294 (10) −0.0012 (8) 0.0135 (8) −0.0037 (8)
C8 0.0257 (10) 0.0237 (9) 0.0247 (9) −0.0002 (8) 0.0092 (8) 0.0050 (8)
C24 0.0215 (9) 0.0219 (9) 0.0268 (9) 0.0006 (7) 0.0080 (8) 0.0012 (8)
C40 0.0211 (9) 0.0313 (10) 0.0376 (11) −0.0043 (8) 0.0146 (8) −0.0090 (9)
C39 0.0263 (10) 0.0223 (9) 0.0271 (10) 0.0007 (8) 0.0109 (8) 0.0000 (8)
C30 0.0240 (9) 0.0236 (9) 0.0221 (9) −0.0014 (7) 0.0097 (7) 0.0007 (7)
C34 0.0275 (10) 0.0262 (10) 0.0335 (10) 0.0028 (8) 0.0158 (9) 0.0065 (8)
O1 0.0377 (11) 0.115 (2) 0.0844 (16) −0.0280 (11) 0.0367 (11) −0.0450 (14)
C38 0.0269 (10) 0.0365 (11) 0.0251 (9) 0.0011 (8) 0.0161 (8) −0.0007 (8)
C5 0.0337 (11) 0.0295 (10) 0.0233 (9) 0.0013 (8) 0.0129 (8) 0.0045 (8)
C31 0.0196 (9) 0.0351 (11) 0.0270 (10) −0.0014 (8) 0.0072 (8) −0.0012 (8)
C4 0.0323 (10) 0.0267 (10) 0.0288 (10) −0.0008 (8) 0.0181 (9) −0.0005 (8)
C16 0.0308 (10) 0.0232 (10) 0.0322 (10) 0.0007 (8) 0.0136 (9) 0.0020 (8)
C9 0.0288 (10) 0.0321 (11) 0.0273 (10) −0.0008 (8) 0.0122 (8) 0.0022 (8)
C20 0.0424 (12) 0.0231 (9) 0.0270 (10) 0.0003 (9) 0.0184 (9) 0.0008 (8)
C41 0.0257 (10) 0.0333 (11) 0.0346 (11) −0.0049 (8) 0.0204 (9) −0.0093 (9)
N1 0.0489 (14) 0.0755 (16) 0.0647 (15) 0.0005 (12) 0.0433 (13) −0.0034 (13)
C6 0.0251 (10) 0.0264 (10) 0.0278 (10) 0.0028 (8) 0.0105 (8) 0.0047 (8)
C32 0.0242 (10) 0.0360 (11) 0.0248 (9) −0.0096 (8) 0.0131 (8) −0.0076 (8)
C33 0.0334 (11) 0.0292 (10) 0.0325 (10) −0.0077 (8) 0.0190 (9) 0.0020 (8)
C28 0.0311 (11) 0.0299 (11) 0.0424 (12) 0.0019 (9) 0.0178 (10) −0.0084 (9)
C19 0.0447 (13) 0.0350 (11) 0.0239 (10) −0.0020 (10) 0.0137 (9) −0.0046 (9)
C17 0.0446 (13) 0.0241 (10) 0.0355 (11) 0.0077 (9) 0.0177 (10) 0.0082 (9)
C18 0.0436 (13) 0.0370 (12) 0.0246 (10) 0.0112 (10) 0.0148 (9) 0.0044 (9)
C10 0.0299 (11) 0.0410 (12) 0.0326 (11) −0.0093 (9) 0.0113 (9) 0.0036 (9)
C13 0.0369 (12) 0.0287 (11) 0.0441 (13) −0.0004 (9) 0.0191 (10) −0.0040 (9)
C11 0.0394 (12) 0.0309 (11) 0.0314 (11) −0.0084 (9) 0.0050 (9) 0.0056 (9)
C42 0.0310 (11) 0.0465 (13) 0.0287 (11) −0.0027 (10) 0.0113 (9) −0.0041 (9)
C12 0.0467 (14) 0.0279 (11) 0.0485 (14) −0.0021 (10) 0.0178 (11) −0.0062 (10)
C35 0.0282 (12) 0.0679 (17) 0.0473 (14) −0.0169 (11) 0.0176 (11) −0.0008 (12)
C7 0.0408 (13) 0.0611 (16) 0.0385 (12) −0.0009 (12) 0.0261 (11) 0.0052 (11)
C21 0.0705 (19) 0.0537 (16) 0.0314 (13) 0.0160 (14) 0.0069 (13) 0.0056 (12)
C14 0.0536 (16) 0.0370 (13) 0.0582 (16) −0.0176 (12) 0.0096 (13) −0.0002 (12)

Geometric parameters (Å, º)

Ag1—O1 2.4125 (19) C38—H38 0.9500
Ag1—O2 2.4227 (16) C5—C6 1.384 (3)
Ag1—P1 2.4287 (5) C5—C4 1.394 (3)
Ag1—P2 2.4570 (5) C5—H5 0.9500
P1—C8 1.819 (2) C31—C32 1.388 (3)
P1—C15 1.8234 (19) C31—H31 0.9500
P1—C1 1.8282 (19) C4—C7 1.510 (3)
P2—C29 1.8182 (18) C16—C17 1.382 (3)
P2—C36 1.8209 (19) C16—H16 0.9500
P2—C22 1.8269 (19) C9—C10 1.387 (3)
O1—N1 1.249 (3) C9—H9 0.9500
O2—N1 1.233 (3) C20—C19 1.386 (3)
C29—C30 1.389 (3) C20—H20 0.9500
C29—C34 1.397 (3) C41—H41 0.9500
C2—C3 1.392 (3) C6—H6 0.9500
C2—C1 1.392 (3) C32—C33 1.392 (3)
C2—H2 0.9500 C32—C35 1.503 (3)
C25—C26 1.388 (3) C33—H33 0.9500
C25—C24 1.394 (3) C28—H28A 0.9800
C25—C28 1.507 (3) C28—H28B 0.9800
C1—C6 1.397 (3) C28—H28C 0.9800
C36—C37 1.392 (3) C19—C18 1.386 (3)
C36—C41 1.392 (3) C19—H19 0.9500
C26—C27 1.386 (3) C17—C18 1.390 (3)
C26—H26 0.9500 C17—H17 0.9500
C22—C23 1.393 (3) C18—C21 1.510 (3)
C22—C27 1.395 (3) C10—C11 1.381 (3)
C37—C38 1.387 (3) C10—H10 0.9500
C37—H37 0.9500 C13—C12 1.386 (3)
C27—H27 0.9500 C13—H13 0.9500
C15—C16 1.390 (3) C11—C12 1.391 (4)
C15—C20 1.394 (3) C11—C14 1.513 (3)
C23—C24 1.390 (3) C42—H42A 0.9800
C23—H23 0.9500 C42—H42B 0.9800
C3—C4 1.385 (3) C42—H42C 0.9800
C3—H3 0.9500 C12—H12 0.9500
C8—C9 1.387 (3) C35—H35A 0.9800
C8—C13 1.394 (3) C35—H35B 0.9800
C24—H24 0.9500 C35—H35C 0.9800
C40—C41 1.382 (3) C7—H7A 0.9800
C40—C39 1.387 (3) C7—H7B 0.9800
C40—H40 0.9500 C7—H7C 0.9800
C39—C38 1.388 (3) C21—H21A 0.9800
C39—C42 1.506 (3) C21—H21B 0.9800
C30—C31 1.387 (3) C21—H21C 0.9800
C30—H30 0.9500 C14—H14A 0.9800
C34—C33 1.383 (3) C14—H14B 0.9800
C34—H34 0.9500 C14—H14C 0.9800
O1—N1 1.249 (3)
O1—Ag1—O2 50.80 (7) C3—C4—C5 118.19 (18)
O1—Ag1—P1 116.26 (6) C3—C4—C7 120.69 (19)
O2—Ag1—P1 125.62 (4) C5—C4—C7 121.11 (19)
O1—Ag1—P2 107.68 (7) C17—C16—C15 120.6 (2)
O2—Ag1—P2 107.83 (4) C17—C16—H16 119.7
P1—Ag1—P2 124.597 (16) C15—C16—H16 119.7
C8—P1—C15 104.32 (9) C8—C9—C10 120.4 (2)
C8—P1—C1 105.61 (9) C8—C9—H9 119.8
C15—P1—C1 103.18 (9) C10—C9—H9 119.8
C8—P1—Ag1 113.22 (7) C19—C20—C15 120.78 (19)
C15—P1—Ag1 119.24 (6) C19—C20—H20 119.6
C1—P1—Ag1 110.03 (6) C15—C20—H20 119.6
C29—P2—C36 104.60 (8) C40—C41—C36 120.68 (18)
C29—P2—C22 105.10 (8) C40—C41—H41 119.7
C36—P2—C22 103.35 (8) C36—C41—H41 119.7
C29—P2—Ag1 116.47 (6) O2—N1—O1 113.4 (2)
C36—P2—Ag1 109.17 (6) C5—C6—C1 120.37 (19)
C22—P2—Ag1 116.74 (6) C5—C6—H6 119.8
N1—O2—Ag1 97.86 (14) C1—C6—H6 119.8
C30—C29—C34 119.00 (17) C31—C32—C33 118.79 (18)
C30—C29—P2 118.98 (14) C31—C32—C35 120.3 (2)
C34—C29—P2 122.00 (14) C33—C32—C35 120.9 (2)
C3—C2—C1 120.60 (18) C34—C33—C32 120.79 (19)
C3—C2—H2 119.7 C34—C33—H33 119.6
C1—C2—H2 119.7 C32—C33—H33 119.6
C26—C25—C24 117.94 (17) C25—C28—H28A 109.5
C26—C25—C28 120.83 (18) C25—C28—H28B 109.5
C24—C25—C28 121.15 (18) H28A—C28—H28B 109.5
C2—C1—C6 118.49 (17) C25—C28—H28C 109.5
C2—C1—P1 123.02 (14) H28A—C28—H28C 109.5
C6—C1—P1 117.95 (15) H28B—C28—H28C 109.5
C37—C36—C41 118.24 (17) C20—C19—C18 121.0 (2)
C37—C36—P2 123.18 (14) C20—C19—H19 119.5
C41—C36—P2 118.52 (14) C18—C19—H19 119.5
C27—C26—C25 121.38 (17) C16—C17—C18 121.4 (2)
C27—C26—H26 119.3 C16—C17—H17 119.3
C25—C26—H26 119.3 C18—C17—H17 119.3
C23—C22—C27 118.79 (17) C19—C18—C17 117.9 (2)
C23—C22—P2 123.59 (14) C19—C18—C21 121.6 (2)
C27—C22—P2 117.61 (14) C17—C18—C21 120.5 (2)
C38—C37—C36 120.51 (18) C11—C10—C9 121.4 (2)
C38—C37—H37 119.7 C11—C10—H10 119.3
C36—C37—H37 119.7 C9—C10—H10 119.3
C26—C27—C22 120.37 (17) C12—C13—C8 120.2 (2)
C26—C27—H27 119.8 C12—C13—H13 119.9
C22—C27—H27 119.8 C8—C13—H13 119.9
C16—C15—C20 118.18 (18) C10—C11—C12 117.9 (2)
C16—C15—P1 123.38 (15) C10—C11—C14 121.1 (2)
C20—C15—P1 118.37 (14) C12—C11—C14 120.9 (2)
C24—C23—C22 120.16 (17) C39—C42—H42A 109.5
C24—C23—H23 119.9 C39—C42—H42B 109.5
C22—C23—H23 119.9 H42A—C42—H42B 109.5
C4—C3—C2 121.01 (19) C39—C42—H42C 109.5
C4—C3—H3 119.5 H42A—C42—H42C 109.5
C2—C3—H3 119.5 H42B—C42—H42C 109.5
C9—C8—C13 118.70 (19) C13—C12—C11 121.3 (2)
C9—C8—P1 118.16 (15) C13—C12—H12 119.4
C13—C8—P1 123.03 (16) C11—C12—H12 119.4
C23—C24—C25 121.30 (18) C32—C35—H35A 109.5
C23—C24—H24 119.4 C32—C35—H35B 109.5
C25—C24—H24 119.4 H35A—C35—H35B 109.5
C41—C40—C39 121.37 (18) C32—C35—H35C 109.5
C41—C40—H40 119.3 H35A—C35—H35C 109.5
C39—C40—H40 119.3 H35B—C35—H35C 109.5
C40—C39—C38 117.86 (18) C4—C7—H7A 109.5
C40—C39—C42 120.99 (19) C4—C7—H7B 109.5
C38—C39—C42 121.14 (18) H7A—C7—H7B 109.5
C31—C30—C29 120.40 (18) C4—C7—H7C 109.5
C31—C30—H30 119.8 H7A—C7—H7C 109.5
C29—C30—H30 119.8 H7B—C7—H7C 109.5
C33—C34—C29 120.26 (19) C18—C21—H21A 109.5
C33—C34—H34 119.9 C18—C21—H21B 109.5
C29—C34—H34 119.9 H21A—C21—H21B 109.5
N1—O1—Ag1 97.87 (15) C18—C21—H21C 109.5
C37—C38—C39 121.31 (18) H21A—C21—H21C 109.5
C37—C38—H38 119.3 H21B—C21—H21C 109.5
C39—C38—H38 119.3 C11—C14—H14A 109.5
C6—C5—C4 121.28 (18) C11—C14—H14B 109.5
C6—C5—H5 119.4 H14A—C14—H14B 109.5
C4—C5—H5 119.4 C11—C14—H14C 109.5
C30—C31—C32 120.75 (19) H14A—C14—H14C 109.5
C30—C31—H31 119.6 H14B—C14—H14C 109.5
C32—C31—H31 119.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C28—H28B···O2i 0.98 2.34 3.292 (3) 165
C42—H42B···N1ii 0.98 2.52 3.491 (4) 170

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, y, z−1.

Funding Statement

Funding for this research was provided by: National Research Foundation (grant No. 138280).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.
  3. Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443–451.
  4. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.
  5. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  6. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622011488/wm4174sup1.cif

x-07-x221148-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622011488/wm4174Isup2.hkl

x-07-x221148-Isup2.hkl (582.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622011488/wm4174Isup3.cdx

CCDC reference: 2223249

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES