Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 1;79(Pt 1):24–27. doi: 10.1107/S2056989022011689

Iclaprim mesylate displaying a hydrogen-bonded mol­ecular tape

Sandro Neuner a, Thomas Gelbrich b,*, Klaus Wurst a, Josef Spreitz c, Sven Nerdinger d, Ulrich J Griesser b, Marijan Stefinovic d, Herwig Schottenberger a
Editor: M Weile
PMCID: PMC9815135  PMID: 36628360

Iclaprim and mesylate mol­ecules are linked into a hydrogen-bonded mol­ecular tape, the central section of which is composed of fused rings.

Keywords: crystal structure, hydrogen bonding, pharmaceuticals

Abstract

The title compound, 2,6-di­amino-5-[(2-cyclo­propyl-7,8-dimeth­oxy-2H-1-benzo­pyran-5-yl)meth­yl]pyrimidin-1-ium methane­sulfonate, C19H23N4O3 +·CH3O3S, is a salt made up from a protonated iclaprim mol­ecule and a mesylate anion. The pyrimidine and chromene units of the iclaprim mol­ecule form an orthogonal arrangement [inter­planar angle of 89.67 (6)°], and the 3-nitro­gen position of the pyrimidine ring is protonated. Four distinct N—H⋯O inter­actions and an additional N—H⋯N hydrogen bond connect iclaprim and mesylate mol­ecules to one another, resulting in an infinite hydrogen-bonded mol­ecular tape structure. The central section of the tape is formed by a sequence of fused hydrogen-bonded rings involving four distinct ring types.

1. Chemical context

Iclaprim is a di­hydro­folate reductase (DHFR) inhibiting anti­biotic containing a 2H-chromene structure that targets Gram-positive bacteria (Masciadri, 1997). The current study is part of an investigation aimed at improving the synthetic route to iclaprim and accessing its salts (Nerdinger et al., 2020). 1.

Iclaprim was synthesized according to the original route described by Jaeger et al. (2005), using 3-hy­droxy-4,5-di­meth­oxy­benzaldehyde (Cervi et al., 2013), which was further purified by recrystallization from ethanol/n-hexane. We achieved a much better purity by trituration in hot ethanol and subsequent recrystallization from boiling aceto­nitrile. The title compound, (I), is the corresponding mesylate salt, and it was produced in a subsequent step.

2. Structural commentary

The asymmetric unit of (I) consists of one formula unit, composed of an CH3SO3 anion and an iclaprim cation in which the 3-nitro­gen atom of the pyrimidine ring is protonated, i.e. N1 (Fig. 1). The mol­ecular conformation of the iclaprim mol­ecule is largely defined by the relative arrangement of the essentially planar pyrimidine and chromene units. The CH2 carbon atom C5 links the pyrimidine ring (C1, N1, C2, N2, C3, C4) with the fused benzene ring of the chromene unit (C6, C7, C8, C9, C10, C11). With regard to the two bridging bonds, the torsion angles C3—C4—C5—C6 [–160.8 (2)°] and C4—C5—C6—C7 [–96.5 (3)°] indicate that the C5—C6 bond is twisted slightly out of the pyrimidine plane, whilst the C4—C5 bond is oriented approximately perpendicular to the benzene ring. Accordingly, the two six-membered rings linked via C5 form an orthogonal arrangement with an inter­planar angle of 89.67 (6)°. In the chromene moiety, the 7-meth­oxy substituent is significantly twisted out of the ring plane [C10—C9—O3—C19 = −70.3 (3)°], whilst the 8-meth­oxy substituent is almost coplanar with the plane of the fused benzene ring [C9—C8—O2—C18 = 167.6 (2)°]. The 2H-pyran ring displays the expected bond lengths [C12—C13 = 1.323 (4) Å]. The program PLATON (Spek, 2020) was used to calculate puckering parameters (Cremer & Pople, 1975) for the 2H-pyran ring. The obtained values, θ = 65.5 (7)°, φ = 328.4 (7)° and q = 0.253 (3) Å, are consistent with the presence of a skew-boat conformation (Boeyens, 1978).

Figure 1.

Figure 1

The structures of the mol­ecular entities with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms drawn as spheres of arbitrary size.

3. Supra­molecular features

The iclaprim mol­ecule displays two NH2 groups attached to the pyrimidine ring (N3, N4) and the protonated N1 atom of the pyrimidine ring as potential hydrogen-bond donor groups. These hydrogen-bond donor functions are engaged in five distinct inter­molecular N—H⋯A inter­actions (Table 1). N1 and N3 are linked to two O sites, each belonging to the same mesylate anion, i.e. N1—H1N⋯O4i and N3—H3A⋯O5i. In Fig. 2, the resulting ring motif is denoted as a, and it has the graph-set symbol Inline graphic (8) (Etter et al., 1990; Bernstein et al., 1995). N3 is additionally linked, via an N3—H3B⋯O5ii inter­action, to a second mesylate unit. The resulting centrosymmetric ring b (Fig. 2) comprises two iclaprim and two mesylate units (with O5 accepting two hydrogen bonds) and is described by the symbol Inline graphic (8). The second NH2 group forms an N4—H4B⋯O6 inter­action with a mesylate anion, and it is also hydrogen-bonded to the unprotonated pyrimidine N atom of a second iclaprim mol­ecule via N4—H4A⋯N2ii. The latter two inter­actions generate two additional ring motifs, namely the Inline graphic (10) ring c linking two pyrimidine mol­ecules with one anion and the centrosymmetric Inline graphic (8) ring d. The diagram in Fig. 2 illustrates that certain hydrogen-bonded rings are fused together because of shared N—H⋯A inter­actions, i.e. a + b, b + c and c + d. Altogether, the five distinct inter­actions listed in Table 1 result in a one-dimensional extended mol­ecular tape structure of hydrogen-bonded iclaprim and mesylate units propagating parallel to [ Inline graphic 10]. The iclaprim mol­ecule is bonded to two different mesylate anions, one is a two-point and the other a one-point connection. It is also two-point connected to a neighbouring iclaprim mol­ecule. In turn, the mesylate anion accepts four hydrogen-bonds from three iclaprim mol­ecules, and all of its O atoms participate in hydrogen bonding.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.85 (3) 1.99 (3) 2.827 (2) 168 (3)
N3—H3A⋯O5i 0.86 (2) 2.06 (2) 2.896 (3) 166 (2)
N3—H3B⋯O5ii 0.87 (2) 2.15 (2) 2.871 (3) 140 (2)
N4—H4A⋯N2ii 0.87 (2) 2.27 (2) 3.107 (3) 163 (2)
N4—H4B⋯O6 0.86 (2) 2.11 (2) 2.948 (3) 163 (2)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

Tape structure composed of N—H⋯O and N—H⋯N-bonded iclaprim and mesylate mol­ecules, based on four essential ring motifs (ad). [Symmetry codes: (i) x − 1, y + 1, z; (ii) −x, −y + 1, −z; (iii) −x − 1, y + 2, z.]

4. Database survey

The Cambridge Structural Database (version 5.43, September 2022; Groom et al., 2016) contains two other examples of mol­ecules displaying the 7,8-dimeth­oxy-2H-chromene fragment, namely methyl­ripariochromene A (Guerin et al., 1989; CSD refcode JAZLIF) and 6,7,8-tri­meth­oxy­coumarin (Saidi et al., 2007; CSD refcode KIKDOY). In each case, the 7- and 8-meth­oxy substituents are significantly twisted out of the ring plane as shown by the corresponding torsion angles, i.e. mol­ecule A of JAZLIF: 63.4°,–66.2°; mol­ecule B of JAZLIF: −140.2°, 89.4°; KIKDOY: 88.0, −110.9°.

5. Synthesis and crystallization

Iclaprim mesylate was prepared according to a modified procedure based on the original synthesis by Jaeger et al. (2005) shown in Fig. 3. The iclaprim free base (500 mg, 1.41 mmol) was suspended in 75 ml of aceto­nitrile and heated to reflux. The resulting clear solution was slowly cooled to room temperature overnight and then kept at 253 K to complete the crystallization process. The resulting white solid was isolated by filtration and dried under high vacuum at room temperature. The obtained iclaprim free base (1.00 g, 2.82 mmol) was recrystallized in aceto­nitrile and was suspended in 35 ml of ethanol and heated to reflux. Heating was inter­rupted and a solution of 183 ml methyl­sulfonic acid (2.82 mmol) in 5 ml of ethanol was added in a dropwise manner. Refluxing was resumed and a further 10 ml of ethanol were added to obtain a clear solution. The solution was concentrated and allowed to cool slowly to room temperature, at which point aggregates of colourless columnar crystals started to form. The crystals were isolated via filtration and dried under high vacuum overnight; yield: 900 mg (71%).

Figure 3.

Figure 3

Synthesis scheme to prepare iclaprim.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The structure was refined as a two-component twin with the components being related by a 179.9° rotation about the a axis. The refined value of the minor twin component fraction was 0.260 (1). All H atoms were identified in difference-Fourier maps and those of NH and NH2 groups were refined with a restrained N—H distance of 0.88 (2) Å and their U iso parameters refined freely. The H atoms at the cyclo­propyl ring (C15, C16, C17) were refined with a restrained C—H distance of 0.96 (2) Å and with U iso(H) = 1.2U eq(C). Other H atoms bonded to secondary CH2 (C—H = 0.98 Å) or aromatic CH (C—H = 0.94 Å) carbon atoms were positioned geometrically. Their U iso parameters were set to 1.2U eq(C). Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.97 Å) and their U iso parameters were set to 1.5 U eq(C) of the parent carbon atom.

Table 2. Experimental details.

Crystal data
Chemical formula C19H23N4O3 +·CH3O3S
M r 450.51
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 223
a, b, c (Å) 5.4726 (3), 8.8450 (4), 22.1395 (11)
α, β, γ (°) 98.094 (2), 93.754 (2), 98.919 (2)
V3) 1043.98 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.21 × 0.18 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (TWINABS; Bruker, 2013)
T min, T max 0.910, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 3851, 3851, 3507
(sin θ/λ)max−1) 0.604
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.104, 1.08
No. of reflections 3851
No. of parameters 320
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.31

Computer programs: APEX3 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022011689/wm5666sup1.cif

e-79-00024-sup1.cif (216.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011689/wm5666Isup2.hkl

e-79-00024-Isup2.hkl (307KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022011689/wm5666Isup3.cml

CCDC reference: 2224639

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C19H23N4O3+·CH3O3S Z = 2
Mr = 450.51 F(000) = 476
Triclinic, P1 Dx = 1.433 Mg m3
a = 5.4726 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.8450 (4) Å Cell parameters from 9886 reflections
c = 22.1395 (11) Å θ = 2.3–25.3°
α = 98.094 (2)° µ = 0.20 mm1
β = 93.754 (2)° T = 223 K
γ = 98.919 (2)° Prism, colourless
V = 1043.98 (9) Å3 0.21 × 0.18 × 0.03 mm

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer 3851 measured reflections
Radiation source: Incoatec Microfocus 3851 independent reflections
Multi layered optics monochromator 3507 reflections with I > 2σ(I)
Detector resolution: 10.4 pixels mm-1 θmax = 25.4°, θmin = 2.4°
φ and ω scans h = −6→6
Absorption correction: multi-scan (TWINABS; Bruker, 2013) k = −10→10
Tmin = 0.910, Tmax = 0.971 l = −26→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.7995P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3851 reflections Δρmax = 0.57 e Å3
320 parameters Δρmin = −0.30 e Å3
10 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.026 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3058 (4) 0.7951 (2) 0.38547 (8) 0.0428 (5)
O2 0.9479 (4) 1.1480 (2) 0.33158 (8) 0.0413 (5)
O3 0.6716 (4) 1.0418 (2) 0.41560 (7) 0.0418 (5)
N1 0.0557 (4) 0.9523 (2) 0.10508 (8) 0.0239 (4)
H1N 0.015 (5) 1.042 (3) 0.1116 (12) 0.035 (7)*
N2 0.0189 (3) 0.7157 (2) 0.03914 (8) 0.0240 (4)
N3 −0.2450 (4) 0.8895 (2) 0.02407 (10) 0.0314 (5)
H3A −0.292 (5) 0.976 (2) 0.0359 (11) 0.030 (7)*
H3B −0.318 (5) 0.831 (3) −0.0091 (10) 0.041 (8)*
N4 0.2945 (4) 0.5524 (2) 0.05307 (9) 0.0296 (4)
H4A 0.215 (5) 0.491 (3) 0.0214 (10) 0.042 (8)*
H4B 0.416 (4) 0.528 (3) 0.0742 (11) 0.034 (7)*
C1 0.2336 (4) 0.9125 (2) 0.14129 (10) 0.0230 (5)
H1 0.3024 0.9821 0.1765 0.028*
C2 −0.0565 (4) 0.8502 (2) 0.05556 (9) 0.0219 (4)
C3 0.2094 (4) 0.6806 (2) 0.07298 (9) 0.0216 (4)
C4 0.3182 (4) 0.7772 (2) 0.12931 (9) 0.0210 (4)
C5 0.5138 (5) 0.7290 (3) 0.17050 (10) 0.0287 (5)
H5A 0.4704 0.6177 0.1715 0.034*
H5B 0.6731 0.7464 0.1527 0.034*
C6 0.5457 (4) 0.8135 (3) 0.23546 (10) 0.0263 (5)
C7 0.7329 (4) 0.9416 (3) 0.25216 (10) 0.0280 (5)
H7 0.8359 0.9748 0.2226 0.034*
C8 0.7705 (4) 1.0212 (3) 0.31165 (10) 0.0291 (5)
C9 0.6184 (5) 0.9716 (3) 0.35590 (10) 0.0292 (5)
C10 0.4339 (5) 0.8453 (3) 0.33923 (10) 0.0289 (5)
C11 0.3909 (5) 0.7643 (3) 0.27896 (10) 0.0297 (5)
C12 0.1991 (6) 0.6280 (3) 0.26835 (13) 0.0480 (7)
H12 0.1796 0.5622 0.2305 0.058*
C13 0.0514 (6) 0.5956 (3) 0.31140 (14) 0.0506 (8)
H13 −0.0684 0.5052 0.3038 0.061*
C14 0.0691 (5) 0.6975 (4) 0.37117 (13) 0.0477 (7)
H14 −0.0506 0.7688 0.3658 0.057*
C15 0.0006 (7) 0.6284 (4) 0.42415 (16) 0.0603 (9)
H15 0.088 (6) 0.537 (3) 0.4274 (16) 0.072*
C16 −0.0784 (9) 0.7122 (6) 0.47930 (19) 0.0775 (11)
H16A −0.051 (8) 0.687 (5) 0.5200 (11) 0.093*
H16B −0.082 (9) 0.821 (3) 0.4736 (19) 0.093*
C17 −0.2553 (8) 0.5873 (6) 0.4384 (2) 0.0800 (12)
H17A −0.310 (8) 0.490 (3) 0.4518 (19) 0.096*
H17B −0.369 (7) 0.614 (5) 0.4075 (15) 0.096*
C18 1.1370 (5) 1.1840 (3) 0.29246 (12) 0.0407 (6)
H18A 1.2567 1.2718 0.3128 0.061*
H18B 1.0637 1.2093 0.2549 0.061*
H18C 1.2199 1.0953 0.2830 0.061*
C19 0.4888 (7) 1.1252 (4) 0.44003 (14) 0.0568 (8)
H19A 0.5389 1.1668 0.4827 0.085*
H19B 0.3308 1.0562 0.4368 0.085*
H19C 0.4719 1.2095 0.4172 0.085*
S1 0.73446 (11) 0.29318 (6) 0.12358 (2) 0.02483 (16)
O4 0.9826 (3) 0.26069 (18) 0.14030 (8) 0.0348 (4)
O5 0.5834 (3) 0.16098 (19) 0.08426 (8) 0.0381 (4)
O6 0.7365 (3) 0.43739 (19) 0.09992 (8) 0.0362 (4)
C20 0.5874 (5) 0.3152 (3) 0.19206 (11) 0.0339 (6)
H20A 0.5974 0.2263 0.2127 0.051*
H20B 0.4145 0.3227 0.1827 0.051*
H20C 0.6694 0.4086 0.2185 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0498 (11) 0.0446 (10) 0.0295 (9) −0.0066 (9) 0.0072 (8) 0.0039 (8)
O2 0.0414 (11) 0.0421 (10) 0.0327 (9) −0.0078 (8) 0.0035 (8) −0.0043 (8)
O3 0.0470 (12) 0.0497 (11) 0.0230 (8) 0.0026 (9) 0.0004 (8) −0.0070 (7)
N1 0.0272 (10) 0.0169 (9) 0.0275 (10) 0.0082 (8) −0.0012 (8) 0.0003 (7)
N2 0.0252 (10) 0.0222 (9) 0.0236 (9) 0.0068 (8) −0.0005 (8) −0.0014 (7)
N3 0.0311 (11) 0.0299 (11) 0.0323 (11) 0.0133 (9) −0.0084 (9) −0.0021 (9)
N4 0.0301 (11) 0.0273 (10) 0.0288 (10) 0.0134 (9) −0.0077 (9) −0.0094 (8)
C1 0.0248 (11) 0.0207 (10) 0.0221 (10) 0.0037 (9) −0.0009 (9) −0.0002 (8)
C2 0.0227 (11) 0.0224 (10) 0.0214 (10) 0.0048 (9) 0.0037 (9) 0.0041 (8)
C3 0.0221 (11) 0.0206 (10) 0.0217 (10) 0.0036 (9) 0.0026 (9) 0.0018 (8)
C4 0.0222 (11) 0.0204 (10) 0.0201 (10) 0.0041 (9) 0.0025 (9) 0.0013 (8)
C5 0.0334 (13) 0.0278 (11) 0.0256 (11) 0.0133 (10) −0.0025 (10) −0.0002 (9)
C6 0.0306 (12) 0.0270 (11) 0.0226 (11) 0.0145 (10) −0.0033 (9) 0.0003 (9)
C7 0.0283 (12) 0.0320 (12) 0.0247 (11) 0.0085 (10) 0.0025 (9) 0.0040 (9)
C8 0.0291 (13) 0.0280 (11) 0.0288 (12) 0.0052 (10) −0.0027 (10) 0.0017 (9)
C9 0.0342 (13) 0.0318 (12) 0.0205 (11) 0.0071 (10) −0.0019 (9) 0.0005 (9)
C10 0.0348 (13) 0.0284 (11) 0.0251 (11) 0.0090 (10) 0.0017 (10) 0.0059 (9)
C11 0.0321 (13) 0.0267 (11) 0.0291 (11) 0.0064 (10) −0.0038 (11) 0.0020 (9)
C12 0.0526 (18) 0.0426 (15) 0.0401 (15) −0.0066 (14) 0.0002 (14) −0.0057 (12)
C13 0.0493 (18) 0.0459 (16) 0.0488 (17) −0.0112 (14) 0.0013 (14) 0.0034 (13)
C14 0.0366 (15) 0.0582 (18) 0.0450 (16) −0.0016 (13) 0.0020 (13) 0.0079 (13)
C15 0.061 (2) 0.0572 (19) 0.062 (2) −0.0019 (17) 0.0203 (17) 0.0109 (16)
C16 0.072 (3) 0.097 (3) 0.064 (2) 0.002 (3) 0.026 (2) 0.019 (2)
C17 0.046 (2) 0.112 (3) 0.089 (3) 0.002 (2) 0.014 (2) 0.048 (3)
C18 0.0365 (15) 0.0428 (14) 0.0404 (14) −0.0013 (12) 0.0012 (12) 0.0081 (12)
C19 0.069 (2) 0.0547 (18) 0.0415 (16) 0.0133 (17) 0.0076 (15) −0.0144 (13)
S1 0.0219 (3) 0.0225 (3) 0.0302 (3) 0.0083 (2) −0.0031 (2) 0.0019 (2)
O4 0.0245 (9) 0.0312 (8) 0.0486 (10) 0.0121 (7) −0.0063 (8) 0.0022 (7)
O5 0.0330 (9) 0.0345 (9) 0.0417 (10) 0.0086 (8) −0.0085 (8) −0.0093 (7)
O6 0.0366 (10) 0.0325 (9) 0.0468 (10) 0.0173 (8) 0.0103 (8) 0.0150 (7)
C20 0.0357 (14) 0.0319 (12) 0.0333 (13) 0.0051 (11) 0.0015 (11) 0.0034 (10)

Geometric parameters (Å, º)

O1—C10 1.365 (3) C10—C11 1.410 (3)
O1—C14 1.431 (3) C11—C12 1.451 (4)
O2—C8 1.364 (3) C12—C13 1.323 (4)
O2—C18 1.420 (3) C12—H12 0.9400
O3—C9 1.371 (3) C13—C14 1.481 (4)
O3—C19 1.423 (4) C13—H13 0.9400
N1—C1 1.341 (3) C14—C15 1.441 (4)
N1—C2 1.362 (3) C14—H14 0.9900
N1—H1N 0.85 (3) C15—C17 1.458 (5)
N2—C2 1.330 (3) C15—C16 1.463 (5)
N2—C3 1.345 (3) C15—H15 1.007 (18)
N3—C2 1.325 (3) C16—C17 1.500 (6)
N3—H3A 0.857 (17) C16—H16A 0.965 (19)
N3—H3B 0.869 (17) C16—H16B 0.988 (19)
N4—C3 1.322 (3) C17—H17A 0.958 (19)
N4—H4A 0.871 (17) C17—H17B 0.971 (19)
N4—H4B 0.863 (17) C18—H18A 0.9700
C1—C4 1.347 (3) C18—H18B 0.9700
C1—H1 0.9400 C18—H18C 0.9700
C3—C4 1.444 (3) C19—H19A 0.9700
C4—C5 1.510 (3) C19—H19B 0.9700
C5—C6 1.510 (3) C19—H19C 0.9700
C5—H5A 0.9800 S1—O6 1.4442 (16)
C5—H5B 0.9800 S1—O5 1.4588 (17)
C6—C7 1.394 (3) S1—O4 1.4658 (17)
C6—C11 1.395 (3) S1—C20 1.763 (2)
C7—C8 1.390 (3) C20—H20A 0.9700
C7—H7 0.9400 C20—H20B 0.9700
C8—C9 1.400 (3) C20—H20C 0.9700
C9—C10 1.375 (3)
C10—O1—C14 119.5 (2) C12—C13—C14 122.0 (3)
C8—O2—C18 117.48 (19) C12—C13—H13 119.0
C9—O3—C19 115.4 (2) C14—C13—H13 119.0
C1—N1—C2 119.79 (18) O1—C14—C15 109.1 (2)
C1—N1—H1N 121.2 (18) O1—C14—C13 112.5 (2)
C2—N1—H1N 118.9 (18) C15—C14—C13 118.4 (3)
C2—N2—C3 118.52 (18) O1—C14—H14 105.2
C2—N3—H3A 119.3 (18) C15—C14—H14 105.2
C2—N3—H3B 121.4 (19) C13—C14—H14 105.2
H3A—N3—H3B 119 (3) C14—C15—C17 123.6 (4)
C3—N4—H4A 118.4 (19) C14—C15—C16 124.3 (3)
C3—N4—H4B 119.0 (18) C17—C15—C16 61.8 (3)
H4A—N4—H4B 122 (3) C14—C15—H15 110 (2)
N1—C1—C4 122.8 (2) C17—C15—H15 108 (2)
N1—C1—H1 118.6 C16—C15—H15 120 (2)
C4—C1—H1 118.6 C15—C16—C17 58.9 (3)
N3—C2—N2 120.8 (2) C15—C16—H16A 124 (3)
N3—C2—N1 117.59 (19) C17—C16—H16A 112 (3)
N2—C2—N1 121.6 (2) C15—C16—H16B 109 (3)
N4—C3—N2 117.50 (19) C17—C16—H16B 118 (3)
N4—C3—C4 120.4 (2) H16A—C16—H16B 120 (4)
N2—C3—C4 122.07 (19) C15—C17—C16 59.3 (3)
C1—C4—C3 114.73 (19) C15—C17—H17A 120 (3)
C1—C4—C5 123.42 (19) C16—C17—H17A 120 (3)
C3—C4—C5 121.84 (18) C15—C17—H17B 110 (3)
C6—C5—C4 114.54 (18) C16—C17—H17B 120 (3)
C6—C5—H5A 108.6 H17A—C17—H17B 114 (4)
C4—C5—H5A 108.6 O2—C18—H18A 109.5
C6—C5—H5B 108.6 O2—C18—H18B 109.5
C4—C5—H5B 108.6 H18A—C18—H18B 109.5
H5A—C5—H5B 107.6 O2—C18—H18C 109.5
C7—C6—C11 119.7 (2) H18A—C18—H18C 109.5
C7—C6—C5 119.6 (2) H18B—C18—H18C 109.5
C11—C6—C5 120.8 (2) O3—C19—H19A 109.5
C8—C7—C6 121.3 (2) O3—C19—H19B 109.5
C8—C7—H7 119.3 H19A—C19—H19B 109.5
C6—C7—H7 119.3 O3—C19—H19C 109.5
O2—C8—C7 125.0 (2) H19A—C19—H19C 109.5
O2—C8—C9 115.5 (2) H19B—C19—H19C 109.5
C7—C8—C9 119.5 (2) O6—S1—O5 113.41 (11)
O3—C9—C10 121.8 (2) O6—S1—O4 113.82 (11)
O3—C9—C8 119.0 (2) O5—S1—O4 111.29 (10)
C10—C9—C8 119.0 (2) O6—S1—C20 105.55 (11)
O1—C10—C9 116.1 (2) O5—S1—C20 105.63 (12)
O1—C10—C11 121.4 (2) O4—S1—C20 106.36 (11)
C9—C10—C11 122.4 (2) S1—C20—H20A 109.5
C6—C11—C10 118.2 (2) S1—C20—H20B 109.5
C6—C11—C12 125.0 (2) H20A—C20—H20B 109.5
C10—C11—C12 116.7 (2) S1—C20—H20C 109.5
C13—C12—C11 120.6 (3) H20A—C20—H20C 109.5
C13—C12—H12 119.7 H20B—C20—H20C 109.5
C11—C12—H12 119.7
C2—N1—C1—C4 3.6 (3) C7—C8—C9—C10 −0.3 (3)
C3—N2—C2—N3 −179.3 (2) C14—O1—C10—C9 161.4 (2)
C3—N2—C2—N1 0.5 (3) C14—O1—C10—C11 −23.3 (4)
C1—N1—C2—N3 174.6 (2) O3—C9—C10—O1 0.6 (3)
C1—N1—C2—N2 −5.3 (3) C8—C9—C10—O1 174.7 (2)
C2—N2—C3—N4 −174.6 (2) O3—C9—C10—C11 −174.6 (2)
C2—N2—C3—C4 5.9 (3) C8—C9—C10—C11 −0.5 (4)
N1—C1—C4—C3 2.4 (3) C7—C6—C11—C10 −1.3 (3)
N1—C1—C4—C5 −178.4 (2) C5—C6—C11—C10 178.4 (2)
N4—C3—C4—C1 173.2 (2) C7—C6—C11—C12 −176.3 (2)
N2—C3—C4—C1 −7.3 (3) C5—C6—C11—C12 3.4 (4)
N4—C3—C4—C5 −6.0 (3) O1—C10—C11—C6 −173.7 (2)
N2—C3—C4—C5 173.5 (2) C9—C10—C11—C6 1.3 (4)
C1—C4—C5—C6 20.0 (3) O1—C10—C11—C12 1.8 (4)
C3—C4—C5—C6 −160.8 (2) C9—C10—C11—C12 176.7 (2)
C4—C5—C6—C7 −96.5 (3) C6—C11—C12—C13 −176.0 (3)
C4—C5—C6—C11 83.8 (3) C10—C11—C12—C13 8.9 (4)
C11—C6—C7—C8 0.5 (3) C11—C12—C13—C14 1.7 (5)
C5—C6—C7—C8 −179.1 (2) C10—O1—C14—C15 165.4 (3)
C18—O2—C8—C7 −12.6 (3) C10—O1—C14—C13 31.8 (4)
C18—O2—C8—C9 167.6 (2) C12—C13—C14—O1 −21.4 (4)
C6—C7—C8—O2 −179.5 (2) C12—C13—C14—C15 −150.4 (3)
C6—C7—C8—C9 0.3 (3) O1—C14—C15—C17 149.3 (4)
C19—O3—C9—C10 −70.3 (3) C13—C14—C15—C17 −80.3 (5)
C19—O3—C9—C8 115.5 (3) O1—C14—C15—C16 72.7 (5)
O2—C8—C9—O3 −6.2 (3) C13—C14—C15—C16 −156.8 (4)
C7—C8—C9—O3 174.0 (2) C14—C15—C16—C17 113.3 (4)
O2—C8—C9—C10 179.5 (2) C14—C15—C17—C16 −114.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4i 0.85 (3) 1.99 (3) 2.827 (2) 168 (3)
N3—H3A···O5i 0.86 (2) 2.06 (2) 2.896 (3) 166 (2)
N3—H3B···O5ii 0.87 (2) 2.15 (2) 2.871 (3) 140 (2)
N4—H4A···N2ii 0.87 (2) 2.27 (2) 3.107 (3) 163 (2)
N4—H4B···O6 0.86 (2) 2.11 (2) 2.948 (3) 163 (2)

Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  3. Bruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cervi, A., Aillard, P., Hazeri, N., Petit, L., Chai, Ch. L. L., Willis, A. C. & Banwell, M. G. (2013). J. Org. Chem. 78, 9876–9882. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Guerin, J.-C., Reveillere, H.-P., Ducrey, P. & Toupet, L. (1989). J. Nat. Prod. 52, 171–173.
  9. Jaeger, J., Burri, K., Greiveldinger-Poenaru, S. & Hoffner, J. (2005). Int. Patent Appl. WO 2005014586 (A1).
  10. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  11. Masciadri, R. (1997). Int. Patent Appl. WO 9720839 (A1).
  12. Nerdinger, S., Stefinovic, M., Neuner, S. & Spreitz, J. (2020). Int. Patent Appl. WO 2020161284 (A1).
  13. Saidi, N., Mukhtar, M. R., Awang, K., Hadi, A. H. A. & Ng, S. W. (2007). Acta Cryst. E63, o3692–o3693.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022011689/wm5666sup1.cif

e-79-00024-sup1.cif (216.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011689/wm5666Isup2.hkl

e-79-00024-Isup2.hkl (307KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022011689/wm5666Isup3.cml

CCDC reference: 2224639

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES