Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 1;79(Pt 1):38–43. doi: 10.1107/S2056989022011884

Crystal structure of a new europium(III) compound based on thio­phene­acrylic acid

Suwadee Jiajaroen a, Raul Diaz-Torres a, Sakchai Laksee b, Kittipong Chainok a,*
Editor: V Jancikc
PMCID: PMC9815134  PMID: 36628366

The crystallization and supra­molecular structure of a new europium(III) compound based on thio­phene­acrylic acid is reported.

Keywords: crystal structure, europium(III), coordination compound, hydrogen bonds, lanthanide

Abstract

A europium(III) coordination compound based on thio­phene­acrylic acid (Htpa), tri­aqua­tris­[3-(thio­phen-2-yl)prop-2-enoato-κ2 O,O′]europium(III)–3-(thio­phen-2-yl)prop-2-enoic acid (1/3), [Eu(C7H5O2S)3(H2O)3]·3C7H6O2S or [Eu(tpa)3(H2O)3]·3(Htpa) (1), where tpa is the conjugate base of Htpa, has been synthesized and structurally characterized. Compound 1 crystallizes in the trigonal space group R3. The structure of 1 consists of a discrete mol­ecular complex [Eu(tpa)3(H2O)3] species and the Htpa mol­ecule. In the crystal, the two components are involved in O—H⋯O [ring motif R 2 2(8)] and C—H⋯π hydrogen-bonding inter­actions. These inter­actions were further investigated by Hirshfeld surface analysis, which showed high contributions of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts to the total Hirshfeld surfaces.

1. Chemical context

In crystal engineering, non-covalent inter­actions are used as a tool in the design and synthesis of functional crystalline materials with predictable structures and desirable physical properties (Desiraju, 2013; Mirzaei et al., 2014). Despite the significant number of structures known, this still remains a challenging task, and more especially for the lanthanide-based systems. This is due to the high and variable coordination number exhibited by the 4f metals and their small energy difference among various coordination geometries, which can give rise to the appearance of multiple-connected framework structures with a variety of topologies (Sairenji et al., 2016). In recent years, the design and synthesis of porous materials combining crystal engineering and coordination chemistry have attracted great attention because of their appealing structures and their potential applications in catalysis, ion-exchange, mol­ecular adsorption and chemical sensing (Cawthray et al., 2015; Pan et al., 2021; Theppitak et al., 2021; Jiajaroen et al., 2022). However, the successful construction of such materials comes only from understanding and controlling the relationship between the geometry frameworks and the involved inter­molecular inter­actions. In this work, we report the synthesis and supra­molecular structure of a new europium(III) compound based on thio­phene­acrylate (tpa), [Eu(tpa)3(H2O)3]·3(Htpa)] (1). The inter­molecular inter­actions involved in the formation of the supra­molecular structure of the title compound 1 are discussed in detail. In addition, a Hirshfeld surface analysis was performed to investigate the inter­molecular inter­actions. 1.

2. Structural commentary

Single crystal X-ray structural analysis reveals that the title compound 1 crystallizes in the trigonal system with space group R3. The Flack parameter (Parsons et al., 2013) of −0.025 (2) demonstrates the enanti­omeric purity of the tested single crystal. The asymmetric unit consists of one crystallographically independent EuIII ion, one tpa ligand, one Htpa mol­ecule and one coordinated water mol­ecule. As shown in Fig. 1, the structure of 1 consists of a discrete mol­ecular complex [Eu(tpa)3(H2O)3] and the Htpa mol­ecule. In the discrete complex species, the deprotonated carb­oxy­lic group of tpa ligand adopts a μ 12 O,O′-chelating coordination mode to the EuIII ion. The central EuIII ion is nine-coordinated with six oxygen atoms from three different tpa ligands and three oxygen atoms from coordinated water mol­ecules. With the assistance of the SHAPE program (Llunell et al., 2013), the coordination geometry around the EuIII center in 1 could be described as a distorted spherical tricapped trigonal prism [TCTPR-9; shape, D 3h symmetry; distortion (τ), 2.761], wherein a trigonal–prismatic geometry is formed by the vertical pairs: O1⋯O3′, O1′⋯O3′′, and O1′′··O3, while the O2, O2′, and O3′′ atoms act as caps as shown in Fig. 2. The Eu—O bond lengths range from 2.400 (2) to 2.511 (2) Å, and the bond angles range from 51.62 (5) to 157.80 (6)°, which are in the normal ranges of those observed in the reported europium(III) compounds (Behrsing et al., 2016; Sun et al., 2016; Alexander et al., 2019). In addition, the [Eu(tpa)3(H2O)3] complex inter­acts with the Htpa mol­ecule through the formation of an Inline graphic (8) ring motif in terms of graph-set notation (Etter et al., 1990).

Figure 1.

Figure 1

Mol­ecular structure of the title compound 1. Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms were omitted for clarity. Symmetry codes: (i) −x + y, −x + 1, z; (ii) −y + 1, x − y + 1, z.

Figure 2.

Figure 2

View of the distorted spherical tricapped trigonal prism (TCTPR-9) of the central EuIII ion in the title compound 1. Symmetry codes: (i) −x + y, −x + 1, z; (ii) −y + 1, x − y + 1, z.

3. Supra­molecular features

As depicted in Fig. 3, the discrete complex [Eu(tpa)3(H2O)3] forms a supra­molecular chain extending parallel to the c axis with its symmetry-related mol­ecules through classical O—H⋯O hydrogen-bonding inter­actions (Table 1) between the coordinated water mol­ecules and the carboxyl­ate groups of tpa ligands, which can be described by the Inline graphic (8) graph-set motif. The chains are further linked via C—H⋯π inter­actions involving the thio­phene moieties of adjacent tpa ligands [C7—H7⋯Cg distance = 3.869 (3); symmetry code = − Inline graphic  + y − x, −4/3 − x, − Inline graphic  + z] . As a result (illustrated in Fig. 4), a three-dimensional hydrogen-bonded network is created with large channels running along the crystallographic c-axis direction. The Htpa mol­ecules are located in the cavities of the network, and are hydrogen bonded to both the tpa and water mol­ecules through inter­molecular O—H⋯O inter­actions with the Inline graphic (8) ring motif. It should be noted that no evidence for π–π stacking inter­actions of neighboring aromatic thio­phene rings is observed.

Figure 3.

Figure 3

The one-dimensional hydrogen-bonded chain in the title compound 1 running parallel to the c axis.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the S1/C4–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5 0.82 (1) 1.94 (2) 2.729 (3) 162 (3)
O3—H3B⋯O1i 0.82 (1) 1.89 (2) 2.693 (2) 165 (3)
O4—H4⋯O2 0.84 (1) 1.78 (2) 2.614 (3) 177 (4)
C7—H7⋯Cg1ii 0.93 3.10 3.869 (3) 141

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 4.

Figure 4

Crystal packing diagram of the title compound 1, showing the three-dimensional hydrogen-bonded networks of the complex [Eu(tpa)3(H2O)3] species with the Htpa mol­ecules in space-filling representation.

4. Hirshfeld surface analysis

The Hirshfeld surfaces and two-dimensional fingerprint plots was generated using CrystalExplorer 21.5 (Spackman et al., 2021) in order to qu­antify and visualize the inter­molecular inter­actions in the crystal structure of the title compound 1. As can be seen in Fig. 5, the Hirshfeld surfaces mapped over d norm shows the most intense red spots around the carboxyl­ate groups and water mol­ecules resulting from the O—H⋯O hydrogen-bonding inter­actions between the complex [Eu(tpa)3(H2O)3] species and the Htpa mol­ecules. Furthermore, analysis of the two-dimensional fingerprint plots, Fig. 6, reveals that H⋯H (32.1%) contacts, which represent van der Waals inter­actions, are the major contributors toward the Hirshfeld surface. Meanwhile, H⋯C/C⋯H (24.9%, i.e. C—H⋯π) and H⋯O/O⋯H (22.0%, i.e. O—H⋯O) contacts also make a significant contribution. The H⋯S/S⋯H (14.8%), C⋯O/O⋯C (3.1%) and C⋯S/S⋯C (1.6%) contacts make a small contribution to the entire Hirshfeld surface. Therefore, it can be concluded that O—H⋯O and C—H⋯π hydrogen bonds as well as H⋯H and H⋯S van der Waals contacts contribute significantly to the overall stability of the packing arrangement of the crystal structure of the title compound 1.

Figure 5.

Figure 5

Hirshfeld surface mapped over d norm of the title compound 1, highlighting the O—H⋯O inter­actions.

Figure 6.

Figure 6

Two-dimensional fingerprint plots of the title compound 1, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯S/S⋯H, (f) O⋯C/C⋯O, (g) S⋯C/C⋯S, (h) C⋯C, (i) S⋯S, and (j) O⋯O contacts [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Infrared spectroscopy

The infrared (IR) spectrum of the title compound 1 was recorded on a Perkin Elmer model Spectrum 100 spectrometer using the attenuated total reflectance (ATR) mode in the range of 650–4000 cm−1. As can be seen in Fig. 7, the broad absorption bands in the region 3020–3400 cm−1 are assigned to the stretching vibrations of the hydroxyl (O—H) groups. The band at 2978 cm−1 corresponds to the C—H stretching vibrations. The strong band at 1670 cm−1 indicates the existence of the carb­oxy­lic groups while the strong bands appearing in the region 1305–1610 cm−1 can be ascribed to the asymmetric and symmetric stretching vibrations of the carboxyl­ate groups. The bands at 705 and 750 cm−1 can be assigned to C—S stretching vibrations.

Figure 7.

Figure 7

IR spectrum of the title compound 1.

6. Thermal stability

The thermal stability of the title compound 1 was studied by thermogravimetric analysis (TGA). The sample was studied on TGA55 TA Instrument from room temperature to 1073 K under a N2 atmosphere (heating rate of 10oC min−1). As shown in Fig. 8, the TGA curve of 1 displays two steps of weight loss. The first weight loss of 52.1% from 325–500 K can be ascribed to the removal of water and Htpa mol­ecules (calculated 50.7%). Then the structure begins to collapse at around 630 K.

Figure 8.

Figure 8

TGA curve of the title compound 1.

7. Database survey

A ConQuest search for the metal complexes bearing the thio­phene­acrylate ligand in the Cambridge Structural Database (CSD version 5.42, September 2021 update; Bruno et al., 2002; Groom et al., 2016) resulted in ten hits, namely, the complexes with the MoV ion (GAKPUF, Vrdoljak et al., 2010; DAMRUG, Alberding et al., 2011), SbV ion (GIFPET, GIFPIX, Sarwar et al., 2018), SnIV ion (NUJGII, Danish et al., 1996; RIWBII, Parvez et al., 1997; TEDTIF, TEDTOL, Danish et al., 1995), GaIII ion (YUWCAV, Uhl et al., 2010), and PdII ion (ZIJNAK, Vasseur et al., 2018). In these complexes, the tpa ligand displays four distinct coordination modes with the carboxyl­ate anions being monodentate μ 11 O (GIFPET, GIFPIX), bidentate chelating μ 12 O,O′ (RIWBII, ZIJNAK, similar to that found in the title compound 1) and μ 2OO (DAMRUG, GAKPUF, NUJGII, YUWCAV), or bidentate bridging μ 2OO′ (TEDTIF, TEDTOL). In addition, 69 hits for lanthanide complexes with the [Ln(COO)3(H2O)3] coord­ination sphere similar to that in the title compound 1 were found. Twelve of them viz. CSD refcodes HIVCEW, HIVCIA, HIVCOG, HIVCUM, HIVDAT (Marques et al., 2013), LOMNAE (Tsaryuk et al., 2014), VUSGIZ, VUSGOF, VUSGUL (Zeng & Pan, 1992), XILLUA (Kameshwar et al., 2007a ), XILNUC (Kameshwar et al., 2007b ), and YENHOO (Rzaczynska & Belskii, 1994) crystallized in the trigonal system with space group R3, and the central Ln 3+ cation exhibiting a nine-coordinated tricapped trigonal–prismatic (TTP) geometry.

8. Synthesis and crystallization

All reagents were purchased as analytical grade and used without further purification. The Htpa ligand (30.8 mg, 0.2 mmol) was dissolved in an iso­propanol solution (2 ml) and was then added dropwise to an aqueous solution (5 ml) of Eu(NO3)3·6H2O (44.61 mg, 0.1 mmol). The mixture was stirred for 1 h at room temperature and then filtered to remove any undissolved solid. The solution was slowly evaporated at room temperature. Colorless block-shaped crystals of 1 were obtained in 20% yield (8.9 mg) based on Eu3+ source.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbon atoms were refined in the riding-model approximation with C—H = 0.93 Å and U iso(H) = 1.2U eq(C). Hydrogen atoms bounded to oxygen atoms of coordinated water (O3) and carb­oxy­lic acid (O4) were located from difference-Fourier maps but were refined with distance restraints of O—H = 0.84 ± 0.01 Å and with U iso(H) = 1.5U eq(O). The thio­phene ring of the Htpa mol­ecule was found to be disordered over two positions and the site occupancies of the disordered fragments were refined to 0.778 (4) and 0.222 (4). The restraints of the SADI, RIGU and FLAT commands were applied to accommodate the disordered thio­phene ring.

Table 2. Experimental details.

Crystal data
Chemical formula [Eu(C7H5O2S)3(H2O)3]·3C7H6O2S
M r 1128.05
Crystal system, space group Trigonal, R3
Temperature (K) 296
a, c (Å) 26.5369 (6), 5.9386 (1)
V3) 3621.72 (17)
Z 3
Radiation type Mo Kα
μ (mm−1) 1.62
Crystal size (mm) 0.28 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 54319, 4921, 4921
R int 0.036
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.015, 0.032, 1.07
No. of reflections 4921
No. of parameters 252
No. of restraints 88
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.25
Absolute structure Flack x determined using 2459 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.024 (2)

Computer programs: APEX4 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022011884/jq2020sup1.cif

e-79-00038-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011884/jq2020Isup2.hkl

e-79-00038-Isup2.hkl (392.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022011884/jq2020Isup3.cdx

CCDC reference: 2226237

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was partially supported by the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa).

supplementary crystallographic information

Crystal data

[Eu(C7H5O2S)3(H2O)3]·3C7H6O2S Dx = 1.552 Mg m3
Mr = 1128.05 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3 Cell parameters from 9889 reflections
a = 26.5369 (6) Å θ = 2.7–30.4°
c = 5.9386 (1) Å µ = 1.62 mm1
V = 3621.72 (17) Å3 T = 296 K
Z = 3 Block, colourless
F(000) = 1710 0.28 × 0.22 × 0.12 mm

Data collection

Bruker D8 QUEST CMOS diffractometer 4921 independent reflections
Radiation source: sealed x-ray tube, Mo 4921 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 7.39 pixels mm-1 θmax = 30.6°, θmin = 2.7°
φ and ω scans h = −37→37
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −37→37
Tmin = 0.690, Tmax = 0.746 l = −8→8
54319 measured reflections

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0145P)2 + 0.9645P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015 (Δ/σ)max = 0.001
wR(F2) = 0.032 Δρmax = 0.21 e Å3
S = 1.07 Δρmin = −0.25 e Å3
4921 reflections Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
252 parameters Extinction coefficient: 0.00059 (8)
88 restraints Absolute structure: Flack x determined using 2459 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixed Absolute structure parameter: −0.024 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Eu1 0.333333 0.666667 0.48411 (2) 0.02639 (5)
S1 0.36988 (4) 0.42204 (3) 0.93748 (13) 0.05608 (18)
S2 0.07634 (8) 0.25613 (8) 0.0719 (3) 0.0619 (4) 0.778 (4)
S2A 0.0659 (6) 0.3006 (7) −0.330 (2) 0.075 (2) 0.222 (4)
O1 0.36847 (8) 0.62424 (7) 0.7756 (3) 0.0377 (3)
O2 0.30981 (8) 0.56296 (7) 0.5258 (3) 0.0445 (4)
O3 0.26557 (8) 0.60435 (7) 0.2042 (3) 0.0391 (3)
H3A 0.2574 (13) 0.5703 (7) 0.197 (5) 0.031 (7)*
H3B 0.2612 (13) 0.6169 (12) 0.083 (3) 0.051 (8)*
O4 0.24635 (12) 0.45449 (9) 0.3997 (5) 0.0819 (8)
H4 0.2673 (14) 0.4894 (8) 0.436 (6) 0.077 (11)*
O5 0.22298 (10) 0.48956 (8) 0.1065 (4) 0.0591 (5)
C1 0.34166 (10) 0.57296 (10) 0.6978 (4) 0.0327 (4)
C2 0.34785 (11) 0.52549 (10) 0.7943 (4) 0.0405 (5)
H2 0.330251 0.489999 0.719057 0.049*
C3 0.37665 (11) 0.52981 (11) 0.9802 (4) 0.0403 (5)
H3 0.391555 0.564646 1.059115 0.048*
C4 0.38750 (10) 0.48571 (10) 1.0746 (4) 0.0395 (5)
C5 0.41575 (12) 0.48962 (11) 1.2707 (4) 0.0477 (6)
H5 0.428911 0.520927 1.369331 0.057*
C6 0.42297 (13) 0.44089 (13) 1.3086 (5) 0.0548 (7)
H6 0.441164 0.436683 1.435195 0.066*
C7 0.40079 (14) 0.40149 (13) 1.1425 (5) 0.0541 (7)
H7 0.402122 0.367138 1.139609 0.065*
C8 0.21768 (11) 0.44876 (11) 0.2140 (5) 0.0476 (6)
C9 0.17650 (12) 0.38762 (11) 0.1581 (5) 0.0513 (6)
H9 0.174401 0.358161 0.249464 0.062*
C10 0.14254 (11) 0.37414 (12) −0.0201 (5) 0.0496 (6)
H10 0.148027 0.405028 −0.110983 0.060* 0.778 (4)
H10A 0.146668 0.403635 −0.116266 0.060* 0.222 (4)
C11 0.0978 (3) 0.3170 (2) −0.0906 (16) 0.050 (2) 0.778 (4)
C11A 0.0989 (6) 0.3144 (9) −0.070 (5) 0.051 (7) 0.222 (4)
C12 0.0688 (7) 0.3046 (7) −0.282 (2) 0.080 (3) 0.778 (4)
H12 0.072978 0.332514 −0.386972 0.097* 0.778 (4)
C12A 0.0791 (12) 0.2676 (11) 0.049 (5) 0.085 (11) 0.222 (4)
H12A 0.092117 0.267347 0.194105 0.102* 0.222 (4)
C13 0.0297 (3) 0.2428 (3) −0.3118 (14) 0.080 (2) 0.778 (4)
H13 0.007440 0.226422 −0.440497 0.095* 0.778 (4)
C13A 0.0345 (12) 0.2148 (11) −0.063 (4) 0.063 (6) 0.222 (4)
H13A 0.016090 0.177634 −0.001909 0.076* 0.222 (4)
C14 0.0292 (4) 0.2116 (4) −0.1301 (15) 0.073 (2) 0.778 (4)
H14 0.006362 0.171352 −0.117203 0.087* 0.778 (4)
C14A 0.0245 (10) 0.2287 (9) −0.269 (5) 0.075 (8) 0.222 (4)
H14A −0.002560 0.201670 −0.368413 0.090* 0.222 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Eu1 0.02863 (5) 0.02863 (5) 0.02191 (6) 0.01432 (3) 0.000 0.000
S1 0.0759 (5) 0.0441 (3) 0.0540 (4) 0.0343 (3) −0.0218 (3) −0.0081 (3)
S2 0.0656 (9) 0.0470 (7) 0.0633 (8) 0.0208 (6) −0.0086 (6) −0.0082 (5)
S2A 0.067 (4) 0.078 (4) 0.069 (5) 0.029 (3) −0.032 (3) −0.025 (3)
O1 0.0486 (10) 0.0343 (8) 0.0331 (8) 0.0229 (7) −0.0127 (7) −0.0072 (6)
O2 0.0589 (10) 0.0349 (8) 0.0390 (8) 0.0228 (8) −0.0222 (7) −0.0056 (6)
O3 0.0454 (9) 0.0355 (9) 0.0316 (8) 0.0168 (8) −0.0122 (7) 0.0017 (7)
O4 0.0987 (18) 0.0395 (11) 0.0989 (19) 0.0282 (12) −0.0581 (15) −0.0183 (11)
O5 0.0659 (13) 0.0417 (10) 0.0584 (12) 0.0184 (9) −0.0173 (10) −0.0091 (9)
C1 0.0378 (11) 0.0333 (10) 0.0296 (10) 0.0197 (9) −0.0047 (8) −0.0011 (8)
C2 0.0485 (13) 0.0355 (11) 0.0410 (11) 0.0236 (10) −0.0105 (10) −0.0018 (9)
C3 0.0484 (13) 0.0383 (11) 0.0400 (12) 0.0260 (10) −0.0104 (10) −0.0042 (9)
C4 0.0435 (12) 0.0381 (11) 0.0391 (11) 0.0220 (10) −0.0072 (9) 0.0003 (9)
C5 0.0566 (15) 0.0428 (13) 0.0455 (13) 0.0264 (12) −0.0154 (11) −0.0030 (10)
C6 0.0565 (16) 0.0552 (15) 0.0552 (15) 0.0298 (13) −0.0139 (12) 0.0118 (12)
C7 0.0628 (17) 0.0456 (14) 0.0621 (17) 0.0333 (13) −0.0067 (14) 0.0098 (12)
C8 0.0432 (13) 0.0411 (12) 0.0607 (15) 0.0229 (11) −0.0098 (11) −0.0137 (11)
C9 0.0528 (15) 0.0400 (13) 0.0625 (17) 0.0243 (12) −0.0142 (12) −0.0133 (11)
C10 0.0483 (14) 0.0447 (13) 0.0571 (15) 0.0242 (11) −0.0070 (11) −0.0108 (11)
C11 0.049 (4) 0.046 (2) 0.054 (3) 0.022 (2) −0.009 (3) −0.009 (2)
C11A 0.025 (9) 0.058 (6) 0.069 (15) 0.019 (6) −0.010 (8) −0.028 (8)
C12 0.073 (5) 0.065 (4) 0.069 (5) 0.008 (4) −0.025 (4) −0.012 (4)
C12A 0.090 (17) 0.054 (8) 0.083 (15) 0.014 (8) −0.008 (10) −0.023 (8)
C13 0.055 (3) 0.074 (5) 0.070 (3) 0.003 (3) −0.021 (2) −0.018 (3)
C13A 0.063 (11) 0.051 (7) 0.074 (15) 0.027 (7) −0.002 (9) −0.016 (7)
C14 0.058 (3) 0.055 (3) 0.073 (5) 0.003 (2) −0.002 (3) −0.018 (3)
C14A 0.061 (12) 0.026 (7) 0.096 (15) −0.011 (6) −0.021 (10) −0.002 (7)

Geometric parameters (Å, º)

Eu1—O1i 2.4868 (16) C3—C4 1.451 (3)
Eu1—O1ii 2.4868 (16) C4—C5 1.361 (3)
Eu1—O1 2.4868 (16) C5—H5 0.9300
Eu1—O2ii 2.5113 (16) C5—C6 1.417 (4)
Eu1—O2 2.5112 (16) C6—H6 0.9300
Eu1—O2i 2.5113 (16) C6—C7 1.340 (4)
Eu1—O3i 2.3996 (15) C7—H7 0.9300
Eu1—O3ii 2.3997 (15) C8—C9 1.471 (3)
Eu1—O3 2.3997 (15) C9—H9 0.9300
S1—C4 1.716 (2) C9—C10 1.318 (4)
S1—C7 1.703 (3) C10—H10 0.9300
S2—C11 1.715 (9) C10—H10A 0.9300
S2—C14 1.710 (7) C10—C11 1.443 (6)
S2A—C11A 1.72 (3) C10—C11A 1.452 (17)
S2A—C14A 1.70 (2) C11—C12 1.322 (14)
O1—C1 1.266 (3) C11A—C12A 1.29 (3)
O2—O4iii 11.564 (3) C12—H12 0.9300
O2—C1 1.266 (3) C12—C13 1.446 (15)
O3—H3A 0.818 (13) C12A—H12A 0.9300
O3—H3B 0.826 (13) C12A—C13A 1.47 (3)
O4—H4 0.836 (14) C13—H13 0.9300
O4—C8 1.305 (3) C13—C14 1.358 (9)
O5—C8 1.203 (3) C13A—H13A 0.9300
C1—C2 1.466 (3) C13A—C14A 1.34 (2)
C2—H2 0.9300 C14—H14 0.9300
C2—C3 1.315 (3) C14A—H14A 0.9300
C3—H3 0.9300
O1i—Eu1—O1ii 76.88 (6) C2—C3—H3 116.7
O1i—Eu1—O1 76.88 (6) C2—C3—C4 126.5 (2)
O1ii—Eu1—O1 76.88 (6) C4—C3—H3 116.7
O1—Eu1—O2ii 79.32 (6) C3—C4—S1 123.01 (17)
O1—Eu1—O2i 126.87 (6) C5—C4—S1 110.47 (18)
O1ii—Eu1—O2 126.87 (6) C5—C4—C3 126.4 (2)
O1i—Eu1—O2i 51.62 (5) C4—C5—H5 123.6
O1ii—Eu1—O2ii 51.62 (5) C4—C5—C6 112.8 (2)
O1ii—Eu1—O2i 79.33 (6) C6—C5—H5 123.6
O1—Eu1—O2 51.62 (5) C5—C6—H6 123.6
O1i—Eu1—O2 79.33 (6) C7—C6—C5 112.8 (2)
O1i—Eu1—O2ii 126.87 (6) C7—C6—H6 123.6
O2ii—Eu1—O2 119.037 (14) S1—C7—H7 124.1
O2i—Eu1—O2 119.040 (14) C6—C7—S1 111.7 (2)
O2i—Eu1—O2ii 119.038 (14) C6—C7—H7 124.1
O3i—Eu1—O1 157.80 (6) O4—C8—C9 112.8 (2)
O3i—Eu1—O1ii 91.68 (6) O5—C8—O4 123.0 (2)
O3ii—Eu1—O1ii 119.45 (5) O5—C8—C9 124.1 (3)
O3ii—Eu1—O1i 157.80 (6) C8—C9—H9 119.6
O3—Eu1—O1ii 157.80 (6) C10—C9—C8 120.7 (3)
O3ii—Eu1—O1 91.68 (6) C10—C9—H9 119.7
O3—Eu1—O1 119.45 (5) C9—C10—H10 116.2
O3—Eu1—O1i 91.68 (6) C9—C10—H10A 119.2
O3i—Eu1—O1i 119.45 (5) C9—C10—C11 127.5 (5)
O3—Eu1—O2ii 141.12 (6) C9—C10—C11A 121.6 (13)
O3—Eu1—O2 67.86 (5) C11—C10—H10 116.2
O3ii—Eu1—O2ii 67.86 (5) C11A—C10—H10A 119.2
O3ii—Eu1—O2i 141.12 (6) C10—C11—S2 122.5 (7)
O3i—Eu1—O2 141.12 (6) C12—C11—S2 111.9 (8)
O3i—Eu1—O2i 67.86 (5) C12—C11—C10 125.6 (10)
O3ii—Eu1—O2 78.67 (7) C10—C11A—S2A 117 (2)
O3i—Eu1—O2ii 78.67 (7) C12A—C11A—S2A 111.6 (16)
O3—Eu1—O2i 78.67 (7) C12A—C11A—C10 131 (3)
O3i—Eu1—O3ii 77.30 (7) C11—C12—H12 123.7
O3—Eu1—O3ii 77.30 (7) C11—C12—C13 112.6 (12)
O3i—Eu1—O3 77.30 (7) C13—C12—H12 123.7
C7—S1—C4 92.19 (13) C11A—C12A—H12A 122.7
C14—S2—C11 92.3 (5) C11A—C12A—C13A 115 (3)
C14A—S2A—C11A 91.3 (14) C13A—C12A—H12A 122.7
C1—O1—Eu1 95.50 (12) C12—C13—H13 123.9
Eu1—O2—O4iii 150.31 (5) C14—C13—C12 112.2 (8)
C1—O2—Eu1 94.35 (13) C14—C13—H13 123.9
C1—O2—O4iii 109.24 (13) O3ii—C13A—H13A 143.0
Eu1—O3—H3A 119 (2) C12A—C13A—H13A 125.4
Eu1—O3—H3B 122 (2) C14A—C13A—C12A 109 (2)
H3A—O3—H3B 113 (3) C14A—C13A—H13A 125.4
C8—O4—H4 112 (3) S2—C14—H14 124.6
O1—C1—C2 122.4 (2) C13—C14—S2 110.8 (6)
O2—C1—O1 118.50 (19) C13—C14—H14 124.6
O2—C1—C2 119.0 (2) S2A—C14A—H14A 123.3
C1—C2—H2 117.9 C13A—C14A—S2A 113 (2)
C3—C2—C1 124.3 (2) C13A—C14A—H14A 123.3
C3—C2—H2 117.9
Eu1—O1—C1—O2 −1.5 (2) C7—S1—C4—C3 175.6 (2)
Eu1—O1—C1—C2 176.2 (2) C7—S1—C4—C5 −0.3 (2)
Eu1—O2—C1—O1 1.5 (2) C8—C9—C10—C11 −176.2 (4)
Eu1—O2—C1—C2 −176.33 (19) C8—C9—C10—C11A −175.8 (6)
S1—C4—C5—C6 0.0 (3) C9—C10—C11—S2 7.3 (6)
S2—C11—C12—C13 −4.1 (14) C9—C10—C11—C12 −172.7 (10)
S2A—C11A—C12A—C13A 0.4 (6) C9—C10—C11A—S2A −169.2 (7)
O1—C1—C2—C3 6.8 (4) C9—C10—C11A—C12A 11.0 (8)
O2—C1—C2—C3 −175.5 (3) C10—C11—C12—C13 175.8 (6)
O3ii—C13A—C14A—S2A −5.5 (5) C10—C11A—C12A—C13A −179.8 (3)
O4iii—O2—C1—O1 163.18 (17) C11—S2—C14—C13 −1.1 (6)
O4iii—O2—C1—C2 −14.6 (2) C11—C12—C13—C14 3.4 (14)
O4—C8—C9—C10 177.6 (3) C11A—S2A—C14A—C13A −0.2 (5)
O5—C8—C9—C10 0.6 (5) C11A—C12A—C13A—O3ii 18.1 (16)
C1—C2—C3—C4 −175.5 (2) C11A—C12A—C13A—C14A −0.5 (8)
C2—C3—C4—S1 6.9 (4) C12—C13—C14—S2 −1.0 (9)
C2—C3—C4—C5 −177.8 (3) C12A—C13A—C14A—S2A 0.5 (7)
C3—C4—C5—C6 −175.7 (3) C14—S2—C11—C10 −176.9 (4)
C4—S1—C7—C6 0.6 (3) C14—S2—C11—C12 3.1 (9)
C4—C5—C6—C7 0.4 (4) C14A—S2A—C11A—C10 −179.9 (2)
C5—C6—C7—S1 −0.7 (4) C14A—S2A—C11A—C12A −0.1 (4)

Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, xy+1, z; (iii) −y+2/3, xy+1/3, z−2/3.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the S1/C4–C7 ring.

D—H···A D—H H···A D···A D—H···A
O3—H3A···O5 0.82 (1) 1.94 (2) 2.729 (3) 162 (3)
O3—H3B···O1iv 0.82 (1) 1.89 (2) 2.693 (2) 165 (3)
O4—H4···O2 0.84 (1) 1.78 (2) 2.614 (3) 177 (4)
C7—H7···Cg1v 0.93 3.10 3.869 (3) 141

Symmetry codes: (iv) −x+y, −x+1, z−1; (v) −x+y−2/3, −x−4/3, z−1/3.

Funding Statement

Funding for this research was provided by: Thailand Institute of Nuclear Technology (Public Organization), Thailand, through its program of TINT to University (grant to Kittipong Chainok); The Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST) (scholarship to Suwadee Jiajaroen).

References

  1. Alberding, B. G., Chisholm, M. H., Lear, B. J., Naseri, V. & Reed, C. R. (2011). Dalton Trans. 40, 10658–10663. [DOI] [PubMed]
  2. Alexander, D., Thomas, K., Joy, M., Biju, P. R., Unnikrishnan, N. V. & Joseph, C. (2019). Acta Cryst. C75, 589–597. [DOI] [PubMed]
  3. Behrsing, T., Deacon, G. B., Luu, J., Junk, P. C., Skelton, B. W. & White, A. W. (2016). Polyhedron, 120, 69–81.
  4. Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  6. Cawthray, J. F., Creagh, A. L., Haynes, C. A. & Orvig, C. (2015). Inorg. Chem. 54, 1440–1445. [DOI] [PubMed]
  7. Danish, M., Ali, S., Mazhar, M. & Badshah, A. (1996). Main Group Met. Chem. 19, 121–131.
  8. Danish, M., Ali, S., Mazhar, M., Badshah, A., Masood, T. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 27–34.
  9. Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952–9967. [DOI] [PubMed]
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Jiajaroen, S., Dungkaew, W., Kielar, F., Sukwattanasinitt, M., Sahasithiwat, S., Zenno, H., Hayami, S., Azam, M., Al-Resayes, S. I. & Chainok, K. (2022). Dalton Trans. 51, 7420–7435. [DOI] [PubMed]
  14. Kameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007a). Acta Cryst. E63, m2584.
  15. Kameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007b). Acta Cryst. E63, m2598.
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Llunell, M., Casanova, D., Cirera, A., Alemany, A. & Alvarez, S. (2013). SHAPE. University of Barcelona, Barcelona, Spain.
  18. Marques, L. F., Cantaruti Júnior, A. A. B., Correa, C. C., Lahoud, M. G., da Silva, R. R., Ribeiro, S. J. L. & Machado, F. C. (2013). J. Photochem. Photobiol. Chem. 252, 69–76.
  19. Mirzaei, M., Eshtiagh-Hosseini, H., Karrabi, Z., Molčanov, K., Eydizadeh, E., Mague, J. T., Bauzá, A. & Frontera, A. (2014). CrystEngComm, 16, 5352–5363.
  20. Pan, Z., Zhang, J., Guo, L., Yang, H., Li, J. & Cui, C. (2021). Inorg. Chem. 60, 12696–12702. [DOI] [PubMed]
  21. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  22. Parvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211–1213.
  23. Rzaczynska, Z. & Belskii, V. K. (1994). Pol. J. Chem. 68, 369–375.
  24. Sairenji, S., Akine, S. & Nabeshima, T. (2016). Dalton Trans. 45, 14902–14906. [DOI] [PubMed]
  25. Sarwar, S., Iftikhar, T., Rauf, M. K., Badshah, A., Waseem, D., Tahir, M. N., Khan, K. M. & Khan, G. M. (2018). Inorg. Chim. Acta, 476, 12–19.
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  29. Sun, Y.-Q., Wan, F., Li, X.-X., Lin, J., Wu, T., Zheng, S.-T. & Bu, X. (2016). Chem. Commun. 52, 10125–10128. [DOI] [PubMed]
  30. Theppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021). Molecules, 26, 4428. [DOI] [PMC free article] [PubMed]
  31. Tsaryuk, V., Vologzhanina, A., Zhuravlev, K., Kudryashova, V., Szostak, R. & Zolin, V. (2014). J. Photochem. Photobiol. Chem. 285, 52–61.
  32. Uhl, W., Bock, H. R., Hepp, A., Rogel, F. & Voss, M. (2010). Z. Anorg. Allg. Chem. 636, 1255–1262.
  33. Vasseur, A., Membrat, R., Palpacelli, D., Giorgi, M., Nuel, D., Giordano, L. & Martinez, A. (2018). Chem. Commun. 54, 10132–10135. [DOI] [PubMed]
  34. Vrdoljak, V., Prugovečki, B., Matković-Čalogović, D., Novak, P. & Cindrić, M. (2010). Inorg. Chim. Acta, 363, 3516–3522.
  35. Zeng, H.-D. & Pan, K.-Z. (1992). Chin. J. Struct. Chem. 11, 388.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022011884/jq2020sup1.cif

e-79-00038-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011884/jq2020Isup2.hkl

e-79-00038-Isup2.hkl (392.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022011884/jq2020Isup3.cdx

CCDC reference: 2226237

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES