The supramolecular assemblies of the two title structures are one-dimensional: the chain-of-rings motifs are supported by aromatic π–π interactions.
Keywords: crystal structure, piperazine, hydrogen bonding, chain of rings, supramolecular assembly
Abstract
The synthesis and crystal structures of the molecular salts of 4-(4-nitrophenyl)piperazine with trifluoroacetate, namely, 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate, C10H14N3O2 +·C2F3O2 − (I), and with trichloroacetate, namely, 4-(4-nitrophenyl)piperazin-1-ium trichloroacetate, C10H14N3O2 +·C2Cl3O2 −, (II), are reported and compared. A partial positional disorder of the anions was found. In both structures, the piperazine rings adopt a chair conformation, whereas the positions of the nitrophenyl group on the piperazine ring differ from bisectional in (I) to equatorial in (II). In both structures, the supramolecular assemblies are mono-periodic on the basis of the chain-of-rings motifs supported by aromatic π–π interactions. Hirshfeld surface analysis was used to explore the intermolecular close contacts in both crystals. The most dominant contacts of the Hirshfeld surface of the cation–anion pairs of the asymmetric units are O⋯H/H⋯O, and those with a contribution of halogen atoms: F⋯H/H⋯F in (I) and Cl⋯H/H⋯Cl in (II), respectively.
1. Chemical context
Piperazines and their derivatives have attracted growing attention for years (Berkheij et al., 2005 ▸; Elliott, 2011 ▸; Asif, 2015 ▸; Brito et al., 2019 ▸), mainly because of their multivalent biological profiles in a number of different therapeutic areas (Upadhayaya et al., 2004 ▸; Chaudhary et al., 2006 ▸; Kharb et al., 2012 ▸). The pharmacological significance of piperazines is also manifested in the application of its framework in the assemblies of inclusion, hybrid and other functional materials (Brockunier et al., 2004 ▸; Bogatcheva et al., 2006 ▸; Jin et al., 2020 ▸; Gharbi et al., 2022 ▸). Among them, a potential application for 4-nitrophenylpiperazine (NPP) can be indicated (König et al., 1997 ▸; Lu, 2007 ▸; Wang et al., 2014 ▸). We have recently reported the crystal structures of eight salts of 4-nitrophenylpiperazine (Mahesha et al., 2022 ▸; Shankara Prasad et al., 2022 ▸). In view of the importance of piperazines in general and the use of 4-nitrophenylpiperazine in particular, the present article reports the synthesis, crystal structure and Hirshfeld surface analysis of two salts of 4-nitrophenylpiperazine with organic acids, namely, 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate, C12H14F3N3O4, (I) and 4-(4-nitropheny)piperazin-1-ium trichloroacetate, C12H14Cl3N3O4, (II).
2. Structural commentary
The title compounds are shown in Figs. 1 ▸ and 2 ▸. The piperazine rings adopt a chair conformation with puckering parameters (Cremer & Pople, 1975 ▸) in (I) of Q = 0.576 (2) Å, θ = 177.8 (2)°, φ = 182 (4)°, and in (II) of Q = 0.571 (2) Å, θ = 177.1 (2)°, φ = 189 (4)°, respectively. The position of the nitrophenyl group on the piperazine ring differs in the two structures, from bisectional in (I) to occupying an equatorial site in (II) (Fig. 3 ▸). The angle between the N1—C1 bond and the normal to the Cremer & Pople mean plane is 39.57 (11)° in (I) and 60.87 (14)° in (II) (Spek, 2020 ▸; see Database survey section for further comparisons). In addition, the delocalization effect within the benzene ring is slightly disturbed due to the presence of the electron-donating piperazinyl [–C4H8N2; for the structurally similar piperidino substituent the Hammett σp constant is −0.12 (Perrin et al., 1981 ▸)] and the electron-withdrawing nitro [–NO2, σp = 0.78 (Hansch et al., 1991 ▸)] groups located in the para- position: the lengthening of the C1—C2 and C1—C6 bonds is accompanied by the shortening of the remaining C—C bonds within the ring and C—N distances to the substituents.
Figure 1.
Independent components of compound (I) showing the atom-labelling scheme and the hydrogen bond (drawn as dashed line) within the selected asymmetric unit. The major disorder component is drawn using unbroken lines (A) and the minor disorder component is drawn using dashed lines (B). Displacement ellipsoids are drawn at the 30% probability level.
Figure 2.
Independent components of compound (II) showing the atom-labelling scheme and the hydrogen bonds (drawn as dashed lines) within the selected asymmetric unit. The disorder components A and B of chlorine atoms have equal site-occupancies (1/2) within s.u. Displacement ellipsoids are drawn at the 30% probability level.
Figure 3.
Superposition of the 4-(4-nitrophenyl)piperazin-1-ium cations in (I) (red) and (II) (green).
In the anions, the C—O bond lengths in the carboxylate group are more similar in compound (II) than in compound (I), although in both cases these distances are shorter than the mean value for its type (Allen et al., 1987 ▸). The geometries of the COO− groups can be affected by the positional disorder of the CF3 group in (I) and the chlorine atoms in (II). In (I), the CF3 group is found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4), while in (II), the disordered chlorine atoms in the CCl3 group show an almost equivalent contribution of components A and B [0.494 (15) and 0.506 (15)] (Figs. 1 ▸ and 2 ▸).
3. Supramolecular features
In (I), the 4-(4-nitrophenyl)piperazin-1-ium cation interacts with two trifluoroacetate anions, which are related by translation, by two N—H⋯O hydrogen bonds: N2—H21⋯O3 and N2—H21⋯O4(x + 1, y, z). Additionally, if one considers the C7—H7A⋯O3(x + 1, y, z) interaction the hydrogen-bonded motif can be described as a C(6)C(6)[
(8)] chain of rings (Etter, 1990 ▸; Etter et al., 1990 ▸; Bernstein et al., 1995 ▸) running parallel to the [100] direction (Fig. 4 ▸, Table 1 ▸).
Figure 4.
Part of the crystal structure of compound (I) showing the formation of a chain of rings parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms bonded to C atoms have been omitted. Symmetry code: (i) x + 1, y, z.
Table 1. Hydrogen-bond geometry (Å, °) for (I) .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H21⋯O3 | 0.90 (2) | 1.98 (2) | 2.844 (2) | 161 (2) |
| N2—H22⋯O4i | 0.87 (2) | 1.93 (2) | 2.786 (2) | 165 (2) |
| C7—H7A⋯O3i | 0.97 | 2.53 | 3.492 (2) | 169 |
Symmetry code: (i)
.
In (II), the ionic components of the asymmetric unit are linked by two N2—H21⋯O3 and N2—H21⋯Cl1A hydrogen bonds, forming an
(5) ring motif. This ring system is further propagated along the [010] direction through the N2—H22⋯O3(x, y + 1, z) hydrogen bond; and a C(6)C(7)[
(5)] chain of rings is created (Fig. 5 ▸, Table 2 ▸).
Figure 5.
Part of the crystal structure of compound (II) showing the formation of a chain of rings parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms bonded to C atoms have been omitted. Symmetry code: (i) x, y + 1, z.
Table 2. Hydrogen-bond geometry (Å, °) for (II) .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H21⋯O3 | 0.87 (2) | 2.01 (2) | 2.795 (2) | 151 (2) |
| N2—H21⋯Cl1A | 0.87 (2) | 2.82 (2) | 3.510 (5) | 138 (2) |
| N2—H22⋯O4i | 0.87 (2) | 1.89 (2) | 2.738 (2) | 167 (2) |
Symmetry code: (i)
.
Close inspection of the crystal packings of both structures reveals the aromatic π–π interactions between adjacent chains of rings (Figs. 6 ▸ and 7 ▸). The centroid–centroid distances (Cg1⋯Cg1) between the phenyl rings are 3.788 (1) and 4.268 (1) Å in (I) and 3.800 (1) Å in (II); the perpendicular distances from the centroid to the plane of the opposite ring are 3.333 (1) and 3.253 (1) Å in (I) and 3.303 (1) Å in (II). Although in (I) the slippage distance (2.764 Å) between the centroids spaced by 4.27 Å is markedly far from a value of 1.8 Å (suggesting an overlap of rings), one can still consider molecular stacks along the [100] direction to be comparable to those undoubtedly observed in structure (II) in the [010] direction.
Figure 6.
A part of the crystal structure of compound (I) showing the aromatic π–π interactions between adjacent chains of rings. Red balls represent the centroids of the phenyl rings (Cg1).
Figure 7.
A part of the crystal structure of compound (II) showing the aromatic π–π interactions between adjacent chains of rings. Red balls represent the centroids of the phenyl rings (Cg1).
Finally, both supramolecular structures can be described as mono-periodic; no other specific close contacts or interactions can be found in addition to those mentioned above. Despite the similarities in the formation of 1D-chains of rings and their stacking assemblies, the packing of these motifs in the analysed crystals is fundamentally different. In (I), the packing fashion can be described as herringbone-type (Fig. 8 ▸), whereas in (II) a linear mode is seen (Fig. 9 ▸). It seems that the halogen atoms [F in (I) and Cl in (II)] in the anions influence the crystal-packing modes because of the difference in their van der Waals radii.
Figure 8.
Crystal packing of (I) in a view along the crystallographic a axis (herring-bone type).
Figure 9.

Crystal packing of (II) in a view along the crystallographic b axis (linear type).
4. Hirshfeld surface analysis
The Hirshfeld surface analysis is a valuable tool for understanding crystal packing. It offers both identification and visualization of intermolecular interactions, as well as reflecting the interplay between atoms in the structure. The Hirshfeld surfaces of ionic pairs in the asymmetric units of (I) and (II), are shown in Fig. 10 ▸. In addition, in Fig. 10 ▸, the corresponding 2D fingerprint plots of the most dominant contacts are also presented and combined with the information about their percentage contributions to the Hirshfeld surface. For both structures, the most significant contacts percentages are attributed to O⋯H/H⋯O interactions, 34.3% in (I) and 31.7% in (II). The closest contacts of this type appear as two sharp symmetric spikes in the 2D maps, and the intermolecular contacts as representatives are visualized between the Hirshfeld surface of the ionic components and neighbouring molecules. Competing close contacts are those with halogen atom, Cl⋯H/H⋯Cl type in (I) (32.1%) and F⋯H/H⋯F in (II) (28.8%). The former contacts in the fingerprint plot of (II) can be seen as wings, whereas the latter contacts dominate in the structure of (I) are spread over the central part of plot; their distances are essentially comparable or longer than the sum of the van der Waals radii of the atoms involved. The much lower contributions of the H⋯H contacts are consistent with the moderate number of H atoms per two molecules in the asymmetric units. The contributions of the remaining contact types constitute about 20%, among which 6–8% of the Hirshfeld surface area of (I) and (II) is covered by C⋯H/H⋯C contacts.
Figure 10.
Views of the Hirshfeld surfaces of the ionic components of (I) (upper) and (II) (lower) mapped over d norm showing intermolecular hydrogen bonds as dashed lines. Hirshfeld surface analysis were carried out using CrystalExplorer (Spackman & Jayatilaka, 2009 ▸; Turner et al., 2017 ▸).
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.43, September 2022; Groom et al. 2016 ▸) for 4-nitrophenylpiperazines in organic compounds revealed 45 structures, most of which contain a substituent at the N2 atom. Only a few compounds are directly comparable to title compounds (I) and (II): eight structures of 4-nitrophenylpiperazin-1-ium salts with different benzoate anions (NEBVOJ; NEBVUP; NEBWAW; NEBWEA; NEBWIE; NEBWOK; Mahesha et al., 2022 ▸; BEFGIG; BEFGOM, Shankara Prasad et al., 2022 ▸) and one with chloride (LIJNAU; Lu, 2007 ▸). In addition, two neutral NPP molecules have been reported in an inclusion material (König et al., 1997 ▸) or co-crystal (Wang et al., 2014 ▸). We have compared the molecular conformation of thirteen independent 4-(4-nitrophenyl)piperazin-1-ium cations: nine published structures (2 with Z′ > 1) and the two reported in this article. As shown in Fig. 11 ▸, the molecular structures of the NPP cations differ from each other with respect to the position of the nitrophenyl group on the piperazine ring: the equatorial site is preferred (9/13), whereas the axial position (3/13) is rare, and bisectional is uncommon (1/13). All compared piperazine rings adopt a chair conformation.
Figure 11.
An overlay of thirteen 4-(4-nitrophenyl)piperazin-1-ium cations, showing the best fit for the piperazine ring: the colour code is red = (I), green = (II), orange = BEFGIG, blue = BEFGOM, black = NEBVOJ, light green = NEBVUP, purple = NEBWAW, cyan = NEBWEA, light grey = NEBWIE (molecule 1), grey = NEBWIE (molecule 2), violet = NEBWOK (molecule 1), magenta = NEBWOK (molecule 2) and yellow = LIJNAU.
6. Synthesis and crystallization
A solution of commercially available (from Sigma-Aldrich) 4-nitrophenylpiperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) viz., trifluoroacetic acid (55 mg, 0.483 mol) for (I) and trichloroacetic acid (79 mg, 0.483 mol) for (II). The corresponding solutions were stirred for 30 minutes at 323 K and allowed to stand at room temperature. X-ray quality crystals were formed on slow evaporation for a week for both of the compounds, where ethanol ethyl acetate (1:1) was used for crystallization. The corresponding melting points were 425–427 K (I) and 388–390 K (II).
7. Refinement
Crystal data, data collection and structure refinement details for both compounds are summarized in Table 3 ▸. In both structures, an extinction parameter was refined.
Table 3. Experimental details.
| (I) | (II) | |
|---|---|---|
| Crystal data | ||
| Chemical formula | C10H14N3O2 +·C2F3O2 − | C10H14N3O2 +·C2Cl3O2 − |
| M r | 321.26 | 370.61 |
| Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/c |
| Temperature (K) | 293 | 293 |
| a, b, c (Å) | 6.6889 (4), 18.376 (1), 11.2600 (7) | 11.7825 (5), 6.6142 (3), 20.3271 (9) |
| β (°) | 91.131 (6) | 104.173 (4) |
| V (Å3) | 1383.76 (14) | 1535.91 (12) |
| Z | 4 | 4 |
| Radiation type | Mo Kα | Mo Kα |
| μ (mm−1) | 0.14 | 0.62 |
| Crystal size (mm) | 0.50 × 0.44 × 0.44 | 0.48 × 0.44 × 0.40 |
| Data collection | ||
| Diffractometer | Oxford Diffraction Xcalibur with Sapphire CCD | Oxford Diffraction Xcalibu with Sapphire CCD |
| Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction (2009 ▸) | Multi-scan (CrysAlis RED; Oxford Diffraction (2009 ▸) |
| T min, T max | 0.784, 1.000 | 0.840, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 4855, 2515, 1908 | 5078, 2802, 2068 |
| R int | 0.020 | 0.013 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.041, 0.106, 1.02 | 0.036, 0.104, 1.09 |
| No. of reflections | 2515 | 2802 |
| No. of parameters | 239 | 236 |
| No. of restraints | 84 | 35 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.28, −0.28 | 0.25, −0.28 |
The CF3 group of (I) was found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4). The disorder was restrained using SIMU, ISOR and DELU commands in SHELXL for the six resulting fluorine atoms. Anisotropic displacement parameters for pairs of the disordered carbon atom (C12A and C12B) were constrained to be the same. The three C—F bonds of the minor disorder component (B) and two C11—C12 bonds were restrained to be similar in length.
In (II), the refined occupancies of disordered chlorine atoms in the CCl3 group of 0.494 (15) and 0.506 (15), show the equivalent contribution of the components A and B. The ellipsoids of three chlorine atoms of the B disorder component were modelled using SIMU, ISOR and DELU commands in SHELXL. All six C—Cl distances were restrained to be similar in length.
In both structures, the H atoms bound to C atoms were positioned geometrically with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2), and with U iso(H) = 1.2U eq(C). The positions of the NH2 hydrogen atoms were refined. N—H distances within the NH2 group were restrained to 0.87 (2) Å.
Supplementary Material
Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989022011501/vm2275sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011501/vm2275Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022011501/vm2275IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989022011501/vm2275Isup4.cml
Supporting information file. DOI: 10.1107/S2056989022011501/vm2275IIsup5.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
HJS is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years.
supplementary crystallographic information
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Crystal data
| C10H14N3O2+·C2F3O2− | F(000) = 664 |
| Mr = 321.26 | Dx = 1.542 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 6.6889 (4) Å | Cell parameters from 2766 reflections |
| b = 18.376 (1) Å | θ = 2.9–27.8° |
| c = 11.2600 (7) Å | µ = 0.14 mm−1 |
| β = 91.131 (6)° | T = 293 K |
| V = 1383.76 (14) Å3 | Prism, yellow |
| Z = 4 | 0.50 × 0.44 × 0.44 mm |
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Data collection
| Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 1908 reflections with I > 2σ(I) |
| Radiation source: Enhance (Mo) X-ray Source | Rint = 0.020 |
| Rotation method data acquisition using ω scans. | θmax = 25.3°, θmin = 2.9° |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction (2009) | h = −8→7 |
| Tmin = 0.784, Tmax = 1.000 | k = −17→22 |
| 4855 measured reflections | l = −11→13 |
| 2515 independent reflections |
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0484P)2 + 0.5034P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.106 | (Δ/σ)max < 0.001 |
| S = 1.02 | Δρmax = 0.28 e Å−3 |
| 2515 reflections | Δρmin = −0.28 e Å−3 |
| 239 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 84 restraints | Extinction coefficient: 0.053 (3) |
| Primary atom site location: structure-invariant direct methods |
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| O1 | 0.6694 (3) | 0.05792 (11) | −0.27331 (14) | 0.0805 (6) | |
| O2 | 0.6790 (2) | −0.05336 (10) | −0.21928 (14) | 0.0636 (5) | |
| N1 | 0.8545 (2) | 0.10090 (8) | 0.26900 (12) | 0.0356 (4) | |
| N2 | 0.6570 (2) | 0.12077 (8) | 0.48752 (13) | 0.0312 (4) | |
| N3 | 0.6925 (2) | 0.01145 (11) | −0.19696 (15) | 0.0476 (5) | |
| C1 | 0.8114 (2) | 0.07873 (10) | 0.15542 (15) | 0.0312 (4) | |
| C2 | 0.8000 (3) | 0.12928 (11) | 0.06160 (16) | 0.0419 (5) | |
| H2 | 0.818859 | 0.178501 | 0.077433 | 0.050* | |
| C3 | 0.7615 (3) | 0.10711 (12) | −0.05228 (17) | 0.0447 (5) | |
| H3 | 0.753987 | 0.141171 | −0.113294 | 0.054* | |
| C4 | 0.7339 (3) | 0.03448 (11) | −0.07686 (15) | 0.0365 (4) | |
| C5 | 0.7466 (2) | −0.01673 (11) | 0.01221 (16) | 0.0377 (4) | |
| H5 | 0.729993 | −0.065848 | −0.005234 | 0.045* | |
| C6 | 0.7840 (3) | 0.00528 (10) | 0.12678 (16) | 0.0355 (4) | |
| H6 | 0.791371 | −0.029400 | 0.186860 | 0.043* | |
| C7 | 0.8875 (3) | 0.05084 (10) | 0.36718 (15) | 0.0341 (4) | |
| H7A | 1.001562 | 0.066979 | 0.414794 | 0.041* | |
| H7B | 0.917467 | 0.002845 | 0.336392 | 0.041* | |
| C8 | 0.7060 (3) | 0.04672 (9) | 0.44371 (15) | 0.0320 (4) | |
| H8A | 0.593779 | 0.027324 | 0.397946 | 0.038* | |
| H8B | 0.732201 | 0.014504 | 0.510461 | 0.038* | |
| C9 | 0.6318 (3) | 0.17363 (10) | 0.38863 (16) | 0.0373 (4) | |
| H9A | 0.610217 | 0.221963 | 0.420550 | 0.045* | |
| H9B | 0.515721 | 0.160535 | 0.340249 | 0.045* | |
| C10 | 0.8162 (3) | 0.17372 (10) | 0.31302 (16) | 0.0401 (5) | |
| H10A | 0.796762 | 0.206785 | 0.246641 | 0.048* | |
| H10B | 0.930352 | 0.190504 | 0.359862 | 0.048* | |
| C11 | 0.1577 (3) | 0.17011 (10) | 0.61221 (17) | 0.0386 (5) | |
| C12A | 0.2811 (6) | 0.2193 (2) | 0.6965 (3) | 0.0574 (11) | 0.779 (4) |
| C12B | 0.295 (2) | 0.2305 (8) | 0.6565 (13) | 0.0574 (11) | 0.221 (4) |
| O3 | 0.2518 (2) | 0.12351 (8) | 0.55930 (14) | 0.0522 (4) | |
| O4 | −0.0240 (2) | 0.18168 (9) | 0.61548 (14) | 0.0593 (5) | |
| F1A | 0.4768 (4) | 0.22180 (19) | 0.6652 (3) | 0.0873 (11) | 0.779 (4) |
| F2A | 0.2265 (4) | 0.28753 (13) | 0.6917 (4) | 0.0974 (13) | 0.779 (4) |
| F3A | 0.2611 (5) | 0.2012 (2) | 0.8079 (2) | 0.1261 (13) | 0.779 (4) |
| F1B | 0.2251 (14) | 0.2549 (8) | 0.7591 (12) | 0.089 (3) | 0.221 (4) |
| F2B | 0.4517 (17) | 0.1991 (8) | 0.7164 (11) | 0.090 (3) | 0.221 (4) |
| F3B | 0.2926 (17) | 0.2875 (5) | 0.5852 (13) | 0.129 (3) | 0.221 (4) |
| H21 | 0.541 (3) | 0.1200 (11) | 0.5272 (17) | 0.047 (6)* | |
| H22 | 0.752 (2) | 0.1340 (10) | 0.5372 (15) | 0.038 (5)* |
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.1184 (16) | 0.0917 (14) | 0.0310 (8) | −0.0055 (11) | −0.0098 (9) | 0.0050 (9) |
| O2 | 0.0640 (10) | 0.0726 (12) | 0.0539 (10) | 0.0033 (8) | −0.0089 (8) | −0.0253 (8) |
| N1 | 0.0441 (9) | 0.0359 (8) | 0.0268 (8) | 0.0041 (7) | 0.0012 (6) | 0.0023 (7) |
| N2 | 0.0272 (8) | 0.0362 (8) | 0.0301 (8) | 0.0006 (7) | −0.0020 (6) | −0.0032 (7) |
| N3 | 0.0359 (9) | 0.0719 (13) | 0.0349 (9) | 0.0018 (9) | −0.0004 (7) | −0.0080 (9) |
| C1 | 0.0234 (8) | 0.0406 (10) | 0.0298 (9) | 0.0020 (7) | 0.0030 (7) | 0.0014 (8) |
| C2 | 0.0518 (12) | 0.0397 (11) | 0.0341 (10) | 0.0012 (9) | 0.0002 (8) | 0.0025 (9) |
| C3 | 0.0508 (12) | 0.0527 (13) | 0.0306 (10) | 0.0033 (10) | −0.0012 (8) | 0.0079 (9) |
| C4 | 0.0277 (9) | 0.0528 (12) | 0.0289 (9) | 0.0020 (8) | −0.0003 (7) | −0.0037 (9) |
| C5 | 0.0269 (9) | 0.0433 (11) | 0.0429 (11) | −0.0001 (8) | 0.0005 (8) | −0.0064 (9) |
| C6 | 0.0317 (9) | 0.0404 (11) | 0.0344 (10) | 0.0005 (8) | 0.0001 (7) | 0.0038 (8) |
| C7 | 0.0342 (9) | 0.0388 (10) | 0.0291 (9) | 0.0075 (8) | −0.0028 (7) | 0.0002 (8) |
| C8 | 0.0358 (9) | 0.0312 (9) | 0.0288 (9) | 0.0000 (8) | −0.0048 (7) | 0.0006 (7) |
| C9 | 0.0438 (11) | 0.0314 (10) | 0.0363 (10) | 0.0062 (8) | −0.0056 (8) | 0.0005 (8) |
| C10 | 0.0523 (11) | 0.0346 (10) | 0.0335 (10) | −0.0058 (9) | −0.0005 (8) | 0.0011 (8) |
| C11 | 0.0313 (10) | 0.0398 (11) | 0.0446 (11) | −0.0015 (8) | −0.0029 (8) | −0.0100 (9) |
| C12A | 0.0369 (14) | 0.068 (2) | 0.067 (3) | 0.0037 (13) | 0.0025 (19) | −0.036 (2) |
| C12B | 0.0369 (14) | 0.068 (2) | 0.067 (3) | 0.0037 (13) | 0.0025 (19) | −0.036 (2) |
| O3 | 0.0386 (8) | 0.0484 (8) | 0.0695 (10) | 0.0011 (7) | −0.0020 (7) | −0.0248 (8) |
| O4 | 0.0308 (8) | 0.0745 (11) | 0.0724 (11) | −0.0014 (7) | −0.0055 (7) | −0.0315 (8) |
| F1A | 0.0316 (11) | 0.103 (2) | 0.128 (3) | −0.0196 (12) | 0.0112 (14) | −0.0703 (18) |
| F2A | 0.0739 (15) | 0.0495 (14) | 0.168 (4) | 0.0015 (12) | −0.012 (2) | −0.0513 (17) |
| F3A | 0.146 (3) | 0.168 (3) | 0.0625 (16) | −0.035 (2) | −0.0317 (15) | −0.0260 (18) |
| F1B | 0.055 (4) | 0.112 (6) | 0.100 (5) | −0.010 (5) | 0.006 (4) | −0.068 (4) |
| F2B | 0.036 (4) | 0.120 (5) | 0.111 (5) | 0.015 (4) | −0.032 (4) | −0.057 (4) |
| F3B | 0.126 (5) | 0.083 (5) | 0.178 (6) | −0.035 (4) | 0.003 (5) | −0.029 (5) |
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Geometric parameters (Å, º)
| O1—N3 | 1.219 (2) | C7—C8 | 1.505 (2) |
| O2—N3 | 1.220 (2) | C7—H7A | 0.9700 |
| N1—C1 | 1.368 (2) | C7—H7B | 0.9700 |
| N1—C10 | 1.452 (2) | C8—H8A | 0.9700 |
| N1—C7 | 1.452 (2) | C8—H8B | 0.9700 |
| N2—C9 | 1.485 (2) | C9—C10 | 1.512 (3) |
| N2—C8 | 1.486 (2) | C9—H9A | 0.9700 |
| N2—H21 | 0.901 (15) | C9—H9B | 0.9700 |
| N2—H22 | 0.873 (15) | C10—H10A | 0.9700 |
| N3—C4 | 1.439 (2) | C10—H10B | 0.9700 |
| C1—C6 | 1.399 (3) | C11—O3 | 1.224 (2) |
| C1—C2 | 1.408 (2) | C11—O4 | 1.235 (2) |
| C2—C3 | 1.365 (3) | C11—C12B | 1.518 (15) |
| C2—H2 | 0.9300 | C11—C12A | 1.539 (4) |
| C3—C4 | 1.375 (3) | C12A—F2A | 1.306 (5) |
| C3—H3 | 0.9300 | C12A—F3A | 1.307 (5) |
| C4—C5 | 1.377 (3) | C12A—F1A | 1.364 (5) |
| C5—C6 | 1.370 (3) | C12B—F3B | 1.319 (13) |
| C5—H5 | 0.9300 | C12B—F1B | 1.332 (14) |
| C6—H6 | 0.9300 | C12B—F2B | 1.365 (14) |
| C1—N1—C10 | 123.95 (15) | N2—C8—C7 | 109.25 (14) |
| C1—N1—C7 | 123.34 (15) | N2—C8—H8A | 109.8 |
| C10—N1—C7 | 110.45 (13) | C7—C8—H8A | 109.8 |
| C9—N2—C8 | 111.88 (13) | N2—C8—H8B | 109.8 |
| C9—N2—H21 | 107.2 (13) | C7—C8—H8B | 109.8 |
| C8—N2—H21 | 110.4 (13) | H8A—C8—H8B | 108.3 |
| C9—N2—H22 | 111.7 (13) | N2—C9—C10 | 109.95 (15) |
| C8—N2—H22 | 107.8 (12) | N2—C9—H9A | 109.7 |
| H21—N2—H22 | 107.9 (18) | C10—C9—H9A | 109.7 |
| O1—N3—O2 | 122.05 (18) | N2—C9—H9B | 109.7 |
| O1—N3—C4 | 118.42 (19) | C10—C9—H9B | 109.7 |
| O2—N3—C4 | 119.53 (19) | H9A—C9—H9B | 108.2 |
| N1—C1—C6 | 121.82 (16) | N1—C10—C9 | 110.05 (15) |
| N1—C1—C2 | 120.84 (17) | N1—C10—H10A | 109.7 |
| C6—C1—C2 | 117.31 (16) | C9—C10—H10A | 109.7 |
| C3—C2—C1 | 120.96 (18) | N1—C10—H10B | 109.7 |
| C3—C2—H2 | 119.5 | C9—C10—H10B | 109.7 |
| C1—C2—H2 | 119.5 | H10A—C10—H10B | 108.2 |
| C2—C3—C4 | 120.06 (18) | O3—C11—O4 | 130.58 (17) |
| C2—C3—H3 | 120.0 | O3—C11—C12B | 111.0 (6) |
| C4—C3—H3 | 120.0 | O4—C11—C12B | 116.9 (6) |
| C3—C4—C5 | 120.72 (17) | O3—C11—C12A | 115.9 (2) |
| C3—C4—N3 | 119.83 (18) | O4—C11—C12A | 113.3 (2) |
| C5—C4—N3 | 119.45 (18) | F2A—C12A—F3A | 104.5 (4) |
| C6—C5—C4 | 119.45 (18) | F2A—C12A—F1A | 103.1 (4) |
| C6—C5—H5 | 120.3 | F3A—C12A—F1A | 112.0 (4) |
| C4—C5—H5 | 120.3 | F2A—C12A—C11 | 113.1 (3) |
| C5—C6—C1 | 121.49 (17) | F3A—C12A—C11 | 112.2 (3) |
| C5—C6—H6 | 119.3 | F1A—C12A—C11 | 111.5 (3) |
| C1—C6—H6 | 119.3 | F3B—C12B—F1B | 105.1 (13) |
| N1—C7—C8 | 110.83 (14) | F3B—C12B—F2B | 129.5 (15) |
| N1—C7—H7A | 109.5 | F1B—C12B—F2B | 89.6 (11) |
| C8—C7—H7A | 109.5 | F3B—C12B—C11 | 112.5 (10) |
| N1—C7—H7B | 109.5 | F1B—C12B—C11 | 108.2 (11) |
| C8—C7—H7B | 109.5 | F2B—C12B—C11 | 107.8 (11) |
| H7A—C7—H7B | 108.1 | ||
| C10—N1—C1—C6 | −157.34 (17) | C10—N1—C7—C8 | 61.08 (19) |
| C7—N1—C1—C6 | 3.9 (3) | C9—N2—C8—C7 | 54.85 (18) |
| C10—N1—C1—C2 | 24.9 (2) | N1—C7—C8—N2 | −57.36 (18) |
| C7—N1—C1—C2 | −173.79 (16) | C8—N2—C9—C10 | −54.97 (19) |
| N1—C1—C2—C3 | 178.48 (17) | C1—N1—C10—C9 | 103.02 (19) |
| C6—C1—C2—C3 | 0.7 (3) | C7—N1—C10—C9 | −60.34 (19) |
| C1—C2—C3—C4 | −0.2 (3) | N2—C9—C10—N1 | 56.90 (19) |
| C2—C3—C4—C5 | −0.7 (3) | O3—C11—C12A—F2A | 139.1 (3) |
| C2—C3—C4—N3 | 179.71 (17) | O4—C11—C12A—F2A | −45.3 (4) |
| O1—N3—C4—C3 | −4.9 (3) | O3—C11—C12A—F3A | −103.0 (3) |
| O2—N3—C4—C3 | 175.97 (18) | O4—C11—C12A—F3A | 72.6 (4) |
| O1—N3—C4—C5 | 175.49 (18) | O3—C11—C12A—F1A | 23.5 (5) |
| O2—N3—C4—C5 | −3.6 (3) | O4—C11—C12A—F1A | −160.9 (3) |
| C3—C4—C5—C6 | 1.1 (3) | O3—C11—C12B—F3B | 98.1 (11) |
| N3—C4—C5—C6 | −179.33 (15) | O4—C11—C12B—F3B | −69.4 (12) |
| C4—C5—C6—C1 | −0.6 (3) | O3—C11—C12B—F1B | −146.3 (10) |
| N1—C1—C6—C5 | −178.08 (16) | O4—C11—C12B—F1B | 46.2 (12) |
| C2—C1—C6—C5 | −0.3 (3) | O3—C11—C12B—F2B | −50.7 (12) |
| C1—N1—C7—C8 | −102.40 (18) | O4—C11—C12B—F2B | 141.8 (10) |
4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H21···O3 | 0.90 (2) | 1.98 (2) | 2.844 (2) | 161 (2) |
| N2—H22···O4i | 0.87 (2) | 1.93 (2) | 2.786 (2) | 165 (2) |
| C7—H7A···O3i | 0.97 | 2.53 | 3.492 (2) | 169 |
Symmetry code: (i) x+1, y, z.
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Crystal data
| C10H14N3O2+·C2Cl3O2− | F(000) = 760 |
| Mr = 370.61 | Dx = 1.603 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 11.7825 (5) Å | Cell parameters from 2813 reflections |
| b = 6.6142 (3) Å | θ = 3.0–27.8° |
| c = 20.3271 (9) Å | µ = 0.62 mm−1 |
| β = 104.173 (4)° | T = 293 K |
| V = 1535.91 (12) Å3 | Prism, brown |
| Z = 4 | 0.48 × 0.44 × 0.40 mm |
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Data collection
| Oxford Diffraction Xcalibu with Sapphire CCD diffractometer | 2068 reflections with I > 2σ(I) |
| Radiation source: Enhance (Mo) X-ray Source | Rint = 0.013 |
| Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 3.0° |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction (2009) | h = −14→13 |
| Tmin = 0.840, Tmax = 1.000 | k = −7→6 |
| 5078 measured reflections | l = −24→14 |
| 2802 independent reflections |
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1937P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.104 | (Δ/σ)max < 0.001 |
| S = 1.09 | Δρmax = 0.25 e Å−3 |
| 2802 reflections | Δρmin = −0.28 e Å−3 |
| 236 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 35 restraints | Extinction coefficient: 0.0084 (12) |
| Primary atom site location: structure-invariant direct methods |
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| O1 | 1.25261 (14) | 0.5140 (3) | 0.20561 (10) | 0.0741 (5) | |
| O2 | 1.24364 (14) | 0.5039 (2) | 0.30936 (10) | 0.0669 (5) | |
| N1 | 0.70718 (14) | 0.5089 (3) | 0.16441 (8) | 0.0449 (4) | |
| N2 | 0.47368 (15) | 0.3654 (3) | 0.13414 (9) | 0.0428 (4) | |
| N3 | 1.19635 (15) | 0.5092 (2) | 0.24883 (10) | 0.0477 (5) | |
| C1 | 0.82694 (16) | 0.5103 (2) | 0.18508 (9) | 0.0332 (4) | |
| C2 | 0.89695 (17) | 0.5088 (3) | 0.13812 (10) | 0.0410 (5) | |
| H2 | 0.861345 | 0.508580 | 0.091922 | 0.049* | |
| C3 | 1.01632 (18) | 0.5077 (3) | 0.15913 (11) | 0.0432 (5) | |
| H3 | 1.061159 | 0.506564 | 0.127313 | 0.052* | |
| C4 | 1.07033 (16) | 0.5084 (3) | 0.22736 (10) | 0.0369 (4) | |
| C5 | 1.00483 (17) | 0.5083 (3) | 0.27476 (10) | 0.0379 (5) | |
| H5 | 1.041717 | 0.507704 | 0.320778 | 0.046* | |
| C6 | 0.88472 (17) | 0.5091 (3) | 0.25404 (9) | 0.0370 (4) | |
| H6 | 0.840985 | 0.508872 | 0.286420 | 0.044* | |
| C7 | 0.63004 (17) | 0.5611 (3) | 0.20782 (11) | 0.0452 (5) | |
| H7A | 0.590860 | 0.688009 | 0.192889 | 0.054* | |
| H7B | 0.675741 | 0.578246 | 0.254138 | 0.054* | |
| C8 | 0.54056 (16) | 0.3977 (3) | 0.20527 (10) | 0.0425 (5) | |
| H8A | 0.579293 | 0.273110 | 0.223440 | 0.051* | |
| H8B | 0.487520 | 0.436125 | 0.232840 | 0.051* | |
| C9 | 0.55236 (18) | 0.3230 (3) | 0.08906 (10) | 0.0466 (5) | |
| H9A | 0.506515 | 0.312758 | 0.042528 | 0.056* | |
| H9B | 0.591456 | 0.194556 | 0.101561 | 0.056* | |
| C10 | 0.64214 (18) | 0.4869 (3) | 0.09421 (10) | 0.0489 (5) | |
| H10A | 0.695324 | 0.453110 | 0.066221 | 0.059* | |
| H10B | 0.603791 | 0.613458 | 0.077935 | 0.059* | |
| O3 | 0.39831 (14) | −0.0360 (2) | 0.13071 (8) | 0.0613 (5) | |
| O4 | 0.35547 (15) | −0.3109 (2) | 0.06595 (8) | 0.0619 (5) | |
| C11 | 0.33900 (17) | −0.1382 (3) | 0.08446 (10) | 0.0412 (5) | |
| C12 | 0.22438 (17) | −0.0367 (3) | 0.04153 (9) | 0.0394 (5) | |
| Cl1A | 0.1882 (4) | 0.1717 (9) | 0.0837 (2) | 0.0708 (9) | 0.494 (15) |
| Cl2A | 0.2502 (7) | 0.0289 (11) | −0.0355 (3) | 0.0911 (17) | 0.494 (15) |
| Cl3A | 0.1076 (4) | −0.2089 (7) | 0.0240 (3) | 0.0746 (11) | 0.494 (15) |
| Cl1B | 0.2023 (4) | 0.2189 (9) | 0.0640 (4) | 0.0790 (16) | 0.506 (15) |
| Cl2B | 0.2284 (6) | −0.0136 (10) | −0.0438 (2) | 0.0839 (13) | 0.506 (15) |
| Cl3B | 0.1049 (4) | −0.1756 (13) | 0.0517 (5) | 0.100 (2) | 0.506 (15) |
| H21 | 0.4277 (18) | 0.263 (3) | 0.1340 (11) | 0.047 (6)* | |
| H22 | 0.4300 (19) | 0.468 (3) | 0.1176 (11) | 0.061 (7)* |
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0405 (9) | 0.0979 (15) | 0.0875 (13) | 0.0003 (9) | 0.0227 (9) | −0.0052 (10) |
| O2 | 0.0443 (9) | 0.0759 (12) | 0.0697 (11) | −0.0015 (8) | −0.0068 (8) | −0.0106 (9) |
| N1 | 0.0330 (9) | 0.0664 (12) | 0.0364 (9) | −0.0058 (8) | 0.0106 (7) | −0.0123 (8) |
| N2 | 0.0334 (9) | 0.0375 (10) | 0.0536 (11) | −0.0019 (8) | 0.0033 (8) | 0.0032 (8) |
| N3 | 0.0357 (9) | 0.0363 (10) | 0.0689 (13) | 0.0012 (7) | 0.0087 (9) | −0.0069 (8) |
| C1 | 0.0344 (10) | 0.0273 (9) | 0.0388 (10) | −0.0020 (8) | 0.0106 (8) | −0.0025 (8) |
| C2 | 0.0406 (11) | 0.0483 (12) | 0.0350 (10) | 0.0030 (9) | 0.0108 (8) | 0.0016 (9) |
| C3 | 0.0405 (11) | 0.0439 (12) | 0.0491 (12) | 0.0042 (9) | 0.0181 (9) | 0.0022 (9) |
| C4 | 0.0333 (10) | 0.0252 (9) | 0.0506 (12) | −0.0004 (8) | 0.0076 (8) | −0.0017 (8) |
| C5 | 0.0429 (11) | 0.0286 (10) | 0.0395 (10) | −0.0014 (8) | 0.0046 (9) | −0.0032 (8) |
| C6 | 0.0423 (11) | 0.0349 (10) | 0.0359 (10) | −0.0026 (8) | 0.0136 (8) | −0.0024 (8) |
| C7 | 0.0348 (10) | 0.0567 (12) | 0.0464 (12) | −0.0050 (9) | 0.0144 (9) | −0.0130 (10) |
| C8 | 0.0368 (10) | 0.0466 (12) | 0.0442 (11) | 0.0020 (9) | 0.0104 (8) | 0.0017 (9) |
| C9 | 0.0449 (12) | 0.0509 (12) | 0.0388 (11) | 0.0026 (10) | 0.0001 (9) | −0.0060 (9) |
| C10 | 0.0391 (11) | 0.0675 (15) | 0.0386 (11) | −0.0004 (10) | 0.0066 (8) | −0.0006 (10) |
| O3 | 0.0579 (10) | 0.0507 (9) | 0.0598 (10) | −0.0039 (8) | −0.0152 (8) | 0.0023 (7) |
| O4 | 0.0640 (10) | 0.0505 (9) | 0.0616 (10) | 0.0210 (8) | −0.0030 (8) | −0.0044 (8) |
| C11 | 0.0383 (11) | 0.0456 (12) | 0.0375 (11) | 0.0031 (9) | 0.0054 (8) | 0.0057 (9) |
| C12 | 0.0386 (11) | 0.0401 (10) | 0.0378 (11) | 0.0010 (9) | 0.0062 (8) | −0.0024 (8) |
| Cl1A | 0.0801 (15) | 0.0735 (19) | 0.0577 (13) | 0.0376 (13) | 0.0150 (12) | −0.0120 (11) |
| Cl2A | 0.121 (3) | 0.099 (3) | 0.067 (3) | 0.040 (2) | 0.050 (2) | 0.053 (2) |
| Cl3A | 0.0501 (11) | 0.0651 (12) | 0.095 (2) | −0.0146 (8) | −0.0082 (13) | 0.0026 (15) |
| Cl1B | 0.0603 (14) | 0.0597 (17) | 0.095 (3) | 0.0272 (12) | −0.0224 (15) | −0.0358 (18) |
| Cl2B | 0.100 (2) | 0.107 (3) | 0.0388 (11) | 0.060 (2) | 0.0071 (13) | 0.0062 (15) |
| Cl3B | 0.0427 (9) | 0.115 (3) | 0.137 (4) | −0.0141 (15) | 0.0102 (19) | 0.063 (3) |
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Geometric parameters (Å, º)
| O1—N3 | 1.224 (3) | C7—C8 | 1.502 (3) |
| O2—N3 | 1.221 (2) | C7—H7A | 0.9700 |
| N1—C1 | 1.370 (2) | C7—H7B | 0.9700 |
| N1—C10 | 1.452 (2) | C8—H8A | 0.9700 |
| N1—C7 | 1.455 (2) | C8—H8B | 0.9700 |
| N2—C9 | 1.481 (3) | C9—C10 | 1.501 (3) |
| N2—C8 | 1.483 (2) | C9—H9A | 0.9700 |
| N2—H21 | 0.867 (16) | C9—H9B | 0.9700 |
| N2—H22 | 0.870 (16) | C10—H10A | 0.9700 |
| N3—C4 | 1.442 (2) | C10—H10B | 0.9700 |
| C1—C6 | 1.400 (3) | O3—C11 | 1.228 (2) |
| C1—C2 | 1.406 (3) | O4—C11 | 1.233 (2) |
| C2—C3 | 1.366 (3) | C11—C12 | 1.568 (3) |
| C2—H2 | 0.9300 | C12—Cl2A | 1.722 (4) |
| C3—C4 | 1.377 (3) | C12—Cl1A | 1.730 (5) |
| C3—H3 | 0.9300 | C12—Cl3B | 1.736 (4) |
| C4—C5 | 1.374 (3) | C12—Cl2B | 1.753 (5) |
| C5—C6 | 1.374 (3) | C12—Cl3A | 1.754 (5) |
| C5—H5 | 0.9300 | C12—Cl1B | 1.787 (4) |
| C6—H6 | 0.9300 | ||
| C1—N1—C10 | 123.91 (16) | H7A—C7—H7B | 108.1 |
| C1—N1—C7 | 124.18 (17) | N2—C8—C7 | 109.76 (16) |
| C10—N1—C7 | 111.23 (17) | N2—C8—H8A | 109.7 |
| C9—N2—C8 | 111.52 (15) | C7—C8—H8A | 109.7 |
| C9—N2—H21 | 109.6 (14) | N2—C8—H8B | 109.7 |
| C8—N2—H21 | 107.4 (14) | C7—C8—H8B | 109.7 |
| C9—N2—H22 | 108.0 (16) | H8A—C8—H8B | 108.2 |
| C8—N2—H22 | 112.8 (16) | N2—C9—C10 | 110.93 (16) |
| H21—N2—H22 | 107 (2) | N2—C9—H9A | 109.5 |
| O2—N3—O1 | 122.05 (19) | C10—C9—H9A | 109.5 |
| O2—N3—C4 | 119.16 (19) | N2—C9—H9B | 109.5 |
| O1—N3—C4 | 118.79 (19) | C10—C9—H9B | 109.5 |
| N1—C1—C6 | 121.24 (17) | H9A—C9—H9B | 108.0 |
| N1—C1—C2 | 121.54 (17) | N1—C10—C9 | 109.53 (17) |
| C6—C1—C2 | 117.21 (18) | N1—C10—H10A | 109.8 |
| C3—C2—C1 | 121.20 (18) | C9—C10—H10A | 109.8 |
| C3—C2—H2 | 119.4 | N1—C10—H10B | 109.8 |
| C1—C2—H2 | 119.4 | C9—C10—H10B | 109.8 |
| C2—C3—C4 | 120.09 (19) | H10A—C10—H10B | 108.2 |
| C2—C3—H3 | 120.0 | O3—C11—O4 | 129.89 (19) |
| C4—C3—H3 | 120.0 | O3—C11—C12 | 116.20 (18) |
| C5—C4—C3 | 120.39 (18) | O4—C11—C12 | 113.91 (17) |
| C5—C4—N3 | 120.10 (18) | C11—C12—Cl2A | 107.1 (3) |
| C3—C4—N3 | 119.52 (18) | C11—C12—Cl1A | 110.38 (19) |
| C4—C5—C6 | 119.88 (18) | Cl2A—C12—Cl1A | 111.7 (2) |
| C4—C5—H5 | 120.1 | C11—C12—Cl3B | 108.7 (2) |
| C6—C5—H5 | 120.1 | C11—C12—Cl2B | 111.1 (2) |
| C5—C6—C1 | 121.24 (18) | Cl3B—C12—Cl2B | 112.5 (3) |
| C5—C6—H6 | 119.4 | C11—C12—Cl3A | 111.2 (2) |
| C1—C6—H6 | 119.4 | Cl2A—C12—Cl3A | 106.4 (3) |
| N1—C7—C8 | 110.22 (17) | Cl1A—C12—Cl3A | 110.0 (2) |
| N1—C7—H7A | 109.6 | C11—C12—Cl1B | 114.97 (18) |
| C8—C7—H7A | 109.6 | Cl3B—C12—Cl1B | 107.3 (2) |
| N1—C7—H7B | 109.6 | Cl2B—C12—Cl1B | 102.2 (3) |
| C8—C7—H7B | 109.6 | ||
| C10—N1—C1—C6 | −172.70 (18) | C10—N1—C7—C8 | 60.7 (2) |
| C7—N1—C1—C6 | 17.6 (3) | C9—N2—C8—C7 | 54.7 (2) |
| C10—N1—C1—C2 | 6.0 (3) | N1—C7—C8—N2 | −57.0 (2) |
| C7—N1—C1—C2 | −163.77 (18) | C8—N2—C9—C10 | −54.9 (2) |
| N1—C1—C2—C3 | −179.19 (18) | C1—N1—C10—C9 | 129.3 (2) |
| C6—C1—C2—C3 | −0.5 (3) | C7—N1—C10—C9 | −59.8 (2) |
| C1—C2—C3—C4 | −0.1 (3) | N2—C9—C10—N1 | 56.4 (2) |
| C2—C3—C4—C5 | 0.6 (3) | O3—C11—C12—Cl2A | 105.8 (4) |
| C2—C3—C4—N3 | −179.41 (18) | O4—C11—C12—Cl2A | −74.1 (4) |
| O2—N3—C4—C5 | 2.1 (3) | O3—C11—C12—Cl1A | −16.0 (3) |
| O1—N3—C4—C5 | −178.32 (17) | O4—C11—C12—Cl1A | 164.1 (3) |
| O2—N3—C4—C3 | −177.92 (18) | O3—C11—C12—Cl3B | −117.0 (5) |
| O1—N3—C4—C3 | 1.7 (3) | O4—C11—C12—Cl3B | 63.2 (5) |
| C3—C4—C5—C6 | −0.5 (3) | O3—C11—C12—Cl2B | 118.7 (3) |
| N3—C4—C5—C6 | 179.50 (16) | O4—C11—C12—Cl2B | −61.1 (3) |
| C4—C5—C6—C1 | −0.1 (3) | O3—C11—C12—Cl3A | −138.3 (3) |
| N1—C1—C6—C5 | 179.29 (17) | O4—C11—C12—Cl3A | 41.8 (3) |
| C2—C1—C6—C5 | 0.6 (3) | O3—C11—C12—Cl1B | 3.3 (5) |
| C1—N1—C7—C8 | −128.4 (2) | O4—C11—C12—Cl1B | −176.6 (4) |
4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H21···O3 | 0.87 (2) | 2.01 (2) | 2.795 (2) | 151 (2) |
| N2—H21···Cl1A | 0.87 (2) | 2.82 (2) | 3.510 (5) | 138 (2) |
| N2—H22···O4i | 0.87 (2) | 1.89 (2) | 2.738 (2) | 167 (2) |
Symmetry code: (i) x, y+1, z.
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.
- Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
- Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24. [DOI] [PubMed]
- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
- Chaudhary, P., Kumar, R., Verma, A. K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826. [DOI] [PubMed]
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Elliott, S. (2011). Drug Test. Anal. 3, 430–438. [DOI] [PubMed]
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Gharbi, C., Toumi, B., Soudani, S., Lefebvre, F., Kaminsky, W., Jelsch, C., Nasr, C. B. & Khedhiri, L. (2022). J. Mol. Struct. 1257, 132620.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hansch, C., Leo, A. & Taft, R. W. (1991). Chem. Rev. 91, 2, 165–195.
- Jin, Y., Huang, T., Zhao, W., Yang, X., Meng, Y. & Ma, P. (2020). RSC Adv. 10, 37369–37373. [DOI] [PMC free article] [PubMed]
- Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.
- König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.
- Lu, Y.-X. (2007). Acta Cryst. E63, o3611.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510–518. [DOI] [PMC free article] [PubMed]
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Perrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for organic acids and bases, Appendix: p. 119. Chapman & Hall, London.
- Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.
- Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. [DOI] [PubMed]
- Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97–98.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989022011501/vm2275sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022011501/vm2275Isup2.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022011501/vm2275IIsup3.hkl
Supporting information file. DOI: 10.1107/S2056989022011501/vm2275Isup4.cml
Supporting information file. DOI: 10.1107/S2056989022011501/vm2275IIsup5.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report










