Abstract
Currently, Indonesia and the whole world are being hit by the Covid-19 pandemic which has an impact on various fields of life. It affects all sectors, including the education sector. The government through the Ministry of Education and Culture makes a policy in education in terms of the learning process. Teaching and learning activities that were initially carried out face to face become distance learning which was carried out at home. In this study, a systematic literature review is conducted on automatic assessment of essay answers. Various previous studies discuss the essay answer scoring system that has been developed using various methods. We synthesize the results to enrich our understanding of the automated essay exam scoring system. The expected result of this research is that it can contribute to further research related to the automated essay exam scoring system, especially in terms of considering methods and dataset forms.
Keywords: scoring system, essay, automatic, systematic review, assessment
References
- 1.Novianti D.E. Kurikulum dan Pembelajaran di Masa Pandemi Covid 19 Apa dan Bagaimana? Pros. Nas. Pendidik. LPPM IKIP PGRI Bojonegoro. 2020;1(1):70–75. [Google Scholar]
- 2.Kufi E.F., Negassa T., Melaku R., Mergo R. Impact of corona pandemic on educational undertakings and possible breakthrough mechanisms. BizEcons Q. 2020;11:3–14. https://ideas.repec.org/a/ris/buecqu/0022.html June[Online]Available. [Google Scholar]
- 3.Anjorin A.A. The coronavirus disease 2019 (COVID-19) pandemic: A review and an update on cases in Africa. Asian Pac. J. Trop. Med. 2020;13(5):199–203. doi: 10.4103/1995-7645.281612. [DOI] [Google Scholar]
- 4.Tadesse S., Muluye W. The Impact of COVID-19 Pandemic on Education System in Developing Countries: A Review. Open J. Soc. Sci. 2020;08(10):159–170. doi: 10.4236/jss.2020.810011. [DOI] [Google Scholar]
- 5.“Kementerian Pendidikan dan Kebudayaan » Republik Indonesia.” https://www.kemdikbud.go.id/main/blog/2020/03/se-mendikbud-pelaksanaan-kebijakan-pendidikan-dalam-masa-darurat-penyebaran-covid19 (accessed Jun. 17, 2021).
- 6.Rasmitadila, et al. The perceptions of primary school teachers of online learning during the covid-19 pandemic period: A case study in Indonesia. J. Ethn. Cult. Stud. 2020;7(2):90–109. doi: 10.29333/ejecs/388. [DOI] [Google Scholar]
- 7.Herliandry L.D., Nurhasanah M.E.Suban, Heru K. Transformasi Media Pembelajaran Pada Masa Pandemi Covid-19. J. Teknol. Pendidik. 2020;22(1):65–70. http://journal.unj.ac.id/unj/index.php/jtp [Online]. Available. [Google Scholar]
- 8.Pokhrel S., Chhetri R. A Literature Review on Impact of COVID-19 Pandemic on Teaching and Learning. High. Educ. Futur. 2021;8(1):133–141. doi: 10.1177/2347631120983481. [DOI] [Google Scholar]
- 9.Putra P., Liriwati F.Y., Tahrim T., Syafrudin S., Aslan A. The Students Learning from Home Experiences during Covid-19 School Closures Policy In Indonesia. J. Iqra’ Kaji. Ilmu Pendidik. 2020;5(2):30–42. doi: 10.25217/ji.v5i2.1019. [DOI] [Google Scholar]
- 10.Ratu D., Uswatun A., Pramudibyanto H. Pendidikan Dalam Masa Pandemi Covid-19. J. Sinestesia. 2020;10(1):41–48. https://sinestesia.pustaka.my.id/journal/article/view/44 [Online]Available. [Google Scholar]
- 11.Baticulon R.E., et al. Barriers to Online Learning in the Time of COVID-19: A National Survey of Medical Students in the Philippines. Med. Sci. Educ. 2021;31(2):615–626. doi: 10.1007/s40670-021-01231-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kelly T.P.M.F. Inequality In Household Adaptation To Schooling Shocks: Covid-Induced Online Learning Engagement In Real Time. Angew. Chemie Int. Ed. 2020;6(11):951–952. doi: 10.1016/j.jpubeco.2020.104345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Tashu T.M., Horvath T. CSEDU 2018 - Proc. 10th Int. Conf. Comput. Support. Educ. Vol. 1. Csedu; 2018. Pair-wise: Automatic essay evaluation using Word Mover's distance; pp. 59–66. [DOI] [Google Scholar]
- 14.Kumar S., Chakrabarti S., Roy S. Earth mover's distance pooling over siamese LSTMs for Automatic short answer grading. IJCAI Int. Jt. Conf. Artif. Intell. 2017;0:2046–2052. doi: 10.24963/ijcai.2017/284. August. [DOI] [Google Scholar]
- 15.B. Riordan, A. Horbach, A. Cahill, T. Zesch, and C. M. Lee, “Investigating neural architectures for short answer scoring,” pp. 159–168, 2018, doi: 10.18653/v1/w17-5017.
- 16.İ. UYSAL, DOĞAN N. Automated Essay Scoring Effect on Test Equating Errors in Mixed-format Test. Int. J. Assess. Tools Educ. 2021;8(2):222–238. doi: 10.21449/ijate.815961. [DOI] [Google Scholar]
- 17.Iskrenovic-Momcilovic O. Using Computers in Teaching in Higher Education. Mediterr. J. Soc. Sci. 2018;9(4):71–78. doi: 10.2478/mjss-2018-0116. [DOI] [Google Scholar]
- 18.Zawacki-Richter O., Marín V.I., Bond M., Gouverneur F. Systematic review of research on artificial intelligence applications in higher education – where are the educators? Int. J. Educ. Technol. High. Educ. 2019;16(1) doi: 10.1186/s41239-019-0171-0. [DOI] [Google Scholar]
- 19.Zhao S., Zhang Y., Xiong X., Botelho A., Heffernan N. L@S 2017 - Proc. 4th ACM Conf. Learn. Scale. 2017. A memory-Augmented neural model for automated grading; pp. 189–192. [DOI] [Google Scholar]
- 20.Kurdi G., Leo J., Parsia B., Sattler U., Al-Emari S. A Systematic Review of Automatic Question Generation for Educational Purposes. Int. J. Artif. Intell. Educ. 2020;30(1):121–204. doi: 10.1007/s40593-019-00186-y. [DOI] [Google Scholar]
- 21.Zulfa M.I., Fadli A., Ramadhani Y. Classification model for graduation on time study using data mining techniques with SVM algorithm. AIP Conf. Proc. 2019;2094 doi: 10.1063/1.5097475. April. [DOI] [Google Scholar]
- 22.Kitchenham B. Keele Univ; 2004. Procedures for Performing Systematic Reviews; pp. 240–243. Tech. Rep. TR/SE-0401 ISSN1353-7776. [DOI] [Google Scholar]
- 23.Xiao Y., Watson M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019;39(1):93–112. doi: 10.1177/0739456X17723971. [DOI] [Google Scholar]
- 24.Hazar M.J., Toman Z.H., Toman S.H. Automated Scoring for Essay Questions in E-learning. J. Phys. Conf. Ser. 2019;1294(4) doi: 10.1088/1742-6596/1294/4/042014. [DOI] [Google Scholar]
- 25.Sharma A., Jayagopi D.B. Proc. Int. Conf. Front. Handwrit. Recognition, ICFHR. 2018. Automated grading of handwritten essays; pp. 279–284. 2018-Augus. [DOI] [Google Scholar]
- 26.Janda H.K., Pawar A., Du S., Mago V. Syntactic, semantic and sentiment analysis: The joint effect on automated essay evaluation. IEEE Access. 2019;7:108486–108503. doi: 10.1109/ACCESS.2019.2933354. [DOI] [Google Scholar]
- 27.Hasanah U., Astuti T., Wahyudi R., Rifai Z., Pambudi R.A. Proc. - 2018 3rd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2018; 2018. An experimental study of text preprocessing techniques for automatic short answer grading in Indonesian; pp. 230–234. [DOI] [Google Scholar]
- 28.Gold C., Zesch T. Proc. Int. Conf. Front. Handwrit. Recognition, ICFHR. 2020. Exploring the Impact of Handwriting Recognition on the Automated Scoring of Handwritten Student Answers; pp. 252–257. 2020-Septe. [DOI] [Google Scholar]
- 29.Suwanwiwat H., Das A., Ferrer M., Pal U., Blumenstein M. An investigation of discrete Hidden Markov Models on handwritten short answer assessment system. Icprai. 2018;2:18. September. [Google Scholar]
- 30.Rowtula V., Bhargavan V., Kumar M., Jawahar C.V. Scaling handwritten student assessments with a document image workflow system. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2018:2420–2427. 2018-Janua. [Google Scholar]
- 31.Darvishzadeh A., Entezari N., Stahovich T. Proc. Int. Conf. Front. Handwrit. Recognition, ICFHR. 2018. Finding the answer: Techniques for locating students’ answers in handwritten problem solutions; pp. 587–592. 2018-Augus. [DOI] [Google Scholar]
- 32.Wang Y., Wei Z., Zhou Y., Huang X. Proc. 2018 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018. 2020. Automatic essay scoring incorporating rating schema via reinforcement learning; pp. 791–797. [DOI] [Google Scholar]
- 33.Shaikh E., Mohiuddin I., Manzoor A., Latif G., Mohammad N. 2019 2nd Int. Conf. New Trends Comput. Sci. ICTCS 2019 - Proc. 2019. Automated grading for handwritten answer sheets using convolutional neural networks; pp. 1–6. [DOI] [Google Scholar]