Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 1;79(Pt 1):8–13. doi: 10.1107/S2056989022011409

Crystal structure of 2-(morpholino)ethyl­ammonium picrate monohydrate

Balasubramanian Chidambaranathan a, Settu Sivaraj a, Shanmugam Selvakumar a,*
Editor: V Jancikb
PMCID: PMC9815139  PMID: 36628364

The title compound was synthesized via slow evaporation of an aqueous solution of picric acid with the substituted morpholine base and crystallized with one cation (C6H15N2O)+, one anion (C6H2N3O7) and a water mol­ecule in the asymmetric unit. The morpholine ring in the cation adopts a chair conformation. The structure is stabilized by C–H⋯O, O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding inter­actions and π–π stacking. The inter­molecular inter­actions of the synthesized compound were qu­anti­fied by Hirshfeld surface analysis.

Keywords: single-crystal X-ray study, morpholine, hydrogen bond, IR, NMR, Hirshfeld surface

Abstract

The title compound, C6H15N2O+·C6H2N3O7 ·H2O, was synthesized via slow evaporation of an aqueous solution of picric acid with the substituted morpholine base and crystallized with one cation (C6H15N2O)+, one anion (C6H2N3O7) and a water mol­ecule in the asymmetric unit. The morpholine ring in the cation adopts a chair conformation. The structure is stabilized by C—H⋯O, O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding inter­actions and π–π stacking. The inter­molecular inter­actions of the synthesized compound were qu­anti­fied by Hirshfeld surface analysis.

1. Chemical context

Morpholine complex materials are widely used in biomedical applications as this moiety serves as an important lysosome-targeting group. Its applications include use in the synthesis of lysosome-targetable fluorescent probes for hydrogen sulfide imaging in living cells. Morpholine can be used as a ligand in metal complexes. It is also a component of protective coatings on fresh fruits and is used as an emulsifier in the preparation of pharmaceuticals and cosmetic products (Kuchowicz & Rydzyński, 1998). Picric acid forms stable picrates with various organic mol­ecules through bonding or ionic bonding. It is also a well-established material for non-linear optical (NLO) substances, which crystallize in the non-centrosymmetric space group Pca21 (Yamaguchi et al., 1988). Compounds of the morpholine family such as 4-(2-chloro­eth­yl)morpholinium picrate (Kant et al., 2009), 4-(4-nitro­phen­yl)morpholine (Wang et al., 2012), morpholinium picrate (Vembu & Fronczek, 2009) can be used in drug design. The phenolic group of the picrate anion might favour the formation of hydrogen-bonding inter­actions to increase the mol­ecular hyperpolarizability and NLO effects (Takayanagi et al., 1996). Organic mol­ecules have attracted great attention because of their ability to combine low cost and ease of processing in the assembly of optical devices. In this context, the present investigation reports the synthesis, crystal structure, Hirshfeld surface, IR and NMR analyses of 2-(morph­olin­yl)ethyl­ammonium picrate monohydrate. 1.

2. Structural commentary

The title compound crystallizes in the triclinic P Inline graphic space group (Fig. 1) with two ion pairs and two solvating water mol­ecules in the unit cell (Fig. 1). The asymmetric unit is shown in Fig. 2. In agreement with the pK a constants for the parent 4-(2-ammonio­eth­yl)morpholine (4.84, 9.45), the terminal NH2 group of the base is protonated, forming the 2-(morpholino)­ethyl­ammonium anion. All three protons of the NH3 + group are involved in hydrogen bonding. The cation forms a strong charge-assisted hydrogen bond N5—H5A⋯O1 [1 − x, −y, 1 − z; DA = 2.777 (2) Å] with the picrate anion, while H5C inter­acts with O9 from the solvating water mol­ecule [DA = 2.741 (2) Å] and H5B is involved in a bifurcated hydrogen bond with O5 from a neighbouring picrate anion [−1 + x, −1 + y, −1 + z; DA = 3.054 (2) Å] and O9 from other water mol­ecule (−x, −y, −z + 1), respectively. Additionally, the two protons of the water mol­ecule inter­act with a picrate anion or the nitro­gen atom of the morpholinyl moiety [O9—H9C⋯O1, DA = 2.7196 (19) Å; O9—H9D⋯N4, −x, −y, −z + 1, DA = 2.7722 (19) Å]. Further geometric details of these hydrogen bonds can be found in Table 1. In this scenario, the water mol­ecule forms a bridge between the ammonium group and another picrate anion that cannot inter­act directly for steric reasons. Formation of these hydrogen bonds also lowers the energy of the crystal and thus increases the stability of the packing.

Figure 1.

Figure 1

Mol­ecular diagram of the title compound viewed down along a* axis in the unit cell.

Figure 2.

Figure 2

ORTEP diagram of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O7i 0.97 2.55 3.465 (2) 158
C10—H10B⋯O6ii 0.97 2.63 3.503 (3) 150
C12—H12A⋯O2iii 0.97 2.55 3.349 (3) 139
N5—H5C⋯O9 0.89 (2) 1.86 (2) 2.741 (2) 172 (2)
N5—H5A⋯O1iii 0.89 (2) 1.89 (2) 2.777 (2) 172 (2)
N5—H5B⋯O5iv 0.85 (2) 2.35 (2) 3.054 (2) 142 (2)
N5—H5B⋯O9v 0.85 (2) 2.48 (2) 3.048 (2) 126 (2)
O9—H9D⋯N4v 0.84 (2) 1.98 (2) 2.7722 (19) 158 (2)
O9—H9C⋯O1 0.82 (2) 1.94 (2) 2.7196 (19) 160 (2)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

The refined geometry (Fig. 2) shows that the torsion angles N4—C7—C8—O8 and O8—C9—C10—N4 of the morpholine ring are −58.1 (2) and 59.4 (2)°, respectively, confirming the chair conformation. There are three nitro groups in the picrate anion. While the para-bound nitro group is nearly coplanar with the plane of the benzene ring [dihedral angle of −1.0 (2)°] and two ortho-oriented nitro groups are, probably as a result of repulsion with the phenolic oxygen atom, twisted from the ring plane by −51.9 (2) and 43.8 (2)°. It has been mentioned previously that the nitro groups of the picrate anion play an important role in stabilizing the crystal packing via weak coulombic inter­actions (George et al., 2019; Anitha et al., 2004).

3. Supra­molecular features

Fig. 3 shows the three-dimensional mol­ecular packing of the title compound viewed down the a-axis. Along with the six main hydrogen bonds described in the previous section, the cation inter­acts with neighboring picrate anions via C7—H7B⋯O7(x − 1, y, z), C10—H10B⋯O6(−x + 1, −y + 1, −z + 1) and C12—H12A⋯O2(−x + 1, −y, −z + 1) non-classical hydrogen bonds (Table 1). Several prominent supra­molecular motifs are formed by these hydrogen bonds. Firstly, the inter­action of the ammonium group with the water mol­ecules creates a centrosymmetric motif described by an Inline graphic (8) graph set (Bernstein et al., 1995; Motherwell et al., 2000) (Fig. 4). Next, another centrosymmetric motif described by an Inline graphic (20) graph set is formed between two ammonium groups and two picrate anions and involves the phenolic oxygen anion and the para nitro group (Fig. 5). Furthermore, the picrate anions are coplanar, and are involved in two different π–π stacking inter­actions with perpendicular distances between the C1–C6 rings of 3.3532 (6) and 3.5533 (6) Å, slippage of 1.393 and 1.902 Å, and CgCg distances of 3.6311 (18) and 4.0303 (19) Å, respectively, for the rings related by symmetry operations 1 − x, 1 − y, 2 − z and 2 − x, 1 − y, 2 − z. Finally, a centrosymmetric twelve-membered ring [(picrate)O⋯H—N—H⋯O—H]2 with a third order graph set Inline graphic (12) involves two of each of the three different species present in the crystal (Fig. 6).

Figure 3.

Figure 3

Three-dimensional supra­molecular architecture of the title compound viewed down the a axis.

Figure 4.

Figure 4

Inline graphic (8) ring motif formed between ammonium group and water mol­ecules.

Figure 5.

Figure 5

Inline graphic (20) ring motif formed between two ammonium group and two picrate anions and π–π stacking inter­actions.

Figure 6.

Figure 6

Inline graphic (12) ring motif formed through twelve-membered ring [(picrate)O⋯H—N—H⋯O—H]2 inter­actions.

Analysis of the Hirshfeld surface and the associated two-dimensional fingerprint plot for 2-(morpholin­yl)ethyl­ammonium picrate monohydrate was performed with CrystalExplorer 21.5 (Spackman et al., 2021). The normalized contact distance (d norm) Hirshfeld surface of the title compound mapped over the limits −0.6471 to 1.3714 a.u. with close contacts to neighboring mol­ecules is shown in Fig. 7. The contacts with distances equal to the sum of the van der Waals radii are indicated in white and the contacts with distances shorter than and longer than van der Waals radii are represented as red and blue, respectively (Venkatesan et al., 2016). This analysis confirms that the most prominent inter­molecular inter­actions present in the crystal are C—H⋯O, N—H⋯O, O—H⋯O and N—O⋯H contacts.

Figure 7.

Figure 7

The Hirshfeld surface of the title compound mapped over d norm, showing the closest mol­ecules.

Two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode are shown in Fig. 8. In the figure, d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside and inside the surface, respectively (McKinnon et al., 2007; Seth, 2014; Nchioua et al., 2022). The most significant contribution to the Hirshfeld surface is from the O⋯H/H⋯O (52.9%) inter­actions. In addition, the H⋯H (27.3%) and O⋯O (5.5%) inter­actions make significant contributions to the total Hirshfeld surface. Other inter­actions contributing less than 5.0% are C⋯C (3.9%), O⋯C/C⋯O (2.5%), N⋯H/H⋯N (2.2%), N⋯C/C⋯N (2.2%), H⋯C/C⋯H (1.8%) and O⋯N/N⋯O (1.8%).

Figure 8.

Figure 8

Two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, (b) O⋯H/H⋯O inter­actions, (c) H⋯·H inter­actions and (d) O⋯O inter­actions.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016) found eleven structures containing 4-(2-ammonio­eth­yl)morpholinium including 4-(2-ammonio­eth­yl)morpholinium tetra­chloro­copper(II) (BOPWUY and BOPWUY01; Battaglia et al., 1982), 4-(2-ammonium­eth­yl)morpholinium tetra­chloro­mercury(II) (CUMGIA; Vezzosi et al., 1984), 4-(2-ammonio­eth­yl)morpholinium dichloride mono­hydrate (JAXBOC; Ghorab et al., 2017), 4-(2-ammo­nio­eth­yl)morpholinium tetra­chloro­palladium(II) (KETHOJ; Efimenko et al., 2017), 4-(2-ammonio­eth­yl)morpholinium sulfate methanol solvate (KUTZUV; Bi, 2010), catena-[4-(2-ammonio­eth­yl)morpholinium] tetra­kis­[(μ3-phosphito)tri­zinc(II)] hemihydrate (SEZPOE; Lin & Dehnen, 2009), 4-(2-ammonio­eth­yl)morpholinium di­chloro­diiodo­cadmium(II) chloro­tri­iodo­cadmium(II) (UVWEZ; Mahbouli Rhouma et al., 2016), 4-(2-ammonio­eth­yl)morpholinium tetra­chloro­zinc(II) (WUTGOI; Glaoui et al., 2008 and WUTGOI01; Lamshöft et al., 2011), catena-[bis­[4-(2-ammonio­eth­yl)morph­o­linium] tetra­kis­(μ-iodo)­tetra­kis­(iodo)­dilead(II)] and (NIXNEQ; Xiuli & Zhenhong, 2019). Unlike the title compound, all of these examples have both nitro­gen atoms protonated. Another search in the CSD for the compound morpholinium picrate gave four hits, viz. 4-hy­droxy-4-methyl­morpholinium picrate (HIGYOM; Zukerman-Schpector et al., 2007), morpholinium picrate (KOMTUC; Vembu & Fronczek, 2009), 4-(2-chloro­eth­yl)morpholinium picrate (PUFFIG; Kant et al., 2009) and 4,4-bis­(2′-hy­droxy­eth­yl)morpholinium picrate (SEGGAM; Solov’ev et al., 1988). It is noted that all of these structures are stabilized by hydrogen bonds and that in each one the morpholine ring has a chair conformation.

5. Synthesis and crystallization

2-(Morpholin­yl)ethyl­ammonium picrate monohydrate was synthesized by mixing one mole of 4-(2-ammonio­eth­yl)morpholine and one mole of picric acid in double-distilled water at about 303 K. The solution was then allowed to evaporate at room temperature, which yielded yellow plate-like crystals of 2-(morpholin­yl)ethyl­ammonium picrate monohydrate. The reaction scheme is shown in Fig. 9. Melting point: 457–459 K; IR (KBr, cm−1): 3384 (O—H), 2905 (NH3), 3110 (C—H), 1382 (CH2), 993 (C—O); 1H NMR (500 MHz, D2O, δ, ppm): 8.831 (s, 2H, picrate moiety), 3.63 (t, 4H, –CH 2–O–CH 2), 3.03 (t, 4H, –CH 2–N–CH 2), 2.58 (t, 2H, N–CH 2), 2.46 (t, 2H, –CH2–NH3 +). A suitable single crystal of 2-(morpholin­yl)ethyl­ammonium picrate monohydrate was selected for X-ray diffraction studies.

Figure 9.

Figure 9

Reaction scheme for the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically (C—H = 0.93 for anion and 0.97 Å for cation) and refined using an isotropic approximation, with U iso(H) = 1.2 U eq(C). The acidic protons were localized from the residual electron-density map and refined with distance restraints (0.82 Å for O—H and 0.86 Å for N—H) and U iso(H) = 1.2U eq(N) and 1.5U eq(O).

Table 2. Experimental details.

Crystal data
Chemical formula C6H15N2O+·C6H2N3O7·H2O
M r 377.32
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 297
a, b, c (Å) 6.938 (3), 11.583 (5), 12.077 (5)
α, β, γ (°) 114.362 (13), 94.261 (14), 103.841 (15)
V3) 841.8 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.40 × 0.38 × 0.19
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Bruker 2016)
T min, T max 0.504, 0.562
No. of measured, independent and observed [I > 2σ(I)] reflections 19297, 3378, 2781
R int 0.039
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.117, 1.04
No. of reflections 3378
No. of parameters 250
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.21

Computer programs: APEX3, SAINT and XPREP (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022011409/jq2022sup1.cif

e-79-00008-sup1.cif (573.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011409/jq2022Isup3.hkl

e-79-00008-Isup3.hkl (269.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022011409/jq2022Isup3.cml

CCDC reference: 2222322

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for the single-crystal X-ray diffraction data collection and structure solution and Professor M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai, for scientific discussions.

supplementary crystallographic information

Crystal data

C6H15N2O+·C6H2N3O7·H2O Z = 2
Mr = 377.32 F(000) = 396
Triclinic, P1 Dx = 1.489 Mg m3
a = 6.938 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.583 (5) Å Cell parameters from 7824 reflections
c = 12.077 (5) Å θ = 3.2–26.2°
α = 114.362 (13)° µ = 0.13 mm1
β = 94.261 (14)° T = 297 K
γ = 103.841 (15)° Block, yellow
V = 841.8 (6) Å3 0.40 × 0.38 × 0.19 mm

Data collection

Bruker D8 Venture Diffractometer 2781 reflections with I > 2σ(I)
Radiation source: fine focus sealed tube Rint = 0.039
φ and ω scans θmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker 2016) h = −8→8
Tmin = 0.504, Tmax = 0.562 k = −14→14
19297 measured reflections l = −15→15
3378 independent reflections

Refinement

Refinement on F2 5 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2721P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3378 reflections Δρmax = 0.25 e Å3
250 parameters Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6187 (2) 0.30558 (14) 0.82290 (13) 0.0335 (3)
C2 0.6867 (2) 0.43310 (15) 0.82356 (13) 0.0349 (3)
C3 0.7623 (2) 0.55224 (14) 0.92800 (13) 0.0355 (3)
H3 0.802400 0.631735 0.922088 0.043*
C4 0.7771 (2) 0.55051 (14) 1.04247 (13) 0.0336 (3)
C5 0.7107 (2) 0.43331 (15) 1.05278 (13) 0.0360 (3)
H5 0.716562 0.434004 1.130246 0.043*
C6 0.6359 (2) 0.31567 (14) 0.94612 (14) 0.0359 (3)
C7 0.0106 (3) 0.30407 (19) 0.38759 (18) 0.0542 (5)
H7A 0.121632 0.382644 0.406388 0.065*
H7B −0.037972 0.314606 0.463429 0.065*
C8 −0.1579 (4) 0.2906 (3) 0.2924 (2) 0.0739 (6)
H8A −0.272185 0.215447 0.277962 0.089*
H8B −0.201836 0.369717 0.324210 0.089*
C9 −0.0362 (3) 0.1539 (2) 0.13116 (18) 0.0581 (5)
H9A 0.003134 0.139093 0.052136 0.070*
H9B −0.150414 0.078921 0.117385 0.070*
C10 0.1378 (3) 0.16274 (16) 0.21970 (14) 0.0432 (4)
H10A 0.174467 0.080947 0.185378 0.052*
H10B 0.254271 0.234838 0.230153 0.052*
C11 0.2592 (3) 0.20986 (16) 0.43386 (14) 0.0425 (4)
H11A 0.214563 0.221718 0.511030 0.051*
H11B 0.358912 0.292112 0.449159 0.051*
C12 0.3601 (2) 0.10098 (17) 0.39727 (15) 0.0438 (4)
H12A 0.408246 0.090738 0.321368 0.053*
H12B 0.477074 0.128043 0.461345 0.053*
N1 0.5579 (2) 0.19374 (14) 0.95933 (14) 0.0490 (4)
N2 0.8605 (2) 0.67574 (14) 1.15356 (12) 0.0428 (3)
N3 0.6630 (2) 0.43738 (14) 0.70341 (12) 0.0476 (4)
N4 0.08400 (19) 0.18564 (12) 0.34122 (11) 0.0370 (3)
N5 0.2271 (2) −0.02941 (14) 0.37799 (13) 0.0420 (3)
H5C 0.206 (3) −0.0270 (19) 0.4503 (15) 0.050*
H5A 0.291 (3) −0.0899 (17) 0.3458 (17) 0.050*
H5B 0.117 (2) −0.0515 (19) 0.3291 (16) 0.050*
O1 0.54301 (17) 0.19894 (10) 0.72393 (10) 0.0447 (3)
O2 0.5959 (3) 0.09346 (14) 0.88953 (15) 0.0832 (5)
O3 0.4599 (2) 0.19858 (15) 1.03953 (15) 0.0684 (4)
O4 0.8730 (3) 0.67488 (14) 1.25430 (11) 0.0688 (4)
O5 0.9152 (2) 0.77882 (12) 1.14134 (12) 0.0644 (4)
O6 0.5699 (3) 0.50981 (15) 0.69044 (13) 0.0705 (4)
O7 0.7341 (3) 0.36689 (18) 0.62204 (13) 0.0786 (5)
O8 −0.0951 (2) 0.27241 (15) 0.17867 (14) 0.0665 (4)
O9 0.19445 (19) −0.00465 (13) 0.61101 (11) 0.0519 (3)
H9D 0.137 (3) −0.055 (2) 0.640 (2) 0.078*
H9C 0.293 (3) 0.055 (2) 0.661 (2) 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0244 (7) 0.0322 (7) 0.0346 (7) 0.0087 (5) 0.0061 (5) 0.0060 (6)
C2 0.0309 (7) 0.0369 (8) 0.0294 (7) 0.0056 (6) 0.0067 (5) 0.0100 (6)
C3 0.0317 (7) 0.0308 (7) 0.0358 (7) 0.0044 (6) 0.0063 (6) 0.0098 (6)
C4 0.0277 (7) 0.0330 (7) 0.0290 (7) 0.0096 (6) 0.0031 (5) 0.0036 (6)
C5 0.0344 (7) 0.0420 (8) 0.0321 (7) 0.0170 (6) 0.0075 (6) 0.0136 (6)
C6 0.0332 (7) 0.0331 (7) 0.0411 (8) 0.0128 (6) 0.0086 (6) 0.0144 (6)
C7 0.0680 (12) 0.0527 (10) 0.0598 (11) 0.0313 (9) 0.0337 (9) 0.0311 (9)
C8 0.0679 (13) 0.0920 (17) 0.1018 (18) 0.0464 (13) 0.0368 (13) 0.0651 (15)
C9 0.0679 (12) 0.0549 (11) 0.0506 (10) 0.0109 (9) 0.0020 (9) 0.0282 (9)
C10 0.0536 (10) 0.0408 (8) 0.0351 (8) 0.0137 (7) 0.0126 (7) 0.0163 (7)
C11 0.0480 (9) 0.0355 (8) 0.0338 (7) 0.0058 (7) 0.0037 (6) 0.0102 (6)
C12 0.0360 (8) 0.0482 (9) 0.0415 (8) 0.0089 (7) 0.0031 (6) 0.0174 (7)
N1 0.0560 (9) 0.0392 (8) 0.0507 (8) 0.0138 (6) 0.0090 (7) 0.0195 (6)
N2 0.0392 (7) 0.0411 (8) 0.0327 (7) 0.0122 (6) 0.0005 (5) 0.0028 (6)
N3 0.0478 (8) 0.0444 (8) 0.0316 (7) −0.0044 (6) 0.0051 (6) 0.0092 (6)
N4 0.0404 (7) 0.0353 (7) 0.0366 (6) 0.0106 (5) 0.0110 (5) 0.0170 (5)
N5 0.0398 (7) 0.0380 (7) 0.0397 (7) 0.0140 (6) 0.0005 (6) 0.0091 (6)
O1 0.0401 (6) 0.0337 (6) 0.0401 (6) 0.0054 (5) 0.0035 (5) 0.0012 (5)
O2 0.1348 (15) 0.0412 (8) 0.0806 (11) 0.0375 (9) 0.0376 (10) 0.0248 (7)
O3 0.0757 (10) 0.0671 (9) 0.0775 (10) 0.0192 (7) 0.0320 (8) 0.0447 (8)
O4 0.0949 (11) 0.0606 (9) 0.0300 (6) 0.0171 (8) −0.0013 (6) 0.0059 (6)
O5 0.0817 (10) 0.0347 (7) 0.0472 (7) −0.0018 (6) −0.0032 (6) 0.0034 (5)
O6 0.0939 (11) 0.0636 (9) 0.0541 (8) 0.0165 (8) −0.0004 (7) 0.0324 (7)
O7 0.0844 (11) 0.0975 (12) 0.0404 (7) 0.0240 (9) 0.0276 (7) 0.0171 (7)
O8 0.0720 (9) 0.0768 (10) 0.0768 (9) 0.0316 (8) 0.0178 (7) 0.0532 (8)
O9 0.0455 (7) 0.0502 (7) 0.0456 (7) −0.0059 (5) 0.0019 (5) 0.0199 (6)

Geometric parameters (Å, º)

C1—O1 1.2683 (18) C9—H9B 0.9700
C1—C2 1.435 (2) C10—N4 1.4736 (19)
C1—C6 1.437 (2) C10—H10A 0.9700
C2—C3 1.375 (2) C10—H10B 0.9700
C2—N3 1.471 (2) C11—N4 1.477 (2)
C3—C4 1.387 (2) C11—C12 1.511 (2)
C3—H3 0.9300 C11—H11A 0.9700
C4—C5 1.385 (2) C11—H11B 0.9700
C4—N2 1.4547 (19) C12—N5 1.482 (2)
C5—C6 1.378 (2) C12—H12A 0.9700
C5—H5 0.9300 C12—H12B 0.9700
C6—N1 1.465 (2) N1—O3 1.214 (2)
C7—N4 1.482 (2) N1—O2 1.225 (2)
C7—C8 1.509 (3) N2—O4 1.2175 (19)
C7—H7A 0.9700 N2—O5 1.236 (2)
C7—H7B 0.9700 N3—O7 1.216 (2)
C8—O8 1.420 (3) N3—O6 1.224 (2)
C8—H8A 0.9700 N5—H5C 0.887 (15)
C8—H8B 0.9700 N5—H5A 0.889 (15)
C9—O8 1.426 (3) N5—H5B 0.845 (15)
C9—C10 1.507 (3) O9—H9D 0.836 (16)
C9—H9A 0.9700 O9—H9C 0.821 (17)
O1—C1—C2 122.65 (14) N4—C10—H10A 109.4
O1—C1—C6 125.22 (14) C9—C10—H10A 109.4
C2—C1—C6 112.03 (12) N4—C10—H10B 109.4
C3—C2—C1 125.19 (14) C9—C10—H10B 109.4
C3—C2—N3 117.32 (14) H10A—C10—H10B 108.0
C1—C2—N3 117.40 (13) N4—C11—C12 114.81 (13)
C2—C3—C4 118.10 (14) N4—C11—H11A 108.6
C2—C3—H3 120.9 C12—C11—H11A 108.6
C4—C3—H3 120.9 N4—C11—H11B 108.6
C5—C4—C3 121.52 (13) C12—C11—H11B 108.6
C5—C4—N2 119.86 (14) H11A—C11—H11B 107.5
C3—C4—N2 118.61 (14) N5—C12—C11 114.31 (14)
C6—C5—C4 118.77 (14) N5—C12—H12A 108.7
C6—C5—H5 120.6 C11—C12—H12A 108.7
C4—C5—H5 120.6 N5—C12—H12B 108.7
C5—C6—C1 124.34 (14) C11—C12—H12B 108.7
C5—C6—N1 117.80 (14) H12A—C12—H12B 107.6
C1—C6—N1 117.76 (13) O3—N1—O2 123.96 (16)
N4—C7—C8 110.78 (17) O3—N1—C6 117.76 (14)
N4—C7—H7A 109.5 O2—N1—C6 118.28 (15)
C8—C7—H7A 109.5 O4—N2—O5 122.81 (14)
N4—C7—H7B 109.5 O4—N2—C4 118.89 (15)
C8—C7—H7B 109.5 O5—N2—C4 118.30 (14)
H7A—C7—H7B 108.1 O7—N3—O6 123.84 (16)
O8—C8—C7 111.62 (16) O7—N3—C2 117.99 (17)
O8—C8—H8A 109.3 O6—N3—C2 118.16 (14)
C7—C8—H8A 109.3 C10—N4—C11 112.03 (13)
O8—C8—H8B 109.3 C10—N4—C7 108.96 (12)
C7—C8—H8B 109.3 C11—N4—C7 108.03 (13)
H8A—C8—H8B 108.0 C12—N5—H5C 109.9 (13)
O8—C9—C10 111.11 (16) C12—N5—H5A 108.4 (13)
O8—C9—H9A 109.4 H5C—N5—H5A 106.8 (17)
C10—C9—H9A 109.4 C12—N5—H5B 111.1 (13)
O8—C9—H9B 109.4 H5C—N5—H5B 111.2 (18)
C10—C9—H9B 109.4 H5A—N5—H5B 109.2 (18)
H9A—C9—H9B 108.0 C8—O8—C9 108.77 (14)
N4—C10—C9 111.04 (14) H9D—O9—H9C 112 (2)
O1—C1—C2—C3 177.25 (14) C1—C6—N1—O3 −136.51 (16)
C6—C1—C2—C3 0.8 (2) C5—C6—N1—O2 −139.62 (17)
O1—C1—C2—N3 0.9 (2) C1—C6—N1—O2 43.8 (2)
C6—C1—C2—N3 −175.60 (12) C5—C4—N2—O4 1.0 (2)
C1—C2—C3—C4 0.8 (2) C3—C4—N2—O4 179.69 (15)
N3—C2—C3—C4 177.14 (13) C5—C4—N2—O5 −178.77 (14)
C2—C3—C4—C5 −2.5 (2) C3—C4—N2—O5 −0.1 (2)
C2—C3—C4—N2 178.84 (12) C3—C2—N3—O7 129.37 (17)
C3—C4—C5—C6 2.6 (2) C1—C2—N3—O7 −54.0 (2)
N2—C4—C5—C6 −178.78 (13) C3—C2—N3—O6 −51.9 (2)
C4—C5—C6—C1 −0.9 (2) C1—C2—N3—O6 124.75 (16)
C4—C5—C6—N1 −177.21 (13) C9—C10—N4—C11 −173.52 (13)
O1—C1—C6—C5 −177.07 (14) C9—C10—N4—C7 −54.04 (18)
C2—C1—C6—C5 −0.7 (2) C12—C11—N4—C10 −56.71 (17)
O1—C1—C6—N1 −0.8 (2) C12—C11—N4—C7 −176.74 (13)
C2—C1—C6—N1 175.61 (13) C8—C7—N4—C10 53.41 (19)
N4—C7—C8—O8 −58.1 (2) C8—C7—N4—C11 175.35 (14)
O8—C9—C10—N4 58.90 (19) C7—C8—O8—C9 60.6 (2)
N4—C11—C12—N5 −61.64 (18) C10—C9—O8—C8 −60.8 (2)
C5—C6—N1—O3 40.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7B···O7i 0.97 2.55 3.465 (2) 158
C10—H10B···O6ii 0.97 2.63 3.503 (3) 150
C12—H12A···O2iii 0.97 2.55 3.349 (3) 139
N5—H5C···O9 0.89 (2) 1.86 (2) 2.741 (2) 172 (2)
N5—H5A···O1iii 0.89 (2) 1.89 (2) 2.777 (2) 172 (2)
N5—H5B···O5iv 0.85 (2) 2.35 (2) 3.054 (2) 142 (2)
N5—H5B···O9v 0.85 (2) 2.48 (2) 3.048 (2) 126 (2)
O9—H9D···N4v 0.84 (2) 1.98 (2) 2.7722 (19) 158 (2)
O9—H9C···O1 0.82 (2) 1.94 (2) 2.7196 (19) 160 (2)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x−1, y−1, z−1; (v) −x, −y, −z+1.

References

  1. Anitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530–o1532.
  2. Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1982). Inorg. Chem. 21, 3919–3922.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bi, Y. (2010). Acta Cryst. E66, o951. [DOI] [PMC free article] [PubMed]
  5. Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Efimenko, I. A., Churakov, A. V., Ivanova, N. A., Erofeeva, O. S. & Demina, L. I. (2017). Russ. J. Inorg. Chem. 62, 1476–1485.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. George, J., George, M., Alex, J., Sajan, D., Shihab, N. K., Vinitha, G. & Chitra, R. (2019). Opt. Laser Technol. 119, 105647, 1–9.
  9. Ghorab, M., Alsaid, M. S. & Ghabbour, H. A. (2017). Z. Kristallogr. 232, 501–502.
  10. Glaoui, M. El., Smirani, W., Lefebvre, F., Rzaigui, M. & Nasr, C. B. (2008). Can. J. Anal. Sci. Spectrosc. 53, 102–112.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kant, R., Kohli, S., Sarmal, L., Narayana, B. & Samshuddin, S. (2009). Acta Cryst. E65, o2435. [DOI] [PMC free article] [PubMed]
  13. Kuchowicz, E. & Rydzyński, K. (1998). Appl. Occup. Environ. Hyg. 13, 113–121.
  14. Lamshöft, M., Storp, V., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564–2573.
  15. Lin, Z. & Dehnen, S. (2009). J. Solid State Chem. 182, 3143–3148.
  16. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  17. Mahbouli Rhouma, N., Rayes, A., Mezzadri, F., Calestani, G. & Loukil, M. (2016). Acta Cryst. E72, 1404–1407. [DOI] [PMC free article] [PubMed]
  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  19. Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. [DOI] [PubMed]
  20. Nchioua, I., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 922–925. [DOI] [PMC free article] [PubMed]
  21. Seth, S. K. (2014). J. Mol. Struct. 1064, 70–75.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Solov’ev, V. N., Chekhlov, A. N., Gafurov, R. G., Chistyakov, V. G. & Martynov, I. V. (1988). J. Struct. Chem. 29, 174–175.
  25. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  26. Takayanagi, H., Kai, T., Yamaguchi, S., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull. 44, 2199–2204.
  27. Vembu, N. & Fronczek, F. R. (2009). Acta Cryst. E65, o156–o157. [DOI] [PMC free article] [PubMed]
  28. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  29. Vezzosi, I. M., Benedetti, A., Albinati, A., Ganazzoli, F., Cariati, F. & Pellicciari, L. (1984). Inorg. Chim. Acta, 90, 1–7.
  30. Wang, L.-J., Li, W.-W., Yang, S.-Y. & Yang, L. (2012). Acta Cryst. E68, o1235. [DOI] [PMC free article] [PubMed]
  31. Xiuli, Y. & Zhenhong, W. (2019). Chin. J. Struct. Chem. 38, 284–292.
  32. Yamaguchi, S., Goto, M., Takayanagi, H. & Ogura, H. (1988). Bull. Chem. Soc. Jpn, 61, 1026–1028.
  33. Zukerman-Schpector, J., Vega-Teijido, M., Carvalho, C. C., Isolani, P. C. & Caracelli, I. (2007). Z. Kristallogr. 222, 427–431.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022011409/jq2022sup1.cif

e-79-00008-sup1.cif (573.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011409/jq2022Isup3.hkl

e-79-00008-Isup3.hkl (269.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022011409/jq2022Isup3.cml

CCDC reference: 2222322

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES