Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 1;79(Pt 1):44–49. doi: 10.1107/S2056989022011975

Crystal structure of sodium thio­sulfate dihydrate and comparison to the penta­hydrate

Wilhelm Klein a,*
Editor: W T A Harrisonb
PMCID: PMC9815136  PMID: 36628359

Na2S2O3·2H2O has been known for more than a hundred years but no structural data were known to date. Now, crystals of this compound have been grown at the surface of an aqueous solution of Na2S2O3. The sodium cations are five- to seven-coordinate by thio­sulfate anions and water mol­ecules with the anions acting as mono- and bidentate ligands. The thio­sulfate anions and water mol­ecules are connected by O—H⋯O and O—H⋯S hydrogen bonds of medium strength to form corrugated layers, which are linked by sodium cations.

Keywords: crystal structure, thio­sulfate, sodium, hydrate, hydrogen bonding

Abstract

Na2S2O3·2H2O has been mentioned in the literature for more than a hundred years and pure samples were prepared and investigated, however, no structural data except for a set of lattice parameters were known to date. Now crystals of this compound have been grown at the surface of an aqueous solution of Na2S2O3 and the structure has been determined at 200 and 100 K. Na2S2O3·2H2O crystallizes in the space group P21/n with two formula units in the asymmetric unit and all atoms occupying general positions. The sodium cations are five- to seven-coordinate by thio­sulfate anions and water mol­ecules and the anions act as mono- and bidentate ligands. In the extended structure, the thio­sulfate anions and water mol­ecules are connected by O—H⋯O and O—H⋯S hydrogen bonds of medium strength to form corrugated layers, which are linked by sodium cations. For comparison, the crystal structure of Na2S2O3·5H2O has been determined at the same conditions, i.e. for the first time below room temperature.

1. Chemical context

Thio­sulfates containing the S2O3 2– anion have been studied for more than 150 years (Bunte, 1874). Nowadays, Na2S2O3 and (NH4)2S2O3 are produced on an industrial scale (Barberá et al., 2012), and the applications of thio­sulfates are growing (Kumar Paul et al., 2009). One of the most characteristic features of the thio­sulfate anion is the enhanced reactivity including changes of the sulfur oxidation state, which hampered the preparation of pure compounds. For example, the synthesis of pure thio­sulfuric acid succeeded just lately via the reaction of Na2S2O3 and anhydrous HF (Hopfinger et al., 2018), and the first pure thio­sulfate complexes of lanthanides were characterized very recently (Dalton et al., 2021).

The reactivity also might hinder the preparation of pure anhydrous compounds suitable for structural investigation, and thus, only a few anhydrous thio­sulfate structures are known so far: Na2S2O3 (Sándor & Csordás, 1961; Teng et al., 1984), K2S2O3 (Lehner et al., 2013) and PbS2O3 (Christensen et al., 1991). In contrast, numerous hydrates of thio­sulfate compounds have been structurally characterized, and in some classes such as the alkaline-earth metal thio­sulfates, some water mol­ecules of crystallization seem to be crucial for the formation of crystalline matter, indicated by the so far exclusive appearance of hydrated structures AES2O3·nH2O with AE = Mg (n = 6: Elerman et al., 1983), Ca (n = 6: Held & Bohatý, 2004), Sr (n = 5: Held & Bohatý, 2004; n = 1: Klein, 2020), and Ba (n = 1: Manojlović-Muir, 1975).

The nature of the hydrates in the Na2S2O3 system was intensively studied by Young & Burke (1906) and by Picon (1924), who identified either twelve or even fourteen different crystalline hydrates of Na2S2O3, respectively, among them two different dihydrates, by means of their crystalline appearance and by thio­sulfate analysis. The penta­hydrate is by far the most stable compound at ambient conditions, and all other hydrates were found to convert into this phase more or less rapidly. Extended studies of its full dehydration including thermal analyses, Raman spectroscopy and optical microscopy revealed the dihydrate as an inter­mediate phase (Nirsha et al., 1982; Edwards & Woolf, 1985; Guarini & Piccini, 1988). Finally, Edwards and Woolf (1985) synthesized dihydrate samples with an analytical water content of 1.999 eq. via shaking the penta­hydrate in MeOH at room temperature and presented lattice parameters for a monoclinic cell (a = 11.431, b = 4.452, c = 20.368 Å, b = 93.79°, V = 1034.4 Å3), but no further structural information was given. A different, but unindexed XRD powder pattern was reported for a sample without given composition, which was prepared through dehydration of the penta­hydrate between 338 and 378 K (Nirsha et al., 1982). Besides these results, the large amount of defined hydrates of Na2S2O3, as implied by the early works, is supported by the structure determinations on single crystals of Na2S2O3·2/3H2O (Hesse et al., 1993), Na2S2O3·5/4H2O (Chan et al., 2008) and Na2S2O3·5H2O (Taylor & Beevers, 1952; Padmanabhan et al., 1971; Uraz & Armaǧan, 1977; Lisensky & Levy, 1978; Prasad & Rani, 2001). Nevertheless, despite the evidence for its existence, for the dihydrate no structure information is available to date.

For the present paper, the crystal structure of the dihydrate was characterized at 100 and 200 K. For comparison, the structure of the penta­hydrate was determined at the same conditions, i.e., for the first time below ambient temperature.

2. Structural commentary

The crystal structure of the dihydrate of Na2S2O3 has been determined for the first time. Although this phase has been mentioned in the respective literature for many decades and some sophisticated experiments to synthesize pure samples, usually via controlled dehydration of the penta­hydrate, are described, no structural information besides a set of monoclinic lattice parameters is known to date. In the present case, the dihydrate was formed by crystallization at room temperature at the surface of a concentrated aqueous solution, and all dihydrate crystals that have been identified by indexing were isolated from this region. After disturbing the surface tension, most of these crystals subsided immediately to the bottom of the vessel, adding to the bulky crystalline precipitate, which has been identified from X-ray powder patterns as the penta­hydrate without visible impurities. After indexing at room temperature, the crystals were cooled down and datasets were recorded at 200 K and 100 K. Besides slight thermal contraction of lattice parameters and a decrease of displacement parameters (see Fig. 1 a), no structural change has been observed down to 100 K. The same is true for the crystal structure of the penta­hydrate, Na2S2O3·5H2O (Fig. 1 b), which has been published formerly and is not discussed here in detail, but was used for comparison. All values mentioned in the structure description below are taken from the structure determinations at 100 K.

Figure 1.

Figure 1

The asymmetric units (a) of Na2S2O3·2 H2O, and (b) of Na2S2O3·5 H2O, with a comparison of relative positions and displacement ellipsoids of the non-hydrogen atoms obtained from structure determinations at 100 K (filled atoms) and at 200 K (contours of ellipsoids drawn around filled atoms). Ellipsoids are drawn at the 80% probability level, hydrogen bonds as dashed lines.

Na2S2O3·2H2O (Fig. 2) crystallizes in space group P21/n with two formula units in the asymmetric unit and all atoms (4 Na, 4 S, 10 O, and 8 H) lying on general positions. The two independent thio­sulfate anions adopt slightly distorted tetra­hedral shapes with average O—S—O angles (110.30°) above and S—S—O angles (108.63°) below the mean bond angle of 109.46°. The S—S bond lengths of 2.0047 (2) Å and 2.0078 (2) Å are similar to that found in the penta­hydrate [2.0266 (1) Å], and, thus, are shorter than the single bond of 2.055 Å in crystalline S8 (Rettig & Trotter, 1987), but substanti­ally longer than the double bond of 1.883 Å in S2O (Tiemann et al., 1974) or 1.889 Å in S2 (Pyykkö & Atsumi, 2009). Also, the S—O bond lengths, which lie between 1.4722 (4) and 1.4841 (4) Å are in the same range as those of the penta­hydrate [1.4665 (4)–1.4867 (4) Å]. The bond-valence sums (Brown & Altermatt, 1985) for the central sulfur atoms, as calculated with the parameters of Brese & O’Keeffe (1991), are 5.87 and 5.88 valence units (v.u.) for S1 and S3, respectively, and are in good agreement with a formal charge of +VI as well as with the value of 5.86 v.u. obtained for the corres­ponding S atom in the penta­hydrate. The anions coordinate to the Na+ cations and form hydrogen bonds with the water mol­ecules of crystallization: in detail the terminal S and O atoms are surrounded by one Na+ and one H2O (O1, O4, O6), two Na+ and one H2O (O2, O3), three Na+ (O5), three Na+ and two H2O (S2), or four Na+ and one H2O (S4).

Figure 2.

Figure 2

Crystal structure of Na2S2O3·2H2O: (a) extended unit cell, view along [ Inline graphic 00]; (b) section of two layers of S2O3 2− anions and H2O mol­ecules connected by hydrogen bonds, view along [ Inline graphic 01], differently coloured tetra­hedra belong to different layers. Anisotropic displacement ellipsoids of non-H atoms are drawn with 80% probability, S2O3 2− ions as tetra­hedra, and hydrogen bonds as dashed lines.

The four independent Na+ cations are coordinated irregularly by the S2O3 2− dianions in mono- or bidentate manner and by H2O, as illustrated in Fig. 3 ad. The shortest Na—O distances are in the range between 2.3169 (5) Å and 2.4884 (4) Å, with Na—S between 2.9296 (3) and 2.9695 Å. If these environments are considered exclusively, the resulting coordination polyhedra can be inter­preted as an octa­hedron for Na3, mainly distorted due to two S2O3 2– ions coordinating as bidentate ligands, a trigonal prism with one missing corner for Na2 or an octa­hedron with one (Na1) or two (Na4) missing corners. This construction starting from six-vertex polyhedra seems to be justified due to the clearly favoured sixfold coordination for Na+ in an environment of oxygen atoms (Gagné & Hawthorne, 2016). However, for the latter cases of open octa­hedra, S2O3 2– ions as additional ligands with longer bond distances of about 2.5 Å for Na—O and 3.2 Å for Na—S are found, resulting in seven-coordinate polyhedra around Na1 and Na4. For Na2, the H2O mol­ecule located above the open side of the polyhedron can be excluded from the coord­ination sphere due to the too large Na—O distance of 3.52 Å and the orientation of the H atoms. The bond-valence sums for the Na cations are 1.08, 1.05, 1.15, and 1.06 v.u. with the highest value for the most conventionally coordinated Na3 ion while reduced values indicate weaker bonds in the coordination spheres of Na1 and Na4 or even an apparently incomplete coordination of Na2. This generally ‘overbonded’ situation for the Na cations as well as the trend to higher values for regular coordination polyhedra is similarly found in the penta­hydrate, the respective values are 1.14 and 1.18 v.u. for the two independent cations in relatively regular octa­hedral coordinations, shown in Fig. 3 e,f.

Figure 3.

Figure 3

Coordination polyhedra around the Na+ cations in Na2S2O3·2H2O (ad) and in Na2S2O3·5H2O (ef). Anisotropic displacement ellipsoids of non-H atoms are drawn with 80% probability, weakly or non-coordinating distances above 2.55 Å for Na—O and 3.18 Å for Na—S as dashed lines.

The four independent water mol­ecules show quite similar, roughly tetra­hedral surroundings, as shown in Fig. 4. Each H2O mol­ecule coordinates to two Na+ ions, i.e., as a common vertex of neighbouring coordination polyhedra. All the H atoms form one hydrogen bond of moderate strength with O—H⋯O or O—H⋯S angles above 164°, see Table 1. This is another similarity to observations in the penta­hydrate, where each H atom is part of one almost linear hydrogen bond (Table 2).

Figure 4.

Figure 4

Environments of the crystal water mol­ecules in Na2S2O3·2H2O. Anisotropic displacement ellipsoids of non-H atoms are drawn with a probability of 80%, hydrogen bonds as dashed lines, and short contacts to coordinating Na+ ions as thin lines.

Table 1. Hydrogen-bond geometry (Å, °) for Na2S2O3·2H2O at 100 K.

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O2i 0.844 (11) 2.090 (11) 2.9246 (5) 170.1 (11)
O7—H2⋯O3 0.782 (12) 2.190 (12) 2.9498 (6) 164.3 (12)
O8—H3⋯O6ii 0.827 (12) 2.211 (12) 3.0282 (6) 170.1 (11)
O8—H4⋯S2 0.772 (14) 2.545 (14) 3.3142 (4) 174.5 (13)
O9—H5⋯O1 0.851 (15) 1.966 (15) 2.8142 (6) 174.7 (15)
O9—H6⋯S4ii 0.825 (13) 2.471 (13) 3.2959 (4) 177.9 (12)
O10—H7⋯O4iii 0.828 (13) 1.936 (13) 2.7585 (5) 172.4 (12)
O10—H8⋯S2iii 0.810 (13) 2.421 (13) 3.2183 (4) 168.3 (12)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °) for Na2S2O3·5H2O at 100 K.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O3 0.808 (12) 2.001 (12) 2.8067 (5) 176.1 (13)
O4—H2⋯O2i 0.812 (12) 2.017 (12) 2.8175 (5) 168.6 (12)
O5—H3⋯O3 0.820 (13) 1.973 (13) 2.7912 (5) 174.9 (12)
O5—H4⋯O3ii 0.809 (13) 2.074 (13) 2.8736 (5) 169.2 (12)
O6—H5⋯O4ii 0.847 (14) 1.993 (14) 2.8365 (6) 173.8 (13)
O6—H6⋯S2iii 0.850 (13) 2.495 (13) 3.3404 (4) 173.6 (12)
O7—H7⋯S2iv 0.824 (13) 2.527 (13) 3.3356 (4) 167.5 (11)
O7—H8⋯O8v 0.812 (13) 2.017 (13) 2.8280 (6) 177.2 (12)
O8—H9⋯S2i 0.792 (13) 2.554 (13) 3.3147 (4) 161.6 (12)
O8—H10⋯S2 0.785 (14) 2.558 (14) 3.3381 (4) 173.0 (13)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

The highly irregular coordination of the Na+ cations in the dihydrate is conspicuous with respect to other more conventional structural features, like the usual bond lengths in the anions or the near-linear hydrogen bonds. Obviously, the structure directing effect of the Na+ cations is the weakest among the present building units, although more regular coordination polyhedra, particularly octa­hedra, would have been possible as found in the penta­hydrate as well as in the related structures of Na6(S2O3)3·2H2O (Hesse et al., 1993) and Na8(S2O3)4·5H2O (Chan et al., 2008). Such open, or at least higher coordinated, polyhedra including weaker bonded ligands as observed in Na2S2O3·2H2O should represent an easy possibility to incorporate further water mol­ecules into the structure and, therefore, a hint for the low stability relative to higher hydrates and the retardation of this structure determination.

3. Supra­molecular features

In Na2S2O3·2 H2O the thio­sulfate anions and water mol­ecules are connected via hydrogen bonds of medium strength, see Table 1, with all H atoms forming one almost linear bond. Two S2O3 2– ions are connected by two H2O mol­ecules to form the building units shown in Fig. 5 a. These dimeric units (e.g. blue S2O3 tetra­hedra and H2O mol­ecules in Fig. 5 b) are connected via two further H2O mol­ecules (pink in Fig. 5 b) with a second dimer (green in Fig. 5 b). The resulting tetra­mers are again inter­linked with neighbouring tetra­mers (yellow and red tetra­hedra in Fig. 5 b) by water mol­ecules, thereby forming corrugated layers lying parallel to (101), also shown in Fig. 2 b. The number of H atoms nicely matches the number of corners of the S2O3 2– tetra­hedra; however, by realizing this connection pattern, six of the eight possible corners of the tetra­hedra dimers accept one hydrogen bond, but one corner (S2) accepts two while one corner (O5) is exclusively surrounded by Na+ cations. The layers are not inter­connected by hydrogen bonds but only by Na+ cations. This is another difference to the penta­hydrate where the S2O3 2– ions and H2O mol­ecules form a three-dimensional framework including hydrogen bonds between water mol­ecules, obviously due to the higher number of H2O mol­ecules and, thus, possible hydrogen bonds.

Figure 5.

Figure 5

(a) A pair of S2O3 2– anions in Na2S2O3·2H2O connected by two H2O mol­ecules via hydrogen bonds. (b) Illustration of the hydrogen-bond network between thio­sulfate anions, drawn as tetra­hedra, and water mol­ecules in Na2S2O3·2H2O: two S2O3 tetra­hedra (e.g., the blue ones) are bonded by two H2O (blue) to form dimers, which are connected by two H2O (pink) with another dimer (green). These tetra­meric units are inter­connected by H2O with neighbouring tetra­mers (yellow and red tetra­hedra).

4. Database survey

Na2S2O3 and its hydrates have been structurally investigated several times within the second half of the last century. Besides the anhydrous phase (Sándor & Csordás, 1961; Teng et al., 1984), including a thorough examination of its temperature dependent polymorphism (von Benda & von Benda, 1979), some structure determinations of hydrates are reported, namely Na2S2O3·2/3H2O (Hesse et al., 1993), Na2S2O3·5/4H2O (Chan et al., 2008) and Na2S2O3·5H2O (Taylor & Beevers, 1952; Padmanabhan et al., 1971; Uraz & Armaǧan, 1977; Lisensky & Levy, 1978; Prasad & Rani, 2001), with the sheer number of references obviously illustrating the high stability of the latter phase. For other alkali metal thio­sulfates, the structures of anhydrous K2S2O3 (Lehner et al., 2013) and K2S2O3·1/3H2O (Csordás, 1969; Chan et al., 2008; Lehner et al., 2013) as well as of the monohydrates of Rb2S2O3 (Lehner et al., 2013) and Cs2S2O3 (Winkler et al., 2016) have been reported.

5. Synthesis and crystallization

Colourless crystals of Na2S2O3·2H2O were grown at ambient conditions from an aqueous solution of Na2S2O3. The crystals were found floating at the surface of the mother liquor, but sank down to the bottom of the crystallization vessel immediately after disturbing the surface tension. A batch of crystals was immersed into perfluoro­ether, and the crystals were found to be unscathed and stable at room temperature for days. In contrast, no crystals of the dihydrate could be found from the crystal bulk at the bottom of the vessel, but all crystals isolated later from there were penta­hydrate crystals. In addition, an X-ray powder pattern of a sample prepared from this bulk did not contain any other reflections than those of the penta­hydrate.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. In all presented structure refinements, all hydrogen atoms could be located from the difference-Fourier map and were refined with free atomic coordinates and isotropic displacement parameters.

Table 3. Experimental details.

  Na2S2O3·2H2O at 100 K Na2S2O3·2H2O at 200 K Na2S2O3·5H2O at 100 K Na2S2O3·5H2O at 200 K
Crystal data
Chemical formula Na2S2O3·2H2O Na2S2O3·2H2O Na2S2O3·5H2O Na2S2O3·5H2O
M r 194.13 194.13 248.18 248.18
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 200 100 200
a, b, c (Å) 5.7719 (1), 19.3257 (3), 11.5162 (3) 5.8003 (1), 19.3713 (4), 11.5520 (3) 5.9187 (1), 21.5173 (4), 7.4979 (1) 5.9357 (1), 21.5424 (7), 7.5026 (2)
β (°) 102.388 (2) 102.331 (2) 103.722 (1) 103.722 (2)
V3) 1254.68 (4) 1268.03 (5) 927.64 (3) 931.97 (4)
Z 8 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.93 0.92 0.67 0.67
Crystal size (mm) 0.25 × 0.2 × 0.15 0.25 × 0.2 × 0.15 0.6 × 0.3 × 0.15 0.6 × 0.3 × 0.15
 
Data collection
Diffractometer Stoe StadiVari Stoe StadiVari Stoe StadiVari Stoe StadiVari
Absorption correction Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015) Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015) Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015) Empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015)
T min, T max 0.919, 1.000 0.920, 1.000 0.868, 1.000 0.869, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52592, 8735, 7524 55208, 8848, 7181 64240, 6486, 5525 56700, 5006, 4212
R int 0.019 0.024 0.026 0.023
(sin θ/λ)max−1) 0.946 0.948 0.948 0.869
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.017, 0.047, 1.02 0.022, 0.057, 1.01 0.020, 0.047, 1.06 0.019, 0.052, 1.08
No. of reflections 8735 8848 6486 5006
No. of parameters 195 195 149 149
H-atom treatment All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.55, −0.41 0.58, −0.34 0.54, −0.27 0.42, −0.28

Computer programs: X-AREA (Stoe & Cie, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and DIAMOND (Brandenburg & Putz, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, Na2S2O3H2O2_100K, Na2S2O3H2O2_200K, Na2S2O3H2O5_100K, Na2S2O3H2O5_200K. DOI: 10.1107/S2056989022011975/hb8046sup1.cif

e-79-00044-sup1.cif (7.4MB, cif)

Structure factors: contains datablock(s) Na2S2O3H2O2_100K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O2_100Ksup2.hkl

Structure factors: contains datablock(s) Na2S2O3H2O2_200K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O2_200Ksup3.hkl

Structure factors: contains datablock(s) Na2S2O3H2O5_100K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O5_100Ksup4.hkl

Structure factors: contains datablock(s) Na2S2O3H2O5_200K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O5_200Ksup5.hkl

CCDC references: 2227273, 2227272, 2227271, 2227270

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Crystal data

Na2S2O3·2H2O F(000) = 784
Mr = 194.13 Dx = 2.055 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.7719 (1) Å Cell parameters from 74172 reflections
b = 19.3257 (3) Å θ = 3.6–42.6°
c = 11.5162 (3) Å µ = 0.93 mm1
β = 102.388 (2)° T = 100 K
V = 1254.68 (4) Å3 Block, colourless
Z = 8 0.25 × 0.2 × 0.15 mm

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Data collection

Stoe StadiVari diffractometer 8735 independent reflections
Radiation source: Genix 3D HF Mo 7524 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.019
Detector resolution: 5.81 pixels mm-1 θmax = 42.3°, θmin = 3.6°
ω scans h = −10→10
Absorption correction: empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015) k = −24→36
Tmin = 0.919, Tmax = 1.000 l = −21→21
52592 measured reflections

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 Hydrogen site location: difference Fourier map
wR(F2) = 0.047 All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.0499P] where P = (Fo2 + 2Fc2)/3
8735 reflections (Δ/σ)max = 0.002
195 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.41 e Å3

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.76421 (4) 0.06060 (2) 0.07970 (2) 0.01045 (4)
Na2 0.77035 (4) 0.05630 (2) 0.42885 (2) 0.01123 (4)
Na3 0.69690 (4) 0.18045 (2) 0.68402 (2) 0.00931 (4)
Na4 0.25074 (4) 0.16699 (2) 0.96445 (2) 0.01068 (4)
S1 0.40448 (2) 0.21188 (2) 0.40032 (2) 0.00580 (2)
S2 0.05139 (2) 0.22163 (2) 0.34974 (2) 0.00789 (2)
O1 0.46625 (7) 0.13787 (2) 0.40401 (4) 0.01077 (6)
O2 0.48663 (6) 0.24383 (2) 0.51923 (3) 0.00914 (5)
O3 0.51216 (6) 0.24942 (2) 0.31289 (3) 0.00948 (5)
S3 0.50073 (2) 0.04913 (2) 0.80268 (2) 0.00634 (2)
S4 0.85520 (2) 0.05914 (2) 0.83904 (2) 0.00764 (2)
O4 0.40222 (7) 0.09813 (2) 0.70691 (4) 0.01385 (7)
O5 0.41409 (7) 0.06361 (2) 0.91219 (3) 0.01001 (6)
O6 0.43732 (7) −0.02303 (2) 0.76485 (3) 0.01022 (6)
O7 0.62228 (7) 0.17816 (2) 0.10472 (4) 0.01099 (6)
H1 0.721 (2) 0.2050 (6) 0.0833 (10) 0.020 (2)*
H2 0.610 (2) 0.1913 (6) 0.1672 (11) 0.024 (3)*
O8 0.14212 (7) 0.11545 (2) 0.13791 (4) 0.01073 (6)
H3 0.250 (2) 0.0899 (6) 0.1722 (10) 0.022 (3)*
H4 0.117 (2) 0.1420 (8) 0.1836 (12) 0.036 (3)*
O9 0.16296 (7) 0.02476 (2) 0.41193 (4) 0.01152 (6)
H5 0.249 (3) 0.0597 (8) 0.4053 (13) 0.040 (4)*
H6 0.162 (2) 0.0032 (7) 0.3500 (11) 0.028 (3)*
O10 0.96285 (7) 0.13736 (2) 0.57734 (4) 0.01076 (6)
H7 1.090 (2) 0.1261 (7) 0.6218 (11) 0.028 (3)*
H8 0.987 (2) 0.1637 (7) 0.5266 (11) 0.030 (3)*

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.01049 (8) 0.01158 (9) 0.00939 (9) −0.00200 (7) 0.00237 (7) 0.00018 (7)
Na2 0.01055 (9) 0.01247 (9) 0.00991 (9) 0.00314 (7) 0.00051 (7) −0.00119 (7)
Na3 0.00991 (8) 0.00920 (8) 0.00892 (8) 0.00016 (6) 0.00226 (6) 0.00054 (6)
Na4 0.01100 (8) 0.00982 (9) 0.01091 (9) 0.00286 (7) 0.00168 (7) −0.00021 (7)
S1 0.00541 (4) 0.00571 (4) 0.00618 (4) 0.00005 (3) 0.00100 (3) −0.00008 (3)
S2 0.00558 (4) 0.01003 (4) 0.00789 (4) 0.00030 (3) 0.00106 (3) 0.00014 (3)
O1 0.00952 (13) 0.00573 (13) 0.01647 (16) 0.00125 (10) 0.00145 (11) −0.00059 (11)
O2 0.00966 (13) 0.01030 (14) 0.00666 (12) −0.00023 (10) −0.00002 (10) −0.00154 (10)
O3 0.00852 (12) 0.01143 (14) 0.00930 (13) −0.00052 (10) 0.00372 (10) 0.00192 (10)
S3 0.00611 (4) 0.00644 (4) 0.00640 (4) −0.00036 (3) 0.00113 (3) 0.00010 (3)
S4 0.00626 (4) 0.00816 (4) 0.00842 (4) −0.00021 (3) 0.00138 (3) 0.00005 (3)
O4 0.00915 (13) 0.01576 (16) 0.01486 (16) −0.00036 (12) −0.00138 (12) 0.00848 (13)
O5 0.00940 (13) 0.01171 (14) 0.00994 (14) 0.00015 (11) 0.00431 (11) −0.00291 (11)
O6 0.01128 (13) 0.00868 (13) 0.01099 (14) −0.00318 (10) 0.00305 (11) −0.00345 (10)
O7 0.01116 (14) 0.01221 (15) 0.00987 (14) −0.00230 (11) 0.00287 (11) −0.00060 (11)
O8 0.01084 (14) 0.00978 (14) 0.01119 (14) 0.00123 (11) 0.00152 (11) −0.00083 (11)
O9 0.01357 (15) 0.01038 (14) 0.01172 (15) −0.00148 (11) 0.00516 (12) −0.00135 (11)
O10 0.00916 (13) 0.01293 (15) 0.01009 (14) 0.00096 (11) 0.00183 (11) 0.00219 (11)

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Geometric parameters (Å, º)

Na1—O8i 2.3882 (5) Na4—Na3x 3.9395 (3)
Na1—O6ii 2.4451 (5) Na4—Na3xi 4.0357 (3)
Na1—O7 2.4529 (5) S1—O1 1.4725 (4)
Na1—O5iii 2.4771 (5) S1—O3 1.4815 (4)
Na1—O5ii 2.6214 (5) S1—O2 1.4841 (4)
Na1—S4iii 2.9296 (3) S1—S2 2.0047 (2)
Na1—S3ii 3.0917 (3) S1—Na4viii 3.0636 (3)
Na1—S4iv 3.1898 (3) S1—Na3xiii 3.2694 (3)
Na1—S3iii 3.2338 (3) S2—Na3xiii 2.9354 (3)
Na1—Na4iii 3.6173 (3) S2—Na4xiii 3.2208 (3)
Na1—Na4v 3.9337 (3) O2—Na4viii 2.4708 (4)
Na1—Na1vi 3.9694 (5) O3—Na3xiii 2.4883 (4)
Na2—O1 2.3307 (4) O3—Na4viii 2.5536 (4)
Na2—O9ii 2.3794 (5) S3—O4 1.4722 (4)
Na2—O6ii 2.3831 (4) S3—O5 1.4797 (4)
Na2—O9i 2.3947 (5) S3—O6 1.4832 (4)
Na2—O10 2.4078 (5) S3—S4 2.0078 (2)
Na2—Na2iv 3.5475 (5) S3—Na1ii 3.0917 (3)
Na2—Na3 3.8866 (3) S3—Na1ix 3.2338 (3)
Na2—H8 2.557 (12) S4—Na1ix 2.9295 (3)
Na3—O10 2.3169 (5) S4—Na1iv 3.1897 (3)
Na3—O2 2.3636 (4) S4—Na4i 3.1981 (3)
Na3—O4 2.3845 (5) O5—Na1ix 2.4771 (5)
Na3—O3vii 2.4884 (4) O5—Na1ii 2.6213 (5)
Na3—S2vii 2.9354 (3) O6—Na2ii 2.3831 (4)
Na3—S4 2.9695 (3) O6—Na1ii 2.4451 (5)
Na3—S3 3.2022 (3) O7—Na4iii 2.4018 (5)
Na3—S1vii 3.2694 (3) O7—H1 0.844 (11)
Na3—Na4viii 3.9395 (3) O7—H2 0.782 (12)
Na3—Na4i 4.0357 (3) O8—Na1xi 2.3882 (5)
Na4—O5 2.3423 (4) O8—Na4iii 2.4316 (5)
Na4—O7ix 2.4017 (5) O8—H3 0.827 (12)
Na4—O8ix 2.4317 (5) O8—H4 0.772 (14)
Na4—O2x 2.4708 (4) O9—Na2ii 2.3793 (5)
Na4—O3x 2.5536 (4) O9—Na2xi 2.3947 (5)
Na4—S1x 3.0636 (2) O9—H5 0.851 (15)
Na4—S4xi 3.1981 (3) O9—H6 0.825 (13)
Na4—S2vii 3.2208 (3) O10—H7 0.828 (13)
Na4—Na1ix 3.6173 (3) O10—H8 0.810 (13)
Na4—Na1xii 3.9337 (3)
O8i—Na1—O6ii 118.400 (16) O5—Na4—O7ix 84.197 (15)
O8i—Na1—O7 82.178 (15) O5—Na4—O8ix 92.899 (16)
O6ii—Na1—O7 88.032 (15) O7ix—Na4—O8ix 80.483 (15)
O8i—Na1—O5iii 138.729 (17) O5—Na4—O2x 164.794 (17)
O6ii—Na1—O5iii 98.068 (15) O7ix—Na4—O2x 106.048 (16)
O7—Na1—O5iii 80.357 (15) O8ix—Na4—O2x 78.118 (14)
O8i—Na1—O5ii 137.591 (16) O5—Na4—O3x 123.483 (16)
O6ii—Na1—O5ii 56.628 (13) O7ix—Na4—O3x 132.507 (17)
O7—Na1—O5ii 134.460 (16) O8ix—Na4—O3x 128.636 (15)
O5iii—Na1—O5ii 77.780 (15) O2x—Na4—O3x 57.417 (12)
O8i—Na1—S4iii 86.073 (12) O5—Na4—S1x 150.169 (14)
O6ii—Na1—S4iii 154.130 (13) O7ix—Na4—S1x 122.393 (13)
O7—Na1—S4iii 104.610 (12) O8ix—Na4—S1x 103.959 (12)
O5iii—Na1—S4iii 62.959 (10) O2x—Na4—S1x 28.631 (9)
O5ii—Na1—S4iii 100.155 (11) O3x—Na4—S1x 28.794 (9)
O8i—Na1—S3ii 133.571 (13) O5—Na4—S4xi 67.401 (11)
O6ii—Na1—S3ii 28.098 (9) O7ix—Na4—S4xi 144.113 (14)
O7—Na1—S3ii 112.008 (13) O8ix—Na4—S4xi 79.579 (12)
O5iii—Na1—S3ii 87.693 (11) O2x—Na4—S4xi 98.634 (12)
O5ii—Na1—S3ii 28.531 (9) O3x—Na4—S4xi 82.850 (11)
S4iii—Na1—S3ii 127.864 (9) S1x—Na4—S4xi 91.346 (7)
O8i—Na1—S4iv 73.118 (12) O5—Na4—S2vii 100.525 (12)
O6ii—Na1—S4iv 88.603 (12) O7ix—Na4—S2vii 74.571 (12)
O7—Na1—S4iv 149.747 (13) O8ix—Na4—S2vii 150.145 (13)
O5iii—Na1—S4iv 129.865 (13) O2x—Na4—S2vii 93.140 (11)
O5ii—Na1—S4iv 64.918 (10) O3x—Na4—S2vii 63.633 (10)
S4iii—Na1—S4iv 91.068 (7) S1x—Na4—S2vii 76.791 (6)
S3ii—Na1—S4iv 75.409 (6) S4xi—Na4—S2vii 130.207 (8)
O8i—Na1—S3iii 121.015 (13) O5—Na4—Na1ix 42.791 (11)
O6ii—Na1—S3iii 120.330 (12) O7ix—Na4—Na1ix 42.373 (11)
O7—Na1—S3iii 94.657 (12) O8ix—Na4—Na1ix 78.527 (12)
O5iii—Na1—S3iii 25.963 (9) O2x—Na4—Na1ix 143.576 (12)
O5ii—Na1—S3iii 82.368 (11) O3x—Na4—Na1ix 152.820 (13)
S4iii—Na1—S3iii 37.616 (4) S1x—Na4—Na1ix 164.477 (9)
S3ii—Na1—S3iii 102.300 (7) S4xi—Na4—Na1ix 104.156 (8)
S4iv—Na1—S3iii 112.843 (8) S2vii—Na4—Na1ix 93.397 (7)
O8i—Na1—Na4iii 118.543 (13) O5—Na4—Na1xii 89.810 (12)
O6ii—Na1—Na4iii 87.500 (12) O7ix—Na4—Na1xii 114.775 (13)
O7—Na1—Na4iii 41.293 (11) O8ix—Na4—Na1xii 34.934 (10)
O5iii—Na1—Na4iii 39.967 (10) O2x—Na4—Na1xii 75.773 (11)
O5ii—Na1—Na4iii 103.685 (11) O3x—Na4—Na1xii 104.000 (11)
S4iii—Na1—Na4iii 87.559 (7) S1x—Na4—Na1xii 90.270 (7)
S3ii—Na1—Na4iii 96.159 (8) S4xi—Na4—Na1xii 47.125 (5)
S4iv—Na1—Na4iii 168.094 (9) S2vii—Na4—Na1xii 166.945 (8)
S3iii—Na1—Na4iii 60.141 (6) Na1ix—Na4—Na1xii 99.620 (8)
O8i—Na1—Na4v 35.666 (11) O5—Na4—Na3x 153.485 (13)
O6ii—Na1—Na4v 152.675 (13) O7ix—Na4—Na3x 71.525 (12)
O7—Na1—Na4v 80.568 (11) O8ix—Na4—Na3x 73.117 (12)
O5iii—Na1—Na4v 104.310 (12) O2x—Na4—Na3x 34.529 (10)
O5ii—Na1—Na4v 143.591 (12) O3x—Na4—Na3x 81.957 (11)
S4iii—Na1—Na4v 53.130 (5) S1x—Na4—Na3x 56.340 (6)
S3ii—Na1—Na4v 164.219 (9) S4xi—Na4—Na3x 129.098 (8)
S4iv—Na1—Na4v 88.948 (7) S2vii—Na4—Na3x 83.498 (7)
S3iii—Na1—Na4v 85.509 (7) Na1ix—Na4—Na3x 111.170 (8)
Na4iii—Na1—Na4v 99.621 (8) Na1xii—Na4—Na3x 90.819 (7)
O8i—Na1—Na1vi 163.063 (16) O5—Na4—Na3xi 98.206 (12)
O6ii—Na1—Na1vi 73.997 (11) O7ix—Na4—Na3xi 166.439 (14)
O7—Na1—Na1vi 110.978 (14) O8ix—Na4—Na3xi 112.594 (12)
O5iii—Na1—Na1vi 40.198 (10) O2x—Na4—Na3xi 74.523 (10)
O5ii—Na1—Na1vi 37.582 (9) O3x—Na4—Na3xi 36.277 (10)
S4iii—Na1—Na1vi 80.371 (8) S1x—Na4—Na3xi 52.703 (5)
S3ii—Na1—Na1vi 52.748 (6) S4xi—Na4—Na3xi 46.719 (5)
S4iv—Na1—Na1vi 96.895 (9) S2vii—Na4—Na3xi 91.873 (7)
S3iii—Na1—Na1vi 49.552 (6) Na1ix—Na4—Na3xi 140.915 (8)
Na4iii—Na1—Na1vi 71.213 (8) Na1xii—Na4—Na3xi 78.663 (6)
Na4v—Na1—Na1vi 133.293 (10) Na3x—Na4—Na3xi 107.902 (7)
O1—Na2—O9ii 122.205 (18) O1—S1—O3 111.16 (2)
O1—Na2—O6ii 81.562 (16) O1—S1—O2 110.48 (2)
O9ii—Na2—O6ii 120.629 (17) O3—S1—O2 109.02 (2)
O1—Na2—O9i 149.663 (18) O1—S1—S2 108.927 (16)
O9ii—Na2—O9i 84.012 (16) O3—S1—S2 107.764 (16)
O6ii—Na2—O9i 98.619 (16) O2—S1—S2 109.430 (16)
O1—Na2—O10 82.399 (15) O1—S1—Na4viii 126.430 (16)
O9ii—Na2—O10 84.685 (15) O3—S1—Na4viii 56.126 (16)
O6ii—Na2—O10 154.570 (17) O2—S1—Na4viii 52.913 (16)
O9i—Na2—O10 85.577 (16) S2—S1—Na4viii 124.628 (7)
O1—Na2—Na2iv 160.062 (17) O1—S1—Na3xiii 133.400 (18)
O9ii—Na2—Na2iv 42.172 (11) O3—S1—Na3xiii 46.304 (15)
O6ii—Na2—Na2iv 116.288 (15) O2—S1—Na3xiii 115.505 (16)
O9i—Na2—Na2iv 41.840 (11) S2—S1—Na3xiii 62.309 (6)
O10—Na2—Na2iv 83.443 (13) Na4viii—S1—Na3xiii 79.101 (7)
O1—Na2—Na3 58.255 (12) S1—S2—Na3xiii 80.481 (7)
O9ii—Na2—Na3 81.351 (12) S1—S2—Na4xiii 123.174 (7)
O6ii—Na2—Na3 139.441 (13) Na3xiii—S2—Na4xiii 95.180 (7)
O9i—Na2—Na3 118.510 (13) S1—O1—Na2 146.29 (2)
O10—Na2—Na3 33.899 (10) S1—O2—Na3 122.18 (2)
Na2iv—Na2—Na3 102.788 (10) S1—O2—Na4viii 98.46 (2)
O1—Na2—Na1 91.058 (13) Na3—O2—Na4viii 109.136 (16)
O9ii—Na2—Na1 138.654 (13) S1—O3—Na3xiii 108.20 (2)
O6ii—Na2—Na1 34.248 (10) S1—O3—Na4viii 95.079 (19)
O9i—Na2—Na1 74.270 (12) Na3xiii—O3—Na4viii 106.335 (16)
O10—Na2—Na1 126.973 (13) O4—S3—O5 111.71 (2)
Na2iv—Na2—Na1 108.694 (10) O4—S3—O6 110.70 (2)
Na3—Na2—Na1 139.958 (8) O5—S3—O6 108.72 (2)
O1—Na2—H8 77.9 (3) O4—S3—S4 107.862 (17)
O9ii—Na2—H8 102.3 (3) O5—S3—S4 108.640 (16)
O6ii—Na2—H8 137.0 (3) O6—S3—S4 109.151 (17)
O9i—Na2—H8 82.0 (3) O4—S3—Na1ii 128.431 (17)
O10—Na2—H8 18.5 (3) O5—S3—Na1ii 57.791 (16)
Na2iv—Na2—H8 92.7 (3) O6—S3—Na1ii 50.932 (16)
Na3—Na2—H8 44.6 (3) S4—S3—Na1ii 123.533 (7)
Na1—Na2—H8 108.8 (3) O4—S3—Na3 44.406 (17)
O10—Na3—O2 92.578 (16) O5—S3—Na3 115.395 (17)
O10—Na3—O4 112.849 (18) O6—S3—Na3 135.020 (17)
O2—Na3—O4 100.309 (15) S4—S3—Na3 64.837 (6)
O10—Na3—O3vii 91.667 (15) Na1ii—S3—Na3 169.724 (7)
O2—Na3—O3vii 112.361 (16) O4—S3—Na1ix 135.99 (2)
O4—Na3—O3vii 138.171 (17) O5—S3—Na1ix 47.128 (16)
O10—Na3—S2vii 152.992 (14) O6—S3—Na1ix 112.854 (17)
O2—Na3—S2vii 91.069 (12) S4—S3—Na1ix 62.944 (6)
O4—Na3—S2vii 92.745 (14) Na1ii—S3—Na1ix 77.699 (7)
O3vii—Na3—S2vii 62.335 (10) Na3—S3—Na1ix 103.422 (7)
O10—Na3—S4 83.204 (12) S3—S4—Na1ix 79.440 (7)
O2—Na3—S4 158.528 (13) S3—S4—Na3 77.431 (6)
O4—Na3—S4 62.715 (11) Na1ix—S4—Na3 117.818 (8)
O3vii—Na3—S4 88.861 (11) S3—S4—Na1iv 126.733 (7)
S2vii—Na3—S4 102.249 (8) Na1ix—S4—Na1iv 88.932 (7)
O10—Na3—S3 106.058 (13) Na3—S4—Na1iv 148.524 (7)
O2—Na3—S3 125.851 (13) S3—S4—Na4i 138.919 (7)
O4—Na3—S3 25.595 (10) Na1ix—S4—Na4i 79.744 (7)
O3vii—Na3—S3 117.222 (12) Na3—S4—Na4i 81.648 (7)
S2vii—Na3—S3 93.258 (7) Na1iv—S4—Na4i 87.727 (7)
S4—Na3—S3 37.733 (4) S3—O4—Na3 110.00 (2)
O10—Na3—S1vii 117.162 (13) S3—O5—Na4 127.49 (2)
O2—Na3—S1vii 108.846 (12) S3—O5—Na1ix 106.91 (2)
O4—Na3—S1vii 119.596 (14) Na4—O5—Na1ix 97.241 (16)
O3vii—Na3—S1vii 25.496 (9) S3—O5—Na1ii 93.680 (19)
S2vii—Na3—S1vii 37.209 (4) Na4—O5—Na1ii 126.101 (17)
S4—Na3—S1vii 91.674 (7) Na1ix—O5—Na1ii 102.221 (15)
S3—Na3—S1vii 106.535 (7) S3—O6—Na2ii 124.85 (2)
O10—Na3—Na2 35.423 (11) S3—O6—Na1ii 100.97 (2)
O2—Na3—Na2 80.408 (11) Na2ii—O6—Na1ii 112.489 (17)
O4—Na3—Na2 82.405 (14) Na4iii—O7—Na1 96.333 (16)
O3vii—Na3—Na2 127.067 (12) Na4iii—O7—H1 114.7 (8)
S2vii—Na3—Na2 169.225 (9) Na1—O7—H1 105.9 (8)
S4—Na3—Na2 84.133 (7) Na4iii—O7—H2 113.7 (9)
S3—Na3—Na2 86.521 (7) Na1—O7—H2 120.6 (9)
S1vii—Na3—Na2 152.539 (8) H1—O7—H2 105.7 (11)
O10—Na3—Na4viii 77.064 (12) Na1xi—O8—Na4iii 109.400 (17)
O2—Na3—Na4viii 36.336 (10) Na1xi—O8—H3 114.8 (8)
O4—Na3—Na4viii 136.606 (12) Na4iii—O8—H3 109.6 (8)
O3vii—Na3—Na4viii 80.031 (11) Na1xi—O8—H4 100.9 (10)
S2vii—Na3—Na4viii 90.445 (7) Na4iii—O8—H4 114.1 (10)
S4—Na3—Na4viii 156.961 (8) H3—O8—H4 107.9 (13)
S3—Na3—Na4viii 161.959 (8) Na2ii—O9—Na2xi 95.988 (16)
S1vii—Na3—Na4viii 86.918 (7) Na2ii—O9—H5 126.2 (10)
Na2—Na3—Na4viii 86.578 (7) Na2xi—O9—H5 112.6 (10)
O10—Na3—Na4i 84.262 (12) Na2ii—O9—H6 107.7 (9)
O2—Na3—Na4i 149.099 (13) Na2xi—O9—H6 111.6 (9)
O4—Na3—Na4i 109.260 (12) H5—O9—H6 102.7 (12)
O3vii—Na3—Na4i 37.389 (10) Na3—O10—Na2 110.678 (17)
S2vii—Na3—Na4i 79.004 (6) Na3—O10—H7 111.4 (8)
S4—Na3—Na4i 51.632 (5) Na2—O10—H7 118.7 (9)
S3—Na3—Na4i 84.222 (6) Na3—O10—H8 113.2 (9)
S1vii—Na3—Na4i 48.197 (5) Na2—O10—H8 91.3 (9)
Na2—Na3—Na4i 111.661 (7) H7—O10—H8 110.2 (12)
Na4viii—Na3—Na4i 113.819 (7)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (iii) x, y, z−1; (iv) −x+2, −y, −z+1; (v) x+1, y, z−1; (vi) −x+1, −y, −z; (vii) x+1/2, −y+1/2, z+1/2; (viii) x+1/2, −y+1/2, z−1/2; (ix) x, y, z+1; (x) x−1/2, −y+1/2, z+1/2; (xi) x−1, y, z; (xii) x−1, y, z+1; (xiii) x−1/2, −y+1/2, z−1/2.

Sodium thiosulfate dihydrate (Na2S2O3H2O2_100K). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H1···O2viii 0.844 (11) 2.090 (11) 2.9246 (5) 170.1 (11)
O7—H2···O3 0.782 (12) 2.190 (12) 2.9498 (6) 164.3 (12)
O8—H3···O6ii 0.827 (12) 2.211 (12) 3.0282 (6) 170.1 (11)
O8—H4···S2 0.772 (14) 2.545 (14) 3.3142 (4) 174.5 (13)
O9—H5···O1 0.851 (15) 1.966 (15) 2.8142 (6) 174.7 (15)
O9—H6···S4ii 0.825 (13) 2.471 (13) 3.2959 (4) 177.9 (12)
O10—H7···O4i 0.828 (13) 1.936 (13) 2.7585 (5) 172.4 (12)
O10—H8···S2i 0.810 (13) 2.421 (13) 3.2183 (4) 168.3 (12)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (viii) x+1/2, −y+1/2, z−1/2.

(Na2S2O3H2O2_200K). Crystal data

O3S2·2(H2O)·2(Na) F(000) = 784
Mr = 194.13 Dx = 2.034 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.8003 (1) Å Cell parameters from 63400 reflections
b = 19.3713 (4) Å θ = 3.2–42.5°
c = 11.5520 (3) Å µ = 0.92 mm1
β = 102.331 (2)° T = 200 K
V = 1268.03 (5) Å3 Block, colourless
Z = 8 0.25 × 0.2 × 0.15 mm

(Na2S2O3H2O2_200K). Data collection

Stoe StadiVari diffractometer 8848 independent reflections
Radiation source: Genix 3D HF Mo 7181 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.024
Detector resolution: 5.81 pixels mm-1 θmax = 42.3°, θmin = 3.6°
ω scans h = −10→10
Absorption correction: empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015) k = −24→36
Tmin = 0.920, Tmax = 1.000 l = −21→21
55208 measured reflections

(Na2S2O3H2O2_200K). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: difference Fourier map
wR(F2) = 0.057 All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0343P)2] where P = (Fo2 + 2Fc2)/3
8848 reflections (Δ/σ)max = 0.002
195 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.34 e Å3

(Na2S2O3H2O2_200K). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(Na2S2O3H2O2_200K). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.76083 (5) 0.06118 (2) 0.07884 (3) 0.01992 (5)
Na2 0.77256 (5) 0.05700 (2) 0.42842 (3) 0.02061 (5)
Na3 0.69341 (5) 0.18066 (2) 0.68350 (2) 0.01663 (5)
Na4 0.24774 (5) 0.16710 (2) 0.96288 (3) 0.01997 (5)
S1 0.40321 (2) 0.21139 (2) 0.39998 (2) 0.01053 (2)
S2 0.05175 (2) 0.22031 (2) 0.34932 (2) 0.01460 (3)
O1 0.46682 (8) 0.13784 (2) 0.40371 (5) 0.01990 (8)
O2 0.48340 (8) 0.24334 (2) 0.51827 (4) 0.01645 (7)
O3 0.50946 (8) 0.24916 (3) 0.31300 (4) 0.01705 (7)
S3 0.49533 (2) 0.04958 (2) 0.80242 (2) 0.01214 (3)
S4 0.84805 (2) 0.05883 (2) 0.83802 (2) 0.01430 (3)
O4 0.39836 (9) 0.09907 (3) 0.70831 (5) 0.02776 (11)
O5 0.41052 (8) 0.06351 (3) 0.91195 (4) 0.01854 (8)
O6 0.43089 (9) −0.02198 (3) 0.76389 (4) 0.02031 (8)
O7 0.61781 (9) 0.17868 (3) 0.10362 (4) 0.01977 (8)
H1 0.714 (2) 0.2063 (6) 0.0822 (12) 0.032 (3)*
H2 0.603 (2) 0.1921 (7) 0.1666 (12) 0.034 (3)*
O8 0.13817 (9) 0.11508 (3) 0.13587 (5) 0.01947 (8)
H3 0.242 (2) 0.0895 (7) 0.1678 (11) 0.032 (3)*
H4 0.116 (3) 0.1393 (9) 0.1796 (14) 0.055 (4)*
O9 0.16529 (10) 0.02449 (3) 0.41317 (5) 0.02058 (8)
H5 0.248 (3) 0.0584 (9) 0.4037 (16) 0.059 (5)*
H6 0.165 (2) 0.0039 (7) 0.3523 (12) 0.033 (3)*
O10 0.96144 (8) 0.13779 (3) 0.57813 (4) 0.01861 (8)
H7 1.088 (2) 0.1259 (7) 0.6229 (12) 0.038 (3)*
H8 0.990 (2) 0.1628 (7) 0.5310 (12) 0.037 (3)*

(Na2S2O3H2O2_200K). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.02111 (12) 0.02219 (13) 0.01677 (11) −0.00539 (9) 0.00473 (9) −0.00005 (9)
Na2 0.01952 (12) 0.02307 (13) 0.01777 (12) 0.00628 (9) 0.00067 (9) −0.00274 (9)
Na3 0.01804 (11) 0.01634 (11) 0.01560 (11) 0.00029 (8) 0.00381 (8) 0.00127 (8)
Na4 0.02085 (12) 0.01800 (12) 0.02026 (12) 0.00594 (9) 0.00261 (9) −0.00061 (9)
S1 0.01007 (4) 0.01019 (5) 0.01107 (5) 0.00009 (3) 0.00164 (3) −0.00023 (3)
S2 0.01013 (5) 0.01901 (6) 0.01424 (5) 0.00055 (4) 0.00167 (4) 0.00046 (4)
O1 0.01663 (17) 0.01085 (17) 0.0309 (2) 0.00213 (13) 0.00209 (16) −0.00127 (15)
O2 0.01729 (17) 0.01861 (18) 0.01175 (16) −0.00063 (14) −0.00069 (13) −0.00254 (13)
O3 0.01504 (16) 0.02101 (19) 0.01647 (18) −0.00113 (14) 0.00641 (13) 0.00321 (14)
S3 0.01239 (5) 0.01208 (5) 0.01166 (5) −0.00133 (4) 0.00192 (4) 0.00020 (4)
S4 0.01222 (5) 0.01537 (6) 0.01526 (6) 0.00022 (4) 0.00283 (4) 0.00047 (4)
O4 0.01646 (19) 0.0326 (3) 0.0303 (3) −0.00209 (18) −0.00376 (17) 0.0184 (2)
O5 0.01686 (17) 0.0215 (2) 0.01898 (19) 0.00002 (14) 0.00763 (15) −0.00642 (15)
O6 0.0240 (2) 0.01761 (19) 0.0204 (2) −0.00826 (16) 0.00714 (16) −0.00775 (15)
O7 0.02038 (19) 0.0217 (2) 0.01769 (19) −0.00475 (16) 0.00510 (15) −0.00113 (15)
O8 0.02040 (19) 0.01723 (19) 0.0201 (2) 0.00224 (15) 0.00281 (16) −0.00136 (15)
O9 0.0244 (2) 0.0185 (2) 0.0211 (2) −0.00272 (16) 0.00981 (17) −0.00309 (16)
O10 0.01630 (18) 0.0226 (2) 0.01676 (18) 0.00175 (15) 0.00311 (14) 0.00375 (15)

(Na2S2O3H2O2_200K). Geometric parameters (Å, º)

Na1—O8i 2.3873 (6) Na4—Na3x 3.9539 (4)
Na1—O6ii 2.4447 (6) Na4—Na3xi 4.0486 (4)
Na1—O7 2.4602 (6) S1—O1 1.4702 (5)
Na1—O5iii 2.4848 (6) S1—O3 1.4795 (5)
Na1—O5ii 2.6227 (6) S1—O2 1.4816 (4)
Na1—S4iii 2.9323 (3) S1—S2 2.0047 (2)
Na1—S3ii 3.0924 (3) S1—Na4viii 3.0727 (3)
Na1—S3iii 3.2433 (3) S1—Na3xiii 3.2875 (3)
Na1—S4iv 3.2470 (3) S2—Na3xiii 2.9490 (3)
Na1—Na4iii 3.6275 (4) S2—Na4xiii 3.2520 (3)
Na1—Na4v 3.9492 (4) O2—Na4viii 2.4878 (5)
Na1—Na1vi 3.9670 (6) O3—Na3xiii 2.5051 (5)
Na2—O1 2.3372 (5) O3—Na4viii 2.5529 (6)
Na2—O6ii 2.3808 (6) S3—O4 1.4684 (5)
Na2—O9ii 2.3851 (6) S3—O5 1.4770 (5)
Na2—O9i 2.4058 (6) S3—O6 1.4793 (5)
Na2—O10 2.4148 (6) S3—S4 2.0068 (2)
Na2—Na2iv 3.5650 (6) S3—Na1ii 3.0924 (3)
Na2—Na3 3.9000 (4) S3—Na1ix 3.2432 (3)
Na2—H8 2.560 (13) S4—Na1ix 2.9323 (3)
Na3—O10 2.3231 (6) S4—Na4i 3.2288 (3)
Na3—O2 2.3681 (5) S4—Na1iv 3.2470 (3)
Na3—O4 2.3914 (6) O5—Na1ix 2.4848 (6)
Na3—O3vii 2.5051 (5) O5—Na1ii 2.6227 (6)
Na3—S2vii 2.9491 (3) O6—Na2ii 2.3808 (6)
Na3—S4 2.9794 (3) O6—Na1ii 2.4447 (6)
Na3—S3 3.2139 (3) O7—Na4iii 2.4106 (6)
Na3—S1vii 3.2874 (3) O7—H1 0.847 (13)
Na3—Na4viii 3.9540 (4) O7—H2 0.795 (13)
Na3—Na4i 4.0486 (4) O8—Na1xi 2.3872 (6)
Na4—O5 2.3456 (5) O8—Na4iii 2.4403 (6)
Na4—O7ix 2.4105 (6) O8—H3 0.804 (13)
Na4—O8ix 2.4403 (6) O8—H4 0.721 (17)
Na4—O2x 2.4877 (5) O9—Na2ii 2.3851 (6)
Na4—O3x 2.5529 (6) O9—Na2xi 2.4059 (6)
Na4—S1x 3.0726 (3) O9—H5 0.835 (17)
Na4—S4xi 3.2289 (3) O9—H6 0.808 (14)
Na4—S2vii 3.2520 (3) O10—H7 0.835 (14)
Na4—Na1ix 3.6275 (4) O10—H8 0.772 (14)
Na4—Na1xii 3.9493 (4)
O8i—Na1—O6ii 117.81 (2) O5—Na4—O7ix 84.30 (2)
O8i—Na1—O7 82.834 (19) O5—Na4—O8ix 92.37 (2)
O6ii—Na1—O7 89.01 (2) O7ix—Na4—O8ix 80.573 (19)
O8i—Na1—O5iii 139.09 (2) O5—Na4—O2x 164.65 (2)
O6ii—Na1—O5iii 98.969 (19) O7ix—Na4—O2x 105.701 (19)
O7—Na1—O5iii 80.403 (18) O8ix—Na4—O2x 78.158 (18)
O8i—Na1—O5ii 136.44 (2) O5—Na4—O3x 124.20 (2)
O6ii—Na1—O5ii 56.453 (16) O7ix—Na4—O3x 132.33 (2)
O7—Na1—O5ii 135.01 (2) O8ix—Na4—O3x 128.304 (19)
O5iii—Na1—O5ii 78.12 (2) O2x—Na4—O3x 57.124 (15)
O8i—Na1—S4iii 86.263 (16) O5—Na4—S1x 150.730 (17)
O6ii—Na1—S4iii 153.927 (16) O7ix—Na4—S1x 121.920 (17)
O7—Na1—S4iii 104.804 (16) O8ix—Na4—S1x 103.888 (16)
O5iii—Na1—S4iii 62.763 (12) O2x—Na4—S1x 28.502 (10)
O5ii—Na1—S4iii 99.662 (14) O3x—Na4—S1x 28.635 (10)
O8i—Na1—S3ii 132.852 (17) O5—Na4—S4xi 67.748 (14)
O6ii—Na1—S3ii 27.992 (11) O7ix—Na4—S4xi 144.363 (17)
O7—Na1—S3ii 112.607 (16) O8ix—Na4—S4xi 79.041 (15)
O5iii—Na1—S3ii 88.056 (14) O2x—Na4—S4xi 98.321 (14)
O5ii—Na1—S3ii 28.468 (11) O3x—Na4—S4xi 82.917 (13)
S4iii—Na1—S3ii 127.348 (11) S1x—Na4—S4xi 91.333 (8)
O8i—Na1—S3iii 121.104 (16) O5—Na4—S2vii 100.986 (16)
O6ii—Na1—S3iii 120.962 (16) O7ix—Na4—S2vii 74.230 (15)
O7—Na1—S3iii 94.456 (15) O8ix—Na4—S2vii 149.970 (17)
O5iii—Na1—S3iii 25.800 (11) O2x—Na4—S2vii 93.044 (14)
O5ii—Na1—S3iii 82.631 (13) O3x—Na4—S2vii 64.017 (12)
S4iii—Na1—S3iii 37.501 (5) S1x—Na4—S2vii 76.829 (8)
S3ii—Na1—S3iii 102.508 (9) S4xi—Na4—S2vii 130.911 (10)
O8i—Na1—S4iv 71.943 (15) O5—Na4—Na1ix 42.800 (14)
O6ii—Na1—S4iv 87.582 (16) O7ix—Na4—Na1ix 42.386 (14)
O7—Na1—S4iv 149.277 (16) O8ix—Na4—Na1ix 78.499 (15)
O5iii—Na1—S4iv 130.273 (16) O2x—Na4—Na1ix 143.281 (15)
O5ii—Na1—S4iv 64.881 (13) O3x—Na4—Na1ix 153.189 (16)
S4iii—Na1—S4iv 91.048 (9) S1x—Na4—Na1ix 164.044 (11)
S3ii—Na1—S4iv 75.144 (8) S4xi—Na4—Na1ix 104.579 (10)
S3iii—Na1—S4iv 113.356 (10) S2vii—Na4—Na1ix 93.185 (9)
O8i—Na1—Na4iii 119.081 (17) O5—Na4—Na1xii 89.768 (15)
O6ii—Na1—Na4iii 89.002 (17) O7ix—Na4—Na1xii 114.701 (16)
O7—Na1—Na4iii 41.342 (13) O8ix—Na4—Na1xii 34.668 (13)
O5iii—Na1—Na4iii 39.891 (12) O2x—Na4—Na1xii 75.547 (14)
O5ii—Na1—Na4iii 104.346 (15) O3x—Na4—Na1xii 103.732 (14)
S4iii—Na1—Na4iii 87.283 (9) S1x—Na4—Na1xii 90.121 (9)
S3ii—Na1—Na4iii 97.020 (10) S4xi—Na4—Na1xii 46.906 (7)
S3iii—Na1—Na4iii 59.736 (7) S2vii—Na4—Na1xii 166.892 (10)
S4iv—Na1—Na4iii 168.666 (11) Na1ix—Na4—Na1xii 99.823 (10)
O8i—Na1—Na4v 35.554 (14) O5—Na4—Na3x 153.064 (17)
O6ii—Na1—Na4v 152.272 (16) O7ix—Na4—Na3x 71.212 (15)
O7—Na1—Na4v 80.915 (15) O8ix—Na4—Na3x 73.120 (14)
O5iii—Na1—Na4v 104.647 (15) O2x—Na4—Na3x 34.492 (11)
O5ii—Na1—Na4v 142.833 (15) O3x—Na4—Na3x 81.785 (13)
S4iii—Na1—Na4v 53.522 (7) S1x—Na4—Na3x 56.206 (7)
S3ii—Na1—Na4v 163.151 (11) S4xi—Na4—Na3x 128.605 (10)
S3iii—Na1—Na4v 85.734 (8) S2vii—Na4—Na3x 83.368 (8)
S4iv—Na1—Na4v 88.121 (8) Na1ix—Na4—Na3x 110.847 (10)
Na4iii—Na1—Na4v 99.823 (10) Na1xii—Na4—Na3x 90.440 (9)
O8i—Na1—Na1vi 162.27 (2) O5—Na4—Na3xi 98.583 (15)
O6ii—Na1—Na1vi 74.472 (14) O7ix—Na4—Na3xi 166.615 (18)
O7—Na1—Na1vi 111.295 (17) O8ix—Na4—Na3xi 112.225 (16)
O5iii—Na1—Na1vi 40.314 (13) O2x—Na4—Na3xi 74.432 (12)
O5ii—Na1—Na1vi 37.803 (12) O3x—Na4—Na3xi 36.423 (12)
S4iii—Na1—Na1vi 79.880 (10) S1x—Na4—Na3xi 52.850 (6)
S3ii—Na1—Na1vi 52.954 (7) S4xi—Na4—Na3xi 46.673 (6)
S3iii—Na1—Na1vi 49.554 (7) S2vii—Na4—Na3xi 92.385 (8)
S4iv—Na1—Na1vi 97.138 (11) Na1ix—Na4—Na3xi 141.291 (10)
Na4iii—Na1—Na1vi 71.532 (10) Na1xii—Na4—Na3xi 78.487 (8)
Na4v—Na1—Na1vi 133.254 (12) Na3x—Na4—Na3xi 107.842 (8)
O1—Na2—O6ii 82.24 (2) O1—S1—O3 111.15 (3)
O1—Na2—O9ii 121.57 (2) O1—S1—O2 110.51 (3)
O6ii—Na2—O9ii 119.40 (2) O3—S1—O2 109.00 (3)
O1—Na2—O9i 150.70 (2) O1—S1—S2 108.98 (2)
O6ii—Na2—O9i 98.37 (2) O3—S1—S2 107.713 (19)
O9ii—Na2—O9i 83.83 (2) O2—S1—S2 109.43 (2)
O1—Na2—O10 82.508 (19) O1—S1—Na4viii 126.09 (2)
O6ii—Na2—O10 155.73 (2) O3—S1—Na4viii 55.78 (2)
O9ii—Na2—O10 84.74 (2) O2—S1—Na4viii 53.25 (2)
O9i—Na2—O10 85.998 (19) S2—S1—Na4viii 124.926 (9)
O1—Na2—Na2iv 159.85 (2) O1—S1—Na3xiii 133.51 (2)
O6ii—Na2—Na2iv 115.254 (19) O3—S1—Na3xiii 46.299 (19)
O9ii—Na2—Na2iv 42.140 (14) O2—S1—Na3xiii 115.357 (19)
O9i—Na2—Na2iv 41.695 (14) S2—S1—Na3xiii 62.288 (7)
O10—Na2—Na2iv 83.775 (16) Na4viii—S1—Na3xiii 78.992 (8)
O1—Na2—Na3 58.132 (15) S1—S2—Na3xiii 80.713 (8)
O6ii—Na2—Na3 139.920 (17) S1—S2—Na4xiii 123.039 (9)
O9ii—Na2—Na3 81.357 (15) Na3xiii—S2—Na4xiii 94.364 (8)
O9i—Na2—Na3 118.828 (17) S1—O1—Na2 146.31 (3)
O10—Na2—Na3 33.841 (13) S1—O2—Na3 122.37 (3)
Na2iv—Na2—Na3 102.995 (12) S1—O2—Na4viii 98.24 (2)
O1—Na2—Na1 90.813 (17) Na3—O2—Na4viii 109.004 (19)
O6ii—Na2—Na1 33.978 (14) S1—O3—Na3xiii 108.43 (2)
O9ii—Na2—Na1 138.631 (17) S1—O3—Na4viii 95.58 (2)
O9i—Na2—Na1 75.239 (16) Na3xiii—O3—Na4viii 106.34 (2)
O10—Na2—Na1 127.834 (17) O4—S3—O5 111.71 (3)
Na2iv—Na2—Na1 109.277 (12) O4—S3—O6 110.90 (3)
Na3—Na2—Na1 140.011 (10) O5—S3—O6 108.66 (3)
O1—Na2—H8 78.8 (3) O4—S3—S4 107.82 (2)
O6ii—Na2—H8 139.2 (3) O5—S3—S4 108.64 (2)
O9ii—Na2—H8 101.3 (3) O6—S3—S4 109.05 (2)
O9i—Na2—H8 82.1 (3) O4—S3—Na1ii 129.57 (2)
O10—Na2—H8 17.5 (3) O5—S3—Na1ii 57.81 (2)
Na2iv—Na2—H8 92.2 (3) O6—S3—Na1ii 50.86 (2)
Na3—Na2—H8 44.3 (3) S4—S3—Na1ii 122.440 (9)
Na1—Na2—H8 110.5 (3) O4—S3—Na3 44.20 (2)
O10—Na3—O2 92.728 (19) O5—S3—Na3 115.89 (2)
O10—Na3—O4 113.74 (2) O6—S3—Na3 134.61 (2)
O2—Na3—O4 100.217 (19) S4—S3—Na3 64.862 (7)
O10—Na3—O3vii 91.184 (18) Na1ii—S3—Na3 170.840 (9)
O2—Na3—O3vii 112.831 (19) O4—S3—Na1ix 135.24 (3)
O4—Na3—O3vii 137.58 (2) O5—S3—Na1ix 47.07 (2)
O10—Na3—S2vii 152.055 (17) O6—S3—Na1ix 113.42 (2)
O2—Na3—S2vii 91.337 (14) S4—S3—Na1ix 62.814 (7)
O4—Na3—S2vii 92.654 (19) Na1ii—S3—Na1ix 77.492 (9)
O3vii—Na3—S2vii 61.898 (12) Na3—S3—Na1ix 103.191 (8)
O10—Na3—S4 83.176 (15) S3—S4—Na1ix 79.685 (8)
O2—Na3—S4 157.854 (16) S3—S4—Na3 77.566 (8)
O4—Na3—S4 62.368 (14) Na1ix—S4—Na3 117.727 (9)
O3vii—Na3—S4 89.069 (14) S3—S4—Na4i 138.838 (9)
S2vii—Na3—S4 102.479 (9) Na1ix—S4—Na4i 79.571 (9)
O10—Na3—S3 106.368 (16) Na3—S4—Na4i 81.298 (8)
O2—Na3—S3 125.470 (15) S3—S4—Na1iv 127.876 (9)
O4—Na3—S3 25.345 (12) Na1ix—S4—Na1iv 88.951 (9)
O3vii—Na3—S3 117.147 (15) Na3—S4—Na1iv 147.809 (9)
S2vii—Na3—S3 93.535 (8) Na4i—S4—Na1iv 86.748 (8)
S4—Na3—S3 37.573 (5) S3—O4—Na3 110.46 (3)
O10—Na3—S1vii 116.459 (16) S3—O5—Na4 126.64 (3)
O2—Na3—S1vii 109.280 (14) S3—O5—Na1ix 107.13 (2)
O4—Na3—S1vii 119.167 (19) Na4—O5—Na1ix 97.307 (19)
O3vii—Na3—S1vii 25.276 (10) S3—O5—Na1ii 93.72 (2)
S2vii—Na3—S1vii 36.999 (5) Na4—O5—Na1ii 126.97 (2)
S4—Na3—S1vii 91.884 (8) Na1ix—O5—Na1ii 101.88 (2)
S3—Na3—S1vii 106.583 (9) S3—O6—Na2ii 126.21 (3)
O10—Na3—Na2 35.370 (14) S3—O6—Na1ii 101.14 (3)
O2—Na3—Na2 80.167 (14) Na2ii—O6—Na1ii 113.05 (2)
O4—Na3—Na2 83.528 (19) Na4iii—O7—Na1 96.27 (2)
O3vii—Na3—Na2 126.537 (14) Na4iii—O7—H1 114.1 (9)
S2vii—Na3—Na2 169.873 (10) Na1—O7—H1 106.9 (9)
S4—Na3—Na2 84.098 (8) Na4iii—O7—H2 113.1 (9)
S3—Na3—Na2 87.028 (8) Na1—O7—H2 121.0 (9)
S1vii—Na3—Na2 151.796 (10) H1—O7—H2 105.6 (12)
O10—Na3—Na4viii 76.972 (15) Na1xi—O8—Na4iii 109.78 (2)
O2—Na3—Na4viii 36.505 (13) Na1xi—O8—H3 114.0 (9)
O4—Na3—Na4viii 136.702 (15) Na4iii—O8—H3 109.3 (9)
O3vii—Na3—Na4viii 80.289 (14) Na1xi—O8—H4 100.8 (13)
S2vii—Na3—Na4viii 90.294 (9) Na4iii—O8—H4 114.9 (13)
S4—Na3—Na4viii 157.179 (10) H3—O8—H4 107.9 (15)
S3—Na3—Na4viii 161.760 (10) Na2ii—O9—Na2xi 96.16 (2)
S1vii—Na3—Na4viii 87.044 (8) Na2ii—O9—H5 128.6 (13)
Na2—Na3—Na4viii 86.141 (8) Na2xi—O9—H5 112.6 (12)
O10—Na3—Na4i 83.574 (15) Na2ii—O9—H6 108.2 (10)
O2—Na3—Na4i 149.322 (16) Na2xi—O9—H6 111.5 (9)
O4—Na3—Na4i 109.170 (15) H5—O9—H6 99.8 (14)
O3vii—Na3—Na4i 37.235 (13) Na3—O10—Na2 110.79 (2)
S2vii—Na3—Na4i 78.954 (8) Na3—O10—H7 111.9 (9)
S4—Na3—Na4i 52.030 (6) Na2—O10—H7 118.0 (9)
S3—Na3—Na4i 84.462 (8) Na3—O10—H8 114.5 (10)
S1vii—Na3—Na4i 48.157 (6) Na2—O10—H8 92.0 (10)
Na2—Na3—Na4i 111.153 (9) H7—O10—H8 108.4 (13)
Na4viii—Na3—Na4i 113.778 (9)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (iii) x, y, z−1; (iv) −x+2, −y, −z+1; (v) x+1, y, z−1; (vi) −x+1, −y, −z; (vii) x+1/2, −y+1/2, z+1/2; (viii) x+1/2, −y+1/2, z−1/2; (ix) x, y, z+1; (x) x−1/2, −y+1/2, z+1/2; (xi) x−1, y, z; (xii) x−1, y, z+1; (xiii) x−1/2, −y+1/2, z−1/2.

(Na2S2O3H2O2_200K). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H1···O2viii 0.847 (13) 2.105 (13) 2.9400 (7) 168.4 (12)
O7—H2···O3 0.795 (13) 2.183 (13) 2.9595 (7) 165.6 (13)
O8—H3···O6ii 0.804 (13) 2.303 (14) 3.0991 (7) 170.8 (12)
O8—H4···S2 0.721 (17) 2.600 (17) 3.3188 (5) 175.7 (17)
O9—H5···O1 0.835 (17) 1.994 (18) 2.8237 (7) 172.4 (18)
O9—H6···S4ii 0.808 (14) 2.499 (14) 3.3069 (5) 178.4 (12)
O10—H7···O4i 0.835 (14) 1.930 (14) 2.7602 (7) 172.5 (13)
O10—H8···S2i 0.772 (14) 2.469 (14) 3.2261 (5) 166.9 (13)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (viii) x+1/2, −y+1/2, z−1/2.

(Na2S2O3H2O5_100K). Crystal data

O3S2·5(H2O)·2(Na) F(000) = 512
Mr = 248.18 Dx = 1.777 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.9187 (1) Å Cell parameters from 69507 reflections
b = 21.5173 (4) Å θ = 3.0–42.4°
c = 7.4979 (1) Å µ = 0.67 mm1
β = 103.722 (1)° T = 100 K
V = 927.64 (3) Å3 Block, colourless
Z = 4 0.6 × 0.3 × 0.15 mm

(Na2S2O3H2O5_100K). Data collection

Stoe StadiVari diffractometer 6486 independent reflections
Radiation source: Genix 3D HF Mo 5525 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.026
Detector resolution: 5.81 pixels mm-1 θmax = 42.3°, θmin = 3.0°
ω scans h = −11→11
Absorption correction: empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015) k = −40→40
Tmin = 0.868, Tmax = 1.000 l = −14→9
64240 measured reflections

(Na2S2O3H2O5_100K). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 Hydrogen site location: difference Fourier map
wR(F2) = 0.047 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.0151P] where P = (Fo2 + 2Fc2)/3
6486 reflections (Δ/σ)max = 0.001
149 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.27 e Å3

(Na2S2O3H2O5_100K). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(Na2S2O3H2O5_100K). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.72487 (4) 0.34133 (2) 0.07542 (3) 0.01006 (3)
Na2 0.25504 (4) 0.40853 (2) 0.21568 (3) 0.01143 (4)
S1 0.14781 (2) 0.14166 (2) 0.27653 (2) 0.00683 (2)
S2 0.10308 (2) 0.06742 (2) 0.10544 (2) 0.00895 (2)
O1 0.33884 (6) 0.12823 (2) 0.43602 (5) 0.01248 (6)
O2 −0.07043 (6) 0.15368 (2) 0.33255 (5) 0.01157 (5)
O3 0.20340 (6) 0.19572 (2) 0.17106 (5) 0.01064 (5)
O4 0.62384 (6) 0.23471 (2) 0.09598 (6) 0.01306 (6)
H1 0.505 (2) 0.2244 (6) 0.1222 (17) 0.029 (3)*
H2 0.7229 (19) 0.2157 (6) 0.1692 (16) 0.021 (2)*
O5 0.09097 (6) 0.31382 (2) 0.27759 (5) 0.01099 (5)
H3 0.132 (2) 0.2794 (6) 0.2504 (17) 0.029 (3)*
H4 0.104 (2) 0.3116 (6) 0.3873 (18) 0.026 (3)*
O6 0.61660 (6) 0.36783 (2) 0.35694 (5) 0.01218 (6)
H5 0.620 (2) 0.3354 (7) 0.4218 (18) 0.032 (3)*
H6 0.736 (2) 0.3872 (6) 0.4162 (17) 0.029 (3)*
O7 0.86492 (7) 0.44750 (2) 0.10769 (5) 0.01232 (5)
H7 0.849 (2) 0.4768 (6) 0.1746 (18) 0.028 (3)*
H8 0.806 (2) 0.4592 (6) 0.0042 (17) 0.026 (3)*
O8 0.64754 (6) 0.01526 (2) 0.24596 (6) 0.01309 (6)
H9 0.733 (2) 0.0319 (6) 0.1941 (18) 0.032 (3)*
H10 0.524 (2) 0.0297 (6) 0.2069 (18) 0.033 (3)*

(Na2S2O3H2O5_100K). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.00909 (7) 0.01107 (8) 0.00987 (8) −0.00034 (6) 0.00196 (6) −0.00033 (6)
Na2 0.00991 (8) 0.01013 (8) 0.01364 (9) 0.00026 (6) 0.00160 (6) 0.00022 (6)
S1 0.00648 (3) 0.00759 (4) 0.00631 (4) −0.00005 (3) 0.00127 (3) 0.00026 (3)
S2 0.01010 (4) 0.00757 (4) 0.00881 (4) −0.00018 (3) 0.00151 (3) −0.00055 (3)
O1 0.00991 (12) 0.01622 (14) 0.00904 (13) 0.00008 (10) −0.00225 (9) 0.00048 (10)
O2 0.00971 (12) 0.01476 (14) 0.01171 (13) 0.00181 (10) 0.00544 (10) 0.00062 (10)
O3 0.01410 (13) 0.00786 (12) 0.01111 (13) −0.00165 (10) 0.00524 (10) 0.00061 (9)
O4 0.01005 (12) 0.01317 (14) 0.01548 (15) −0.00037 (10) 0.00204 (10) 0.00128 (11)
O5 0.01314 (13) 0.00956 (12) 0.00996 (13) 0.00146 (10) 0.00211 (10) −0.00052 (9)
O6 0.00987 (12) 0.01442 (14) 0.01149 (14) −0.00074 (10) 0.00105 (10) 0.00104 (10)
O7 0.01419 (13) 0.01036 (13) 0.01148 (14) 0.00069 (10) 0.00118 (10) −0.00052 (10)
O8 0.01060 (13) 0.01258 (14) 0.01597 (15) 0.00096 (10) 0.00292 (11) 0.00182 (11)

(Na2S2O3H2O5_100K). Geometric parameters (Å, º)

Na1—O1i 2.3682 (4) S1—S2 2.0266 (1)
Na1—O4 2.3850 (4) S1—Na2vi 3.3793 (2)
Na1—O5ii 2.4052 (4) S2—Na2i 3.2961 (3)
Na1—O6 2.4152 (4) O1—Na1vi 2.3683 (4)
Na1—O2iii 2.4170 (4) O1—Na2vi 2.4004 (4)
Na1—O7 2.4227 (4) O2—Na1vii 2.4170 (4)
Na1—Na2ii 3.3879 (3) O4—H1 0.808 (12)
Na1—Na2 3.5095 (3) O4—H2 0.812 (12)
Na1—H8 2.658 (12) O5—Na1v 2.4052 (4)
Na2—O6 2.3223 (4) O5—H3 0.820 (13)
Na2—O5 2.3506 (4) O5—H4 0.809 (13)
Na2—O8iv 2.3686 (4) O6—H5 0.847 (14)
Na2—O1i 2.4004 (4) O6—H6 0.850 (13)
Na2—O7v 2.4090 (4) O7—Na2ii 2.4090 (4)
Na2—S2vi 3.2960 (3) O7—H7 0.824 (13)
Na2—S1i 3.3793 (2) O7—H8 0.812 (13)
Na2—Na1v 3.3879 (3) O8—Na2viii 2.3687 (4)
S1—O1 1.4665 (4) O8—H9 0.792 (13)
S1—O2 1.4728 (3) O8—H10 0.785 (14)
S1—O3 1.4867 (4)
O1i—Na1—O4 93.674 (15) S2vi—Na2—S1i 152.425 (7)
O1i—Na1—O5ii 167.632 (16) O6—Na2—Na1v 131.763 (13)
O4—Na1—O5ii 85.687 (14) O5—Na2—Na1v 45.224 (10)
O1i—Na1—O6 83.813 (14) O8iv—Na2—Na1v 129.225 (13)
O4—Na1—O6 92.752 (15) O1i—Na2—Na1v 87.492 (11)
O5ii—Na1—O6 83.881 (14) O7v—Na2—Na1v 45.643 (10)
O1i—Na1—O2iii 104.997 (15) S2vi—Na2—Na1v 85.113 (6)
O4—Na1—O2iii 105.640 (15) S1i—Na2—Na1v 67.361 (6)
O5ii—Na1—O2iii 87.024 (14) O6—Na2—Na1 43.228 (11)
O6—Na1—O2iii 158.798 (16) O5—Na2—Na1 95.497 (12)
O1i—Na1—O7 93.139 (15) O8iv—Na2—Na1 104.388 (12)
O4—Na1—O7 170.292 (17) O1i—Na2—Na1 42.257 (10)
O5ii—Na1—O7 86.177 (14) O7v—Na2—Na1 143.813 (13)
O6—Na1—O7 81.115 (14) S2vi—Na2—Na1 137.109 (8)
O2iii—Na1—O7 79.197 (14) S1i—Na2—Na1 63.600 (6)
O1i—Na1—Na2ii 138.122 (13) Na1v—Na2—Na1 118.197 (9)
O4—Na1—Na2ii 128.202 (12) O1—S1—O2 111.14 (2)
O5ii—Na1—Na2ii 43.924 (10) O1—S1—O3 111.28 (2)
O6—Na1—Na2ii 92.647 (11) O2—S1—O3 109.52 (2)
O2iii—Na1—Na2ii 67.791 (11) O1—S1—S2 108.693 (17)
O7—Na1—Na2ii 45.314 (10) O2—S1—S2 109.098 (16)
O1i—Na1—Na2 42.968 (10) O3—S1—S2 106.994 (15)
O4—Na1—Na2 98.530 (12) O1—S1—Na2vi 38.016 (16)
O5ii—Na1—Na2 124.885 (12) O2—S1—Na2vi 75.695 (16)
O6—Na1—Na2 41.191 (10) O3—S1—Na2vi 138.961 (15)
O2iii—Na1—Na2 141.432 (13) S2—S1—Na2vi 109.327 (6)
O7—Na1—Na2 81.849 (11) S1—S2—Na2i 114.539 (6)
Na2ii—Na1—Na2 118.197 (9) S1—O1—Na1vi 141.43 (2)
O1i—Na1—H8 81.3 (3) S1—O1—Na2vi 119.88 (2)
O4—Na1—H8 172.1 (3) Na1vi—O1—Na2vi 94.775 (14)
O5ii—Na1—H8 100.6 (3) S1—O2—Na1vii 148.53 (2)
O6—Na1—H8 92.8 (3) Na1—O4—H1 121.7 (9)
O2iii—Na1—H8 70.1 (3) Na1—O4—H2 112.1 (8)
O7—Na1—H8 17.6 (3) H1—O4—H2 103.3 (12)
Na2ii—Na1—H8 57.2 (3) Na2—O5—Na1v 90.850 (14)
Na2—Na1—H8 82.0 (3) Na2—O5—H3 124.9 (9)
O6—Na2—O5 87.830 (15) Na1v—O5—H3 110.0 (9)
O6—Na2—O8iv 97.981 (16) Na2—O5—H4 108.0 (9)
O5—Na2—O8iv 156.443 (17) Na1v—O5—H4 120.6 (9)
O6—Na2—O1i 85.131 (15) H3—O5—H4 103.7 (12)
O5—Na2—O1i 93.865 (15) Na2—O6—Na1 95.581 (15)
O8iv—Na2—O1i 109.318 (16) Na2—O6—H5 117.9 (9)
O6—Na2—O7v 172.157 (17) Na1—O6—H5 109.3 (9)
O5—Na2—O7v 87.719 (15) Na2—O6—H6 128.0 (9)
O8iv—Na2—O7v 83.664 (14) Na1—O6—H6 102.3 (8)
O1i—Na2—O7v 101.611 (15) H5—O6—H6 101.4 (12)
O6—Na2—S2vi 94.048 (12) Na2ii—O7—Na1 89.042 (14)
O5—Na2—S2vi 75.443 (11) Na2ii—O7—H7 107.4 (9)
O8iv—Na2—S2vi 81.366 (12) Na1—O7—H7 134.1 (9)
O1i—Na2—S2vi 169.304 (13) Na2ii—O7—H8 126.3 (8)
O7v—Na2—S2vi 78.579 (11) Na1—O7—H8 97.8 (9)
O6—Na2—S1i 105.285 (12) H7—O7—H8 105.0 (12)
O5—Na2—S1i 85.665 (11) Na2viii—O8—H9 109.5 (10)
O8iv—Na2—S1i 114.344 (13) Na2viii—O8—H10 127.3 (10)
O1i—Na2—S1i 22.102 (9) H9—O8—H10 106.5 (13)
O7v—Na2—S1i 80.806 (11)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x+1, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x−1, y, z; (vi) x, −y+1/2, z+1/2; (vii) x−1, −y+1/2, z+1/2; (viii) −x+1, y−1/2, −z+1/2.

(Na2S2O3H2O5_100K). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H1···O3 0.808 (12) 2.001 (12) 2.8067 (5) 176.1 (13)
O4—H2···O2ii 0.812 (12) 2.017 (12) 2.8175 (5) 168.6 (12)
O5—H3···O3 0.820 (13) 1.973 (13) 2.7912 (5) 174.9 (12)
O5—H4···O3vi 0.809 (13) 2.074 (13) 2.8736 (5) 169.2 (12)
O6—H5···O4vi 0.847 (14) 1.993 (14) 2.8365 (6) 173.8 (13)
O6—H6···S2ix 0.850 (13) 2.495 (13) 3.3404 (4) 173.6 (12)
O7—H7···S2iv 0.824 (13) 2.527 (13) 3.3356 (4) 167.5 (11)
O7—H8···O8i 0.812 (13) 2.017 (13) 2.8280 (6) 177.2 (12)
O8—H9···S2ii 0.792 (13) 2.554 (13) 3.3147 (4) 161.6 (12)
O8—H10···S2 0.785 (14) 2.558 (14) 3.3381 (4) 173.0 (13)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iv) −x+1, y+1/2, −z+1/2; (vi) x, −y+1/2, z+1/2; (ix) x+1, −y+1/2, z+1/2.

(Na2S2O3H2O5_200K). Crystal data

O3S2·5(H2O)·2(Na) F(000) = 512
Mr = 248.18 Dx = 1.769 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.9357 (1) Å Cell parameters from 72911 reflections
b = 21.5424 (7) Å θ = 3.4–38.4°
c = 7.5026 (2) Å µ = 0.67 mm1
β = 103.722 (2)° T = 200 K
V = 931.97 (4) Å3 Block, colourless
Z = 4 0.6 × 0.3 × 0.15 mm

(Na2S2O3H2O5_200K). Data collection

Stoe StadiVari diffractometer 5006 independent reflections
Radiation source: Genix 3D HF Mo 4212 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.023
Detector resolution: 5.81 pixels mm-1 θmax = 38.1°, θmin = 3.4°
ω scans h = −10→10
Absorption correction: empirical (using intensity measurements) (X-AREA; Stoe & Cie, 2015) k = −37→37
Tmin = 0.869, Tmax = 1.000 l = −12→12
56700 measured reflections

(Na2S2O3H2O5_200K). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 Hydrogen site location: difference Fourier map
wR(F2) = 0.052 All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.0519P] where P = (Fo2 + 2Fc2)/3
5006 reflections (Δ/σ)max = 0.001
149 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.28 e Å3

(Na2S2O3H2O5_200K). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(Na2S2O3H2O5_200K). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Na1 0.72432 (4) 0.34120 (2) 0.07497 (3) 0.01737 (5)
Na2 0.25469 (5) 0.40844 (2) 0.21534 (4) 0.02015 (5)
S1 0.14796 (2) 0.14165 (2) 0.27688 (2) 0.01199 (3)
S2 0.10261 (3) 0.06772 (2) 0.10611 (2) 0.01584 (3)
O1 0.33851 (8) 0.12808 (3) 0.43550 (6) 0.02186 (9)
O2 −0.06889 (8) 0.15357 (2) 0.33334 (7) 0.02022 (9)
O3 0.20282 (8) 0.19559 (2) 0.17211 (6) 0.01850 (8)
O4 0.62336 (9) 0.23466 (2) 0.09666 (7) 0.02250 (9)
H1 0.510 (3) 0.2256 (6) 0.1234 (19) 0.050 (4)*
H2 0.722 (2) 0.2159 (5) 0.1725 (16) 0.029 (3)*
O5 0.09082 (9) 0.31379 (2) 0.27781 (7) 0.01859 (8)
H3 0.135 (2) 0.2789 (6) 0.2509 (17) 0.041 (3)*
H4 0.100 (2) 0.3107 (6) 0.3837 (18) 0.037 (3)*
O6 0.61589 (8) 0.36779 (3) 0.35662 (7) 0.02082 (9)
H5 0.616 (2) 0.3358 (6) 0.4249 (18) 0.042 (3)*
H6 0.734 (2) 0.3882 (6) 0.4170 (17) 0.046 (3)*
O7 0.86448 (9) 0.44752 (2) 0.10841 (7) 0.02104 (9)
H7 0.851 (2) 0.4775 (6) 0.1719 (18) 0.042 (3)*
H8 0.801 (2) 0.4599 (6) −0.0005 (19) 0.042 (3)*
O8 0.64707 (9) 0.01512 (2) 0.24637 (8) 0.02268 (9)
H9 0.734 (3) 0.0327 (7) 0.194 (2) 0.053 (4)*
H10 0.528 (3) 0.0308 (6) 0.2099 (19) 0.049 (4)*

(Na2S2O3H2O5_200K). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na1 0.01558 (11) 0.01926 (12) 0.01702 (11) −0.00067 (9) 0.00338 (9) −0.00062 (8)
Na2 0.01729 (12) 0.01729 (12) 0.02491 (13) 0.00058 (9) 0.00308 (9) 0.00077 (9)
S1 0.01134 (5) 0.01321 (6) 0.01121 (5) −0.00010 (4) 0.00228 (4) 0.00042 (4)
S2 0.01840 (6) 0.01296 (6) 0.01544 (6) −0.00045 (4) 0.00258 (5) −0.00103 (4)
O1 0.01746 (19) 0.0281 (2) 0.01595 (18) 0.00009 (17) −0.00416 (15) 0.00017 (16)
O2 0.01731 (19) 0.0257 (2) 0.02027 (19) 0.00338 (16) 0.00971 (16) 0.00130 (16)
O3 0.0247 (2) 0.01328 (18) 0.01982 (19) −0.00270 (15) 0.00978 (16) 0.00071 (14)
O4 0.0169 (2) 0.0227 (2) 0.0272 (2) −0.00065 (17) 0.00376 (18) 0.00230 (18)
O5 0.0227 (2) 0.01597 (19) 0.01668 (18) 0.00263 (16) 0.00376 (15) −0.00085 (14)
O6 0.01690 (19) 0.0251 (2) 0.0192 (2) −0.00092 (17) 0.00170 (16) 0.00212 (16)
O7 0.0241 (2) 0.0170 (2) 0.0204 (2) 0.00113 (17) 0.00206 (17) −0.00118 (16)
O8 0.0185 (2) 0.0208 (2) 0.0287 (2) 0.00186 (17) 0.00558 (18) 0.00340 (17)

(Na2S2O3H2O5_200K). Geometric parameters (Å, º)

Na1—O1i 2.3750 (5) S1—S2 2.0216 (2)
Na1—O4 2.3872 (6) S1—Na2vi 3.3761 (3)
Na1—O5ii 2.4138 (6) S2—Na2i 3.3060 (3)
Na1—O6 2.4193 (6) O1—Na1vi 2.3750 (5)
Na1—O2iii 2.4210 (5) O1—Na2vi 2.4020 (6)
Na1—O7 2.4294 (6) O2—Na1vii 2.4211 (5)
Na1—Na2ii 3.3978 (4) O4—H1 0.774 (15)
Na1—Na2 3.5172 (4) O4—H2 0.820 (12)
Na2—O6 2.3256 (6) O5—Na1v 2.4138 (6)
Na2—O5 2.3536 (6) O5—H3 0.836 (13)
Na2—O8iv 2.3717 (6) O5—H4 0.786 (13)
Na2—O1i 2.4021 (6) O6—H5 0.859 (14)
Na2—O7v 2.4157 (6) O6—H6 0.860 (14)
Na2—S2vi 3.3060 (3) O7—Na2ii 2.4157 (6)
Na2—S1i 3.3761 (3) O7—H7 0.818 (14)
Na2—Na1v 3.3978 (4) O7—H8 0.857 (14)
S1—O1 1.4637 (5) O8—Na2viii 2.3718 (6)
S1—O2 1.4700 (5) O8—H9 0.813 (15)
S1—O3 1.4818 (5) O8—H10 0.775 (15)
O1i—Na1—O4 93.81 (2) O1i—Na2—Na1v 87.607 (15)
O1i—Na1—O5ii 167.57 (2) O7v—Na2—Na1v 45.635 (14)
O4—Na1—O5ii 85.708 (19) S2vi—Na2—Na1v 85.025 (8)
O1i—Na1—O6 83.704 (19) S1i—Na2—Na1v 67.409 (7)
O4—Na1—O6 92.58 (2) O6—Na2—Na1 43.196 (14)
O5ii—Na1—O6 83.912 (18) O5—Na2—Na1 95.577 (15)
O1i—Na1—O2iii 105.32 (2) O8iv—Na2—Na1 104.229 (16)
O4—Na1—O2iii 106.02 (2) O1i—Na2—Na1 42.288 (13)
O5ii—Na1—O2iii 86.693 (19) O7v—Na2—Na1 144.062 (17)
O6—Na1—O2iii 158.46 (2) S2vi—Na2—Na1 137.059 (10)
O1i—Na1—O7 93.07 (2) S1i—Na2—Na1 63.609 (7)
O4—Na1—O7 169.96 (2) Na1v—Na2—Na1 118.260 (11)
O5ii—Na1—O7 85.995 (19) O1—S1—O2 111.17 (3)
O6—Na1—O7 80.912 (19) O1—S1—O3 111.30 (3)
O2iii—Na1—O7 79.125 (19) O2—S1—O3 109.48 (3)
O1i—Na1—Na2ii 138.025 (17) O1—S1—S2 108.60 (2)
O4—Na1—Na2ii 128.156 (17) O2—S1—S2 109.04 (2)
O5ii—Na1—Na2ii 43.834 (13) O3—S1—S2 107.13 (2)
O6—Na1—Na2ii 92.705 (15) O1—S1—Na2vi 38.16 (2)
O2iii—Na1—Na2ii 67.367 (14) O2—S1—Na2vi 75.51 (2)
O7—Na1—Na2ii 45.307 (14) O3—S1—Na2vi 138.89 (2)
O1i—Na1—Na2 42.885 (14) S2—S1—Na2vi 109.377 (8)
O4—Na1—Na2 98.391 (16) S1—S2—Na2i 114.600 (8)
O5ii—Na1—Na2 124.870 (16) S1—O1—Na1vi 141.35 (3)
O6—Na1—Na2 41.148 (13) S1—O1—Na2vi 119.72 (3)
O2iii—Na1—Na2 141.592 (17) Na1vi—O1—Na2vi 94.828 (18)
O7—Na1—Na2 81.785 (15) S1—O2—Na1vii 149.10 (3)
Na2ii—Na1—Na2 118.261 (11) Na1—O4—H1 120.6 (10)
O6—Na2—O5 87.88 (2) Na1—O4—H2 111.8 (8)
O6—Na2—O8iv 97.82 (2) H1—O4—H2 102.6 (12)
O5—Na2—O8iv 156.45 (2) Na2—O5—Na1v 90.905 (19)
O6—Na2—O1i 85.146 (19) Na2—O5—H3 124.4 (9)
O5—Na2—O1i 94.10 (2) Na1v—O5—H3 110.7 (8)
O8iv—Na2—O1i 109.10 (2) Na2—O5—H4 110.0 (9)
O6—Na2—O7v 171.97 (2) Na1v—O5—H4 119.5 (9)
O5—Na2—O7v 87.654 (19) H3—O5—H4 102.6 (12)
O8iv—Na2—O7v 83.76 (2) Na2—O6—Na1 95.66 (2)
O1i—Na2—O7v 101.82 (2) Na2—O6—H5 116.3 (9)
O6—Na2—S2vi 94.040 (15) Na1—O6—H5 111.7 (9)
O5—Na2—S2vi 75.245 (14) Na2—O6—H6 126.7 (9)
O8iv—Na2—S2vi 81.549 (16) Na1—O6—H6 103.2 (9)
O1i—Na2—S2vi 169.337 (17) H5—O6—H6 102.2 (12)
O7v—Na2—S2vi 78.368 (15) Na2ii—O7—Na1 89.058 (19)
O6—Na2—S1i 105.273 (16) Na2ii—O7—H7 107.5 (9)
O5—Na2—S1i 85.774 (14) Na1—O7—H7 136.6 (9)
O8iv—Na2—S1i 114.306 (17) Na2ii—O7—H8 126.5 (9)
O1i—Na2—S1i 22.118 (12) Na1—O7—H8 97.7 (9)
O7v—Na2—S1i 81.039 (15) H7—O7—H8 103.1 (12)
S2vi—Na2—S1i 152.391 (10) Na2viii—O8—H9 110.1 (10)
O6—Na2—Na1v 131.833 (17) Na2viii—O8—H10 130.1 (10)
O5—Na2—Na1v 45.260 (14) H9—O8—H10 105.0 (13)
O8iv—Na2—Na1v 129.328 (17)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x+1, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x−1, y, z; (vi) x, −y+1/2, z+1/2; (vii) x−1, −y+1/2, z+1/2; (viii) −x+1, y−1/2, −z+1/2.

(Na2S2O3H2O5_200K). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H1···O3 0.774 (15) 2.045 (15) 2.8161 (7) 174.2 (14)
O4—H2···O2ii 0.820 (12) 2.022 (12) 2.8290 (7) 168.0 (11)
O5—H3···O3 0.836 (13) 1.961 (13) 2.7937 (7) 173.8 (12)
O5—H4···O3vi 0.786 (13) 2.109 (13) 2.8811 (7) 167.3 (12)
O6—H5···O4vi 0.859 (14) 1.984 (14) 2.8423 (8) 176.3 (13)
O6—H6···S2ix 0.860 (14) 2.495 (14) 3.3488 (5) 171.7 (12)
O7—H7···S2iv 0.818 (14) 2.531 (14) 3.3365 (5) 168.3 (12)
O7—H8···O8i 0.857 (14) 1.977 (14) 2.8334 (8) 177.3 (13)
O8—H9···S2ii 0.813 (15) 2.544 (15) 3.3245 (6) 161.3 (13)
O8—H10···S2 0.775 (15) 2.583 (15) 3.3499 (5) 171.0 (14)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1, y, z; (iv) −x+1, y+1/2, −z+1/2; (vi) x, −y+1/2, z+1/2; (ix) x+1, −y+1/2, z+1/2.

References

  1. Barberá, J. J., Metzger, A. & Wolf, M. (2012). Ullmanns Encyclopedia of Industrial Chemistry, vol. 34, pp. 695–704. Weinheim: Wiley-CH.
  2. Benda, H. von & von Benda, K. (1979). Z. Naturforsch. Teil B, 34, 957–968.
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  5. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  6. Bunte, H. (1874). Ber. Dtsch. Chem. Ges. 7, 646–648.
  7. Chan, E. J., Skelton, B. W. & White, A. H. (2008). Z. Anorg. Allg. Chem. 634, 2825–2844.
  8. Christensen, A. N., Hazell, R. G., Hewat, A. W. & O’Reilly, K. P. J. (1991). Acta Chem. Scand. 45, 469–473.
  9. Csordás, L. (1969). Acta Chim. Acad. Sci. Hung. 62, 371–393.
  10. Dalton, E. Z., Blomberg, W. R. & Villa, E. M. (2021). Cryst. Growth Des. 21, 3071–3081.
  11. Edwards, D. A. & Woolf, A. A. (1985). Polyhedron, 4, 513–516.
  12. Elerman, Y., Bats, J. W. & Fuess, H. (1983). Acta Cryst. C39, 515–518.
  13. Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. [DOI] [PMC free article] [PubMed]
  14. Guarini, G. G. T. & Piccini, S. (1988). J. Chem. Soc. Faraday Trans. 1, 84, 331–342.
  15. Held, P. & Bohatý, L. (2004). Acta Cryst. C60, i97–i100. [DOI] [PubMed]
  16. Hesse, W., Leutner, B., Böhn, K.-H. & Walker, N. P. C. (1993). Acta Cryst. C49, 363–365.
  17. Hopfinger, M., Zischka, F., Seifert, M. & Kornath, A. J. (2018). Z. Anorg. Allg. Chem. 644, 574–579.
  18. Klein, W. (2020). Acta Cryst. E76, 197–200. [DOI] [PMC free article] [PubMed]
  19. Kumar Paul, A., Madras, G. & Natarajan, S. (2009). Phys. Chem. Chem. Phys. 11, 11285–11296. [DOI] [PubMed]
  20. Lehner, A. J., Schindler, L. V. & Röhr, C. (2013). Z. Naturforsch. Teil B, 68, 323–337.
  21. Lisensky, G. C. & Levy, H. A. (1978). Acta Cryst. B34, 1975–1977.
  22. Manojlović-Muir, L. A. (1975). Acta Cryst. B31, 135–139.
  23. Nirsha, B. H., Serebrennikova, G. M., Oboznenko, Yu. V., Zhadanov, B. V., Safonova, V. I. & Olikova, V. A. (1982). Zh. Neorg. Khim. 27, 3035–3038.
  24. Padmanabhan, V. M., Yadava, V. S., Navarro, Q. O., Garcia, A., Karsono, L., Suh, I. H. & Chien, L. S. (1971). Acta Cryst. B27, 253–257.
  25. Picon, M. (1924). C. R. Hebd. Seances Acad. Sci. 178, 700–703.
  26. Prasad, S. M. & Rani, A. (2001). Acta Cryst. E57, i67–i69.
  27. Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770–12779. [DOI] [PubMed]
  28. Rettig, S. J. & Trotter, J. (1987). Acta Cryst. C43, 2260–2262.
  29. Sándor, E. & Csordás, L. (1961). Acta Cryst. 14, 237–243.
  30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  31. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  32. Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.
  33. Taylor, P. G. & Beevers, C. A. (1952). Acta Cryst. 5, 341–344.
  34. Teng, S. T., Fuess, H. & Bats, J. W. (1984). Acta Cryst. C40, 1785–1787.
  35. Tiemann, E., Hoeft, J., Lovas, F. J. & Johnson, D. R. (1974). J. Chem. Phys. 60, 5000–5004.
  36. Uraz, A. A. & Armaǧan, N. (1977). Acta Cryst. B33, 1396–1399.
  37. Winkler, V., Schlosser, M. & Pfitzner, A. (2016). Z. Naturforsch. Teil B, 71, 579–584.
  38. Young, S. W. & Burke, W. E. (1906). J. Am. Chem. Soc. 28, 315–347.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, Na2S2O3H2O2_100K, Na2S2O3H2O2_200K, Na2S2O3H2O5_100K, Na2S2O3H2O5_200K. DOI: 10.1107/S2056989022011975/hb8046sup1.cif

e-79-00044-sup1.cif (7.4MB, cif)

Structure factors: contains datablock(s) Na2S2O3H2O2_100K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O2_100Ksup2.hkl

Structure factors: contains datablock(s) Na2S2O3H2O2_200K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O2_200Ksup3.hkl

Structure factors: contains datablock(s) Na2S2O3H2O5_100K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O5_100Ksup4.hkl

Structure factors: contains datablock(s) Na2S2O3H2O5_200K. DOI: 10.1107/S2056989022011975/hb8046Na2S2O3H2O5_200Ksup5.hkl

CCDC references: 2227273, 2227272, 2227271, 2227270

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES