Abstract
Background: The World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak to be a public health emergency and international concern and recognized it as a pandemic. This study aimed to estimate the epidemiologic parameters of the COVID-19 pandemic for clinical and epidemiological help.
Methods: In this systematic review and meta-analysis study, 4 electronic databases, including Web of Science, PubMed, Scopus, and Google Scholar were searched for the literature published from early December 2019 up to 23 March 2020. After screening, we selected 76 articles based on epidemiological parameters, including basic reproduction number, serial interval, incubation period, doubling time, growth rate, case-fatality rate, and the onset of symptom to hospitalization as eligibility criteria. For the estimation of overall pooled epidemiologic parameters, fixed and random effect models with 95% CI were used based on the value of between-study heterogeneity (I2).
Results: A total of 76 observational studies were included in the analysis. The pooled estimate for R0 was 2.99 (95% CI, 2.71-3.27) for COVID-19. The overall R0 was 3.23, 1.19, 3.6, and 2.35 for China, Singapore, Iran, and Japan, respectively. The overall serial interval, doubling time, and incubation period were 4.45 (95% CI, 4.03-4.87), 4.14 (95% CI, 2.67-5.62), and 4.24 (95% CI, 3.03-5.44) days for COVID-19. In addition, the overall estimation for the growth rate and the case fatality rate for COVID-19 was 0.38% and 3.29%, respectively.
Conclusion: The epidemiological characteristics of COVID-19 as an emerging disease may be revealed by computing the pooled estimate of the epidemiological parameters, opening the door for health policymakers to consider additional control measures.
Keywords: epidemiologic parameters, R0; serial interval, doubling time, case fatality rate
↑What is “already known” in this topic:
COVID-19 is a highly contagious disease that has spread significantly worldwide. Numerous strategies and parameter values have been documented in the reports from various countries on the epidemiological characteristics of the COVID-19 pandemic.
→What this article adds:
The results of this study showed that the pooled estimate for R0 was 2.99 for COVID-19. The overall R0 was 3.23, 1.19, 3.6, and 2.35 for China, Singapore, Iran, and Japan, respectively. The overall serial interval, doubling time, incubation period, growth rate, and case fatality rate (CFR) were 2.99, 4.45, 4.14, 4.24 days, 0.38%, and 3.29%, for COVID-19, respectively.
Introduction
Coronaviruses are a group of RNA viruses that cause diseases among humans and animals (1). The latest of coronavirus types as a novel coronavirus that was named severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) or COVID-19 occurred in Wuhan, China, in December 2019 with a human outbreak (2).
The World Health Organization (WHO) declared the outbreak to be a public health emergency and international concern and recognized it as a pandemic on March 11, 2020 (3). COVID-19 has spread widely in the world and is prevalent in different countries such as China, Italy, United States, France, Spain, Iran, and Germany, with 2,833,697 cases and 197,354 deaths and 807,469 recovered until April 24 2020 worldwide (4). The main rout of transmission of COVID-19 is based on human-to-human transmission via either respiratory droplets, saliva, or close contacts with infected people or aerosol generation procedures during the clinical care of COVID-19 patients (5).
Most COVID-19 infected people (80.9%) are with mild to moderate respiratory syndromes, old people or patients with underlying diseases such as diabetes, cardiovascular disease, cancer, immune deficiency, and respiratory diseases are more at risk to develop the severe (13.8%) and critical (4.7%) form of the disease (6, 7).
Knowledge regarding epidemiological characteristics and parameters of the infectious diseases such as incubation period (time from exposure to the agent until the first symptoms develop), serial interval (duration between symptom onset of a primary case and symptom onset of its secondary cases), basic reproduction number (R0) (the transmission potential of a disease), and other epidemiologic parameters is important for modelling and estimating epidemic trends and also implementing and evaluating preventive procedures (8-11).
With regard to COVID-19 pandemic parameters, there are many reports from different countries in the world. For example, about 25.6% to 51.7% of patients have been reported to be asymptomatic or with mild symptoms ( 12) and 25% to 30% of them have been admitted to the intensive care unit for medical care (13). The case-fatality rate was reported in China and other countries among old patients to be 6% (range: 4%-11%) and 2.3% in all ages (13, 14). Furthermore, the median incubation period was reported as 5 to 6 days (2-14 ranges) from the WHO, while in China the incubation period was reported up to 24 days (15, 16). Also, according to different mathematical models, R0 was reported about 6.47 (range, 1.66-10) in China, 2.6 in South Korea, and 4.7 in Iran (17-19).
Thus, according to the reports from different countries about epidemiological characteristics of the COVID-19 pandemic, different methods and values of parameters have been observed. Thus, to estimate and forecast the spread of the disease efficiently, we need acceptable and real values for each parameter. The present study was conducted to provide a systematic assessment and estimation of parameters related to COVID-19. This evaluation will help researchers with better prediction and estimation of current epidemic trends.
Methods
This is a systematic review and meta-analysis to determine the epidemiologic parameters for COVID-19.
Search Strategy
To find relevant studies, a comprehensive literature search of the Web of Science, Medline (PubMed), Scopus, and Google Scholar was performed for observational studies published electronically from early December 2019 up to 23 March 2020.
Two researchers independently searched studies. In the search strategy, English keywords (MeSH termas) and probable combination of them were used. Epidemiologic parameters in infectious diseases are combination of some specific keywords and definitions such as basic reproduction number (R0), serial interval, incubation period, doubling time, growth rate, case-fatality rate, mortality rate, and onset of symptom to hospitalization. These keywords with the Boolean operators ("OR" and "AND") were combined in search process.
The terms of search strategies were according to the following keywords: ("novel coronavirus" OR "2019-nCov" OR "COVID-19" OR " SARS-CoV-2") AND ("basic reproduction number" OR "basic reproductive rate" OR "case fatality rate" OR "case fatality ratio" OR "mortality rate" OR "doubling time" OR "growth rate" OR "incubation period" OR "onset of symptom to hospitalization"). Moreover, for comprehensive assessment of available evidences, grey literatures such as web-based nonpeer review studies were searched in this topic as well.
Study Selection
We included studies in accordance with the PRISMA guidelines and standard meta-analysis methods. All of theextracted articles were screened independently by 2 researchers. The abstracts and full texts of the articles were reviewed, duplicate studies were excluded, andrelevant articles were selected for data extraction.
Inclusion and Exclusion Criteria
The COVID-19 epidemiologic parameters of interest were provided by all epidemiological study designs (observational studies), including peer-reviewed and nonpeer-reviewed articles. In addition, irrelevant studies, letters, news, and studies that did not report epidemiologic parameters were excluded.
Screening and Data Extraction
All articles were reviewed independently by 4 researchers and information was extracted using a designed checklist (Appendix 1). Extracted items were the first author, year and month of publication, duration of the study, location of the study, type of parameters, point estimate, or mean/median and its confidence interval for epidemiological parameters, and the review status of articles (peer-reviewed or not).
Quality Assessment of Studies
To assess the quality of the included peer-reviewed and nonpeer-reviewed articles, 2 authors separately assessed the quality of the studies using the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) checklist as a scale for assessing the quality of observational studies. The STROBE includes 22 questions about methodology, aim of study, study design, and frame of original article. Finally, we scored the quality of the study as high if its rating was at least 70% (score of 16 out of 22), medium if its rating was at least 55% (12 out of 22), and poor if its rating was less than 55% (lower 12 out of 22). After that, studies with high and medium quality were included in the analysis. Given that there is a possibility of error in nonpeer review studies, we have analyzed this group of studies separately, regardless of the quality score of these studies.
Statistical Analysis
The “Metan” command was used to apply a fixed or random effects model based on Cochran’s Q-test results or a large Higgins and Thompson’s I2 value. Forest plots were used for graphical description of the results. Cumulative meta-analysis was used to examine the R0 trend during different months. However, due to the small number of months in this study, this part was removed from the analysis and results.
In studies that mortality rate was reported, because the denominator was confirmed cases, it was considered a CFR. In addition, for studies that reported the median and interquartile range (IQR), the median was consideredequivalent to the mean and the IQR was converted to standard deviation using the “IQR/1.35” formula. Finally, publication bias was examined using the Begg and Egger test. Stata 14 was used for all statistical analyses. Satistical significance was set at P < 0.05.
Results
Having assessed the quality of relevant studies, 76 observational studies up to March 23, 2020, were included in this study (Figure 1). The majority of studies were done in Wuhan, China. Detailed information of the eligiblestudies and their characteristics are presented in Appendix 1 (12, 17, 18, 20-92).
Figure 1.
Flow diagram of the study selection process including publications for the epidemiologic parameters for COVID-19

The Overall Basic Reproductive Number (R0) by Country and Peer Review Status
Total: The overall R0 was 2.99 (95% CI, 2.71-3.27) for COVID-19 (Table 1).
Table 1. Overall Estimation of Epidemiologic Parameters for COVID-19.
| Parameters | No. of studies | Estimate | 95% CI | P for Heterogeneity | I2(%) | |
|---|---|---|---|---|---|---|
| Basic Reproductive Number (R0) | Overall | 69 | 2.99 | 2.71-3.27 | <0.001 | 99.3 |
| Korea | 1 | 2.6 | 2.5-2.7 | - | - | |
| China | 57 | 3.23 | 2.92-3.55 | <0.001 | 99.1 | |
| Singapore | 6 | 1.19 | 1.07-1.3 | <0.001 | 82.2 | |
| Iran | 2 | 3.6 a | 3.1-4.09 | 0.99 | - | |
| Japan | 3 | 2.35 | 2.1-2.6 | 0.007 | 80.1 | |
| Peer Review | 13 | 2.75 | 2.25-3.24 | <0.001 | 99.4 | |
| Not Peer Review | 56 | 3.08 | 2.73-3.43 | <0.001 | 99.3 | |
| Growth Rate (%) | Overall | 5 | 0.38 | 0.2-0.55 | <0.001 | 97.7 |
| Symptom onset to Hospitalization (day) | Overall | 6 | 5.09 | 2.15-8.02 | 0.03 | 53 |
| Incubation Period (day) | Overall | 22 | 4.24 | 3.03-5.44 | 0.02 | 35 |
| Peer Review | 18 | 4.03 | 2.72-5.33 | 0.01 | 41 | |
| Non Peer Review | 4 | 5.82a | 2.91-8.74 | 0.76 | 16 |
a Fixed effect model
Country: The overall R0 was 3.23, 1.19, 3.6, and 2.35 for China, Singapore, Iran, and Japan, respectively (Table 1).
Peer Review Status: The overall R0 was 2.75 and 3.08 for peer-reviewed and nonpeer-reviewed articles, respectively (Table 1).
Overall Serial Interval (SI) by Country and Peer Review Status
Total: The overall SI was 4.45 days (95% CI, 4.03-4.87) for COVID-19.
Country: Using the random effect model, the overall SI was 4.46 and 4.64 days for China and Singapore, respectively (Figure 2).
Figure 2.
Overall serial interval (SI) for COVID-19 by country

Peer Review Status: The overall SI was 5.3 and 4.39 days for peer-reviewed and nonpeer-reviewed articles, respectively (Figure 3).
Figure 3.
Overall serial interval (SI) for COVID-19 by peer review status

Overall Doubling Time by Peer-review Status
Total: The overall doubling time was 4.14 days (95% CI, 2.67-5.62) for COVID-19.
Peer-review Status: The overall doubling time was 3.33 and 4.64 days for peer-reviewed and non-peer reviewed articles, respectively (Figure 4).
Figure 4.
Overall doubling time for COVID-19 by peer review status

Overall Incubation Period by Peer-review Status
Total: The overall incubation periodwas 4.24 days (95% CI, 3.03-5.44) for COVID-19.
Peer-review Status: The overall incubation periodwas 4.03 and 5.82 days for peer-reviewed and nonpeer-reviewed articles, respectively (Table 1).
Overall Estimation for Other Epidemiologic Parameters
The overall estimation for the growth rate and the case fatality rate for COVID-19 was 0.38% and 3.29%, respectively (Table 1 & Figure 5). In addition, the overall time from symptom onset to hospitalization was 5.09 days for COVID-19 (Table 1).
Figure 5.
Overall case fatality rate (CRF) for COVID-19

Trend of R0 for COVID-19
Based on the cumulative meta-analysis, the trend of R0 had been increasing at first and, then, decreasing in March.
Assessment of Publication Bias
The Begg and/or Egger tests indicated no publication bias in the parameters of R0, serial interval, doubling time, and incubation period (P > 0.05).
Discussion
In this secondary analysis, we aimed to calculate the pooled estimate of some epidemiological parameters of COVID-19; namely, basic reproductive number (R0), serial interval, doubling time, incubation period, growth rate, CFR, and time from symptom onset to hospitalization. Overall, the estimates were 2.99, 4.45 days, 4.14 days, 4.24 days, 0.38%, 3.29%, and 5.09 days in the same order. The pooled estimated values may differ from the pooled reported values from other studies. This variation is expected because factors such as place of sampling, the sample size, surveillance system, and quality of reported data from countries in emergency condition, and type of data analysis may affect these values. For example, R0 variations to some extent might be due to different methods calculations, including exponential growth method, maximum likelihood, and Bayesian time-dependent method (93-95). The pooled estimated R0 in this study was nearly accordant with the pooled estimation found by Alimohamadi et al in 2020. (R0 = 3.32 (95% CI, 2.81 to 3.82) (96).
According to our results, the pooled estimate of CFR 3.29% (95% CI, 2.78-3.81) is lower than SARS-CoV (97) and MERS-CoV (98). Health control policies, medical standard, and detection rate could affect CFR (35). Moreover, the CFR estimate in the early phase of the epidemic might be biased (overestimated). Usually in the early phase, some subclinical cases and patients with mild symptoms may not be detected (detection bias) (99, 100).
The pooled estimate of incubation period in 22 studies was 4.24 days (95% CI, 3.03, 5.44), while in a study of Jie Li et al the pooled mean incubation period in 7 studies was 5.3 days (95% CI, 4.5-6.0) (101). A valid and precise estimate of incubation period has a pivotal role for duration of quarantine (50). Indeed, understanding the incubation period is beneficial for surveillance and control methods, as well as modeling and monitoring operations (102).
Our estimate for overall doubling time—time for a given quantity to double in size or number at a constant growth rate—was 4.14 days (95% CI, 2.67, 5.62). This estimation was in accordance with the study of Zhang et al in 2020 (103). The doubling time has an important implication for predicting epidemic. Generally, social distancing, quarantine, and active surveillance are needed to reduce transmission and extend the doubling time (104). Moreover, the authors tried to estimate pooled measures for the growth rate and the serial interval. These 2 epidemiological parameters are used to estimate the reproduction number (105). In this study, the serial interval was calculated as 4.45 (95% CI, 4.03-4.87). In addition, the pooled serial interval of COVID-19 obtained in this study was shorter than the pooled serial interval in study of Rai et al (5.19 (95% CI, 4.37, 6.02) (106).
As a limitation, all 76 studies (except for 1, Mirjam E Kretzschmar et al) (107) have been conducted in Asia, particularly in Wuhan, China. Some epidemiological parameters in Europe, Africa, and the United States could be different based on control strategies. Hence, distribution of these epidemiological parameters could be more global. Future studies to calculate more generalized pooled estimates, using studies all over the world is recommended.
Conclusion
The epidemiological characteristics of COVID-19 as an emerging disease may be revealed by calculating the pooled estimate of the disease's epidemiological parameters, paving the way for health policymakers to consider additional control measures.
Conflict of Interests
The authors declare that they have no competing interests.
Acknowledgment
The authors would like to appreciate all those researchers who helped in conducting this study.
Ethical Approval
The ethical approval is granted by the ethics committee of the school of Public Health and Neuroscience Research Center (PHNS), Shahid-Beheshti University of Medical Sciences (SBMU), Tehran, Iran (IR.SBMU.PHNS.REC.1399.009).
Authors’ Contributions
N.I.was involved in design, data analysis, and participated as a reviewer on the topic. Also, she designed tools for the data extraction.N.T.performed an independent systematic literature search, wrote the first manuscript version, and participated as a reviewer on the topic.Y.M.wrote the first manuscript version and participated as a reviewer on the topic. S.S.GH. performed an independent systematic literature search and participated as a reviewer on the topic. KH.R. participated in project administration. S.S.H.N. as a supervisor, directed every step of the review, revised the results, and versions of the manuscript. All authors read and approved the final version of manuscript.
Appendix 1.
Description of eligible studies reporting the epidemiologic parameters for COVID-19.
| ID | Author | YOP | Mon | Start Date | End Date | Country/City | N | Explanation | Parameter | Point Est | LCI | UCI | Unit | Mean | SD | Median | IQR | Q1-Q3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Kaiyuan Sun(20) | 2020 | Feb | 13-Jan | 31-Jan | China | 507 | Onset of symptom to hospitalization | day | 2 | 0-5 | |||||||
| Incubation period | day | 4.5 | 3-5.5 | |||||||||||||||
| R0 | 2.5-2.8 | |||||||||||||||||
| 2 | Biao Tang(17) | 2020 | Feb | 31-Dec | 15-Jan | China-Wuhan | 11081 | Incubation period | day | 7 | 1.7 | |||||||
| R0 | 6.47 | 5.71 | 7.23 | |||||||||||||||
| Generation time | day | 6 | ||||||||||||||||
| 3 | Biao Tang(18) | 2020 | Mar | 10-Jan | 23-Jan | Mainland-China | Serial interval | day | 5 | 3 | ||||||||
| reported | Cumulative confirmed cases | 80651 | count | |||||||||||||||
| predicted | Cumulative confirmed cases | 600000 | count | |||||||||||||||
| Initial R0 (mainland-china) | R0 | 3.8 | 3.5 | 4.2 | ||||||||||||||
| Initial R0 (Guangdong) | R0 | 3 | 2.6 | 3.3 | ||||||||||||||
| Initial R0 (south Korea) | R0 | 2.6 | 2.5 | 2.7 | ||||||||||||||
| 4 | Sany Tang(21) | 2020 | Feb | 10-Jan | 15-Feb | Shaanxi-China | Illness onset to medical visit | day | 3.43 | |||||||||
| Importation to illness onset of disease | day | 2.38 | ||||||||||||||||
| Medical visit to confirmation | day | 3.05 | ||||||||||||||||
| longest | Incubation period | 19 | day | |||||||||||||||
| Serial interval | day | 7.4 | 3.4 | |||||||||||||||
| R0 | 1.48 | 0.98 | ||||||||||||||||
| 5 | Amna Tariq(22) | 2020 | Mar | 23-Jan | 05-Mar | Singapore | Generation time | day | 4.41 | 3.17 | ||||||||
| per day | Number of new cases | 2.5 | count | |||||||||||||||
| Reporting delay | 7.6 | 6.6 | 8.5 | day | ||||||||||||||
| Cumulative case | 294.4 | 101.1 | 1239.7 | count | ||||||||||||||
| Effective R | 0.9 | 0.7 | 1 | |||||||||||||||
| R0 | 0.7 | 0.5 | 1 | |||||||||||||||
| Dispersion parameter | 0.4 | 0.1 | inf | count | ||||||||||||||
| 6 | Sijia Tian(23) | 2020 | Feb | 20-Jan | 10-Feb | Beijing-China | 262 | Incubation period | day | 6.7 | ||||||||
| Contact to illness onset | day | 6.7 | 5.2 | |||||||||||||||
| Illness onset to medical visit | day | 4.5 | 3.7 | |||||||||||||||
| Days from visit hospital to define | day | 2.1 | 1.9 | |||||||||||||||
| Percentage of hospitalization | 81.7 | % | ||||||||||||||||
| Percentage of discharge | 17.2 | % | ||||||||||||||||
| 0.9 | % | |||||||||||||||||
| 7 | Lauren C.Tindale( 24) | 2020 | Mar | 19-Jan | 26-Feb | Singapore | 93 | Incubation period | 7.1 | 6.1 | 8.3 | day | ||||||
| Serial interval | 4.56 | 2.69 | 6.42 | day | ||||||||||||||
| R0 | 1.97 | 1.45 | 2.48 | |||||||||||||||
| percentage of discharge | 66.7 | % | ||||||||||||||||
| Exposure to onset of symptoms | day | 6.6 | 4.8 | |||||||||||||||
| Hospitalization after symptom onset | day | 5.9 | 5.1 | |||||||||||||||
| Length of hospitalization | day | 13.3 | 6 | |||||||||||||||
| Pre-symptomatic transmission | day | 2.55 | ||||||||||||||||
| Growth rate | 0.15 | count | ||||||||||||||||
| Doubling time | 6.6 | day | ||||||||||||||||
| 21-Jan | 26-Feb | Tianjin-China | 135 | Incubation period | 9 | 7.92 | 10.2 | day | ||||||||||
| Serial interval | 4.22 | 3.43 | 5.01 | day | ||||||||||||||
| R0 | 1.87 | 1.65 | 2.09 | |||||||||||||||
| Exposure to onset of symptoms | day | 5.4 | 4.5 | |||||||||||||||
| Percentage of discharge | 48.1 | % | ||||||||||||||||
| Confirmed after symptom onset | day | 5.2 | 4.2 | |||||||||||||||
| Pre-symptomatic transmission | day | 2.89 | ||||||||||||||||
| Percentage of deaths | 2.2 | % | ||||||||||||||||
| 8 | Ashleigh R. Tuite( 25) | 2020 | Feb | 18-Nov | 24-Feb | China/ Wuhan | R0 | 2.3 | ||||||||||
| Serial interval | 7 | day | ||||||||||||||||
| 9 | Dawei Wang(26) | 2020 | Feb | 01-Jan | 28-Jan | China/ Wuhan | 138 | Onset of symptoms to hospitalization | day | 7 | 4-8 | |||||||
| Onset of dyspnea | day | 5 | 1-10 | |||||||||||||||
| Onset of ARDS | day | 8 | 6-12 | |||||||||||||||
| Onset of symptom to ICU admission | day | 10 | 6-12 | |||||||||||||||
| Percentage of hospitalization | 12.3 | % | ||||||||||||||||
| Admitted to the ICU | 26 | % | ||||||||||||||||
| Hospital admission to ICU admission | day | 1 | 0-3 | |||||||||||||||
| 10 | Wang Meng(27) | 2020 | Mar | 19-Mar | 21-Mar | China (excluding Hubei) | R0 | 2.82 | 0.11 | |||||||||
| predicted | Cumulative case | count | 14408 | 429 | ||||||||||||||
| 11 | Wang Wenbao(28) | 2020 | Mar | 14-Jan | 23-Jan | China (8 provinces) | per 10000 | Incidence rate | 34 | 25.3 | 42.9 | count | ||||||
| Cumulative case | 5586 | 4156 | 7048 | count | ||||||||||||||
| R0 | 3.38 | 3.25 | 3.48 | |||||||||||||||
| Incubation period | day | |||||||||||||||||
| Case fatality rate$ | 3.06 | % | ||||||||||||||||
| 12 | Wang Ying(29) | 2020 | Mar | 15-Dec | 29-Feb | China/ Wuhan | R0 | 3.49 | 3.42 | 3.58 | ||||||||
| R0 | 2.95 | 2.86 | 3.03 | |||||||||||||||
| 13 | Joseph T Wu(30) | 2020 | Mar | 15-Dec | 29-Feb | Mainland-China | Case fatality rate | 1.4 | 0.9* | 2.1* | % | |||||||
| Fatality rate | 11 | % | ||||||||||||||||
| Cumulative cases | 79394 | count | ||||||||||||||||
| R0 | 1.94 | 1.83* | 2.06* | |||||||||||||||
| Serial interval | 7 | 5.8* | 8.1* | day | ||||||||||||||
| Illness onset to death | day | 20 | 10 | |||||||||||||||
| Doubling time | 5.2 | 4.6* | 6.1* | day | ||||||||||||||
| 14 | Joseph T Wu(31) | 2020 | Jan | 31-Dec | 28-Jan | China/ Wuhan | Doubling time | 6.4 | 5.8* | 7.1* | day | |||||||
| Cumulative cases | 75815 | 37304* | 130330* | count | ||||||||||||||
| R0 | 2.68 | 2.47* | 2.86* | |||||||||||||||
| 15 | Peng Wu(32) | 2020 | Jan | 10-Jan | 21-Jan | China/ Wuhan | 136 | Fatality rate | 14 | 3.9 | 32 | % | ||||||
| 700 | R0 | 0.3 | 0.17 | 0.44 | ||||||||||||||
| 16 | Tianmin Xu(33) | 2020 | Mar | 23-Jan | 18-Feb | Changzou-China | 15 | Incubation period | day | 8 | 4-10 | |||||||
| 17 | Incubation period | day | 8 | 4-11 | ||||||||||||||
| 19 | Incubation period | day | 12 | 9-14 | ||||||||||||||
| 17 | Xiao-Wei Xu(34) | 2020 | Feb | 10-Jan | 26-Jan | Zhejiang-China | 62 | Incubation period | day | 4 | 3-5 | |||||||
| Onset of symptoms to hospitalization | day | 2 | 1-4 | |||||||||||||||
| Percentage of discharge | 2 | % | ||||||||||||||||
| Admitted to ICU | 2 | % | ||||||||||||||||
| Death | 0 | % | ||||||||||||||||
| Onset of ARDS | 2 | % | ||||||||||||||||
| 18 | Shu Yang(35) | 2020 | Feb | 10-Jan | 03-Feb | whole mainland China | 32020 | Case fatality rate | 2.1 | 2.05 | 2.14 | % | ||||||
| mainland China excluding Hubei | Case fatality rate | 0.15 | 0.12 | 0.18 | % | |||||||||||||
| Hubei excluding Wuhan | Case fatality rate | 1.41 | 1.38 | 1.45 | % | |||||||||||||
| Wuhan | Case fatality rate | 5.25 | 4.98 | 5.51 | % | |||||||||||||
| 19 | Chong You(36) | 2020 | Feb | 19-Jan | 05-Feb | China | 5405 | Serial interval | day | 4.41 | 3.17 | 4 | 2-6 | |||||
| Infectious period | day | 10.91 | 3.95 | 11 | 8-13 | |||||||||||||
| 21-Jan | 28-Jan | China | SIR method | R0 | 5.4 | 4.5 | 6.2 | |||||||||||
| 29-Jan | 05-Feb | R0 | 2.3 | 2.1 | 2.5 | |||||||||||||
| 21-Jan | 28-Jan | Hubei | R0 | 5.5 | 4.2 | 6.8 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 2.8 | 2.5 | 3.1 | |||||||||||||
| 21-Jan | 28-Jan | Other | R0 | 5.1 | 3.9 | 6.3 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 1.2 | 1.1 | 1.4 | |||||||||||||
| 21-Jan | 28-Jan | Beijing | R0 | 2.3 | 1.1 | 3.8 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 2.1 | 1 | 3.3 | |||||||||||||
| 21-Jan | 28-Jan | Shanghai | R0 | 2.4 | 1 | 3.8 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 1.2 | 0.7 | 2 | |||||||||||||
| 21-Jan | 28-Jan | Guangdong | R0 | 3.7 | 2.7 | 4.9 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 1.2 | 0.8 | 1.8 | |||||||||||||
| 21-Jan | 28-Jan | Zhejiang | R0 | 5 | 3.3 | 7 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 1 | 0.4 | 1.7 | |||||||||||||
| 21-Jan | 28-Jan | Hun | R0 | 5.3 | 4.3 | 7 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 1.3 | 1 | 1.8 | |||||||||||||
| 21-Jan | 28-Jan | Hen | R0 | 6.4 | 3.5 | 10.2 | ||||||||||||
| 29-Jan | 05-Feb | R0 | 1.5 | 1.1 | 2 | |||||||||||||
| 20 | Jasper Fuk-Woo Chan(37) | 2020 | Jan | 10-Jan | 15-Jan | China/ Wuhan | 6 | Onset of symptom to sample collection | 7 | day | ||||||||
| Onset of symptom to sample collection | 6 | day | ||||||||||||||||
| Onset of symptom to sample collection | 9 | day | ||||||||||||||||
| Onset of symptom to sample collection | 10 | day | ||||||||||||||||
| Onset of symptom to sample collection | 7 | day | ||||||||||||||||
| Onset of symptom to hospitalization | 7 | day | ||||||||||||||||
| Onset of symptom to hospitalization | 6 | day | ||||||||||||||||
| Onset of symptom to hospitalization | 9 | day | ||||||||||||||||
| Onset of symptom to hospitalization | 10 | day | ||||||||||||||||
| Onset of symptom to hospitalization | 7 | day | ||||||||||||||||
| 21 | Choujun Zhan(38) | 2020 | Mar | 19-Feb | 06-Mar | South Korea | Confirmed cases | 7313 | count | |||||||||
| Italy | Confirmed cases | 5883 | count | |||||||||||||||
| Iran | Confirmed cases | 5823 | count | |||||||||||||||
| Iran | Infected cases | count | 14450 | 6244 | ||||||||||||||
| Tehran | Infected cases | count | 2498 | 566 | ||||||||||||||
| Zanjan | Infected cases | count | 1695 | 92 | ||||||||||||||
| Lombardi-Italy | Infected cases | count | 4784 | 788 | ||||||||||||||
| Emelia Romagna-Italy | Infected cases | count | 1555 | 360 | ||||||||||||||
| Daegu-South Korea | Infected cases | count | 7619 | 2096 | ||||||||||||||
| Seoul-South Korea | Infected cases | count | 1287 | 197 | ||||||||||||||
| Italy | Fatality rate | 4 | % | |||||||||||||||
| 22 | Bo Zhang(39) | 2020 | Feb | 08-Dec | 22-Jan | China/ Wuhan | 1568 | Infected cases | 4508 | count | ||||||||
| R0 | 3.6 | |||||||||||||||||
| 13-Feb | early April | China/ Wuhan | Infected cases | 42073 | 41673 | 42475 | count | |||||||||||
| Number of deaths | 2179 | 2088 | 2270 | count | ||||||||||||||
| 10-Jan | 22-Jan | China/ Hubei | R0 | 0.67 | ||||||||||||||
| Infected cases | 7138 | count | ||||||||||||||||
| 13-Feb | early April | China/ Hubei | R0 | 3.4 | ||||||||||||||
| Infected cases | 21342 | 21057 | 21629 | count | ||||||||||||||
| Number of deaths | 633 | 585 | 683 | count | ||||||||||||||
| 13-Feb | early April | China excluding Hubei | R0 | 0.59 | ||||||||||||||
| Infected cases | 13384 | 13158 | 13612 | count | ||||||||||||||
| Death | 107 | 87 | 128 | count | ||||||||||||||
| R0 | 0.63 | |||||||||||||||||
| 23 | Lianglu Zhang (40) | 2020 | Feb | 22-Jan | 12-Feb | China/ Wuhan | after intervention | R0 | 1.44 | 1.4-1.47 | ||||||||
| Incubation period | day | 3 | 3-7.2 | |||||||||||||||
| 24 | Sheng Zhang(41) | 2020 | Feb | 17-Feb | 26-Feb | Japan (Princess ship) | maximum likelihood | R0 | 2.28 | 2.06 | 2.52 | |||||||
| Cumulative case | 1514 | 1384 | 1656 | count | ||||||||||||||
| 25 | Zhanwei Du(42) | 2020 | 21-Jan | 08-Feb | China | 468 | Serial interval | 3.96 | 3.53 | 4.39 | count | 4.75 | ||||||
| Asymptomatic patients | 12.6 | % | ||||||||||||||||
| 26 | Hongxin Zhao(43) | 2020 | Feb | 29-Jan | 02-Feb | 5 countries (korea, Germany,France,singapore,Japan | 1916 | Infection rate | 1.1 | 0.4 | 3.1 | % | ||||||
| Infected cases | 110000 | 40000 | 310000 | count | ||||||||||||||
| 27 | Shi Zhao(12) | 2020 | Feb | 20-Jan | 20-Feb | Japan (Princess ship) | 634 | Cumulative cases | 3066 | 2046 | 3441 | count | ||||||
| R0 | 2.2 | 2.1 | 2.4 | |||||||||||||||
| Dispersion parameter | 44 | 6 | 88 | count | ||||||||||||||
| Doubling time | 4.6 | 3 | 9.3 | day | ||||||||||||||
| Asymptomatic patients | 25.6-51.7 | % | ||||||||||||||||
| 28 | Shi Zhao(44) | 2020 | Jan | 10-Jan | 24-Jan | China/ Wuhan | (8-fold) exp growth | R0 | 2.24 | 1.96 | 2.55 | |||||||
| (0-fold) exp growth | R0 | 3.58 | 2.89 | 4.39 | ||||||||||||||
| 29 | Shi Zhao(45) | 2020 | Feb | 01-Dec | 24-Jan | Mainland China | 41 | Under reported cases | 469 | 403 | 540 | count | ||||||
| R0 | 2.56 | 2.49 | 2.63 | |||||||||||||||
| 30 | Fei Zhou(46) | 2020 | Mar | 29-Dec | 31-Jan | China/ Wuhan (2 hospitals) | 191 | ICU admission | 26 | % | ||||||||
| ICU length of stay | day | 8 | 4-12 | |||||||||||||||
| Hospital length of stay | day | 11 | 7-14 | |||||||||||||||
| Illness onset to hospitalization | day | 11 | 8-14 | |||||||||||||||
| Illness onset to dyspnea | day | 7 | 4-9 | |||||||||||||||
| Illness onset to ARDS | day | 12 | 8-15 | |||||||||||||||
| Illness onset to ICU | day | 12 | 8-15 | |||||||||||||||
| Illness onset to Death-discharge | day | 21 | 17-25 | |||||||||||||||
| 31 | Guopeng Zhou(47) | 2020 | Feb | first day | 50th day | China/ Wuhan | 141427709 | Cumulative cases | count | 2868.7 | 1739 | |||||||
| 51th day | 70th day | Cumulative cases | count | 52185.4 | 31621.4 | |||||||||||||
| 71 th day | 90 th day | Cumulative cases | count | 913396.5 | 559099.9 | |||||||||||||
| first day | 90thday | R0 | 2.2 | 1.4 | 3.9 | |||||||||||||
| Incubation period | 7.5 | 5.3 | 19 | day | 3.4 | |||||||||||||
| 31-Dec | 18-Feb | ICU admission | 5 | % | ||||||||||||||
| 32 | Tao Zhou(48) | 2020 | Feb | 25-Jan | China/ Wuhan | 3440 | Northeastern University Reports | R0 | 2.8-3.3 | |||||||||
| People's Daily Reports | R0 | 3.2-3.9 | ||||||||||||||||
| Asymptomatic patients | 5.1 | % | ||||||||||||||||
| 33 | Cleo Astassopoulou( 49) | 2020 | 12-Feb | 11th of Jan | 10th of Feb | Hubei/China | 11-16 Jan | R0 | 4.8 | 3.35 | 6.27 | |||||||
| 11-17 Jan | R0 | 4.6 | 3.56 | 5.65 | ||||||||||||||
| 11-18 Jan | R0 | 5.14 | 4.25 | 6.04 | ||||||||||||||
| 11-19 Jan | R0 | 6.09 | 5.02 | 7.16 | ||||||||||||||
| 11-20 Jan | R0 | 7.09 | 5.84 | 8.35 | ||||||||||||||
| Nov 16-Feb 10 (Based on the SIRD simulator) | R0 | 2.5 | ||||||||||||||||
| Case fatality rate$ | 2.94 | 2.89 | 3 | % | ||||||||||||||
| Recovery rate | 0.05 | 0.045 | 0.055 | |||||||||||||||
| Recovery time | 20 | 18 | 22 | day | ||||||||||||||
| Infection rate | 0.199 | 0.197 | 0.2 | |||||||||||||||
| Forecast to Feb 29 | Expected number of Infected cases | 140000 | 70000 | 290000 | ||||||||||||||
| Forecast to Feb 29 | Expected number of recovered population | 60000 | 33000 | 95000 | ||||||||||||||
| Forecast to Feb 29 | Expected number of Death cases | 16000 | 9000 | 29000 | ||||||||||||||
| 11-16 Jan | R0 | 4.15 | 2.92 | 5.38 | ||||||||||||||
| 11-17 Jan | R0 | 3.98 | 3.11 | 4.85 | ||||||||||||||
| 11-18 Jan | R0 | 4.39 | 3.67 | 5.11 | ||||||||||||||
| 11-19 Jan | R0 | 5.15 | 4.3 | 6.01 | ||||||||||||||
| 11-20 Jan | R0 | 6.01 | 4.93 | 7.08 | ||||||||||||||
| Nov 16-Feb 10 (Based on the SIRD simulator) | R0 | 2.64 | ||||||||||||||||
| Case fatality rate$ | 0.58 | 0.57 | 0.59 | % | ||||||||||||||
| Recovery rate | 0.08 | 0.073 | 0.088 | |||||||||||||||
| Recovery time | 12 | 11 | 13 | day | ||||||||||||||
| Infection rate | 0.227 | 0.224 | 0.229 | |||||||||||||||
| Forecast to Feb 29 | Expected number of Infected cases | 1000000 | 330000 | 2200000 | ||||||||||||||
| Forecast to Feb 29 | Expected number of recovered population | 580000 | 230000 | 960000 | ||||||||||||||
| Forecast to Feb 29 | Expected number of Death cases | 19000 | 7000 | 35000 | ||||||||||||||
| 34 | Jantien A Backer ( 50) | 2020 | 06-Feb | 20-Jan | 28-Jan | Wuhan, China | 88 | Weibull | Incubation period | day | 6.4 | 2.3 | 6.4 | |||||
| Gamma | Incubation period | day | 6.5 | 2.6 | 6.1 | |||||||||||||
| Lognormal | Incubation period | day | 6.8 | 3.4 | 6.1 | |||||||||||||
| 35 | David Baud(51) | 2020 | 12-Mar | 01-Mar | China | 79968 | China | Case fatality rate$ | 5.6 | 5.4 | 5.8 | % | ||||||
| Outside of China | 7169 | Outside of China | Case fatality rate$ | 15.2 | 12.5 | 17.9 | % | |||||||||||
| Global | 87137 | Global mortality rates | Case fatality rate$ | 5.7 | 5.5 | 5.9 | % | |||||||||||
| 36 | Zhidong Cao(52) | 2020 | China | Effective reproduction number | 3.37 | 4.77 | 4.08 | 0.36 | ||||||||||
| Fatality rate | 6.5 | % | ||||||||||||||||
| Average infectious period | <2.3 | day | ||||||||||||||||
| 37 | Tian-Mu Chen(53) | 2020 | 28-Feb | 7 Dec, 2019 | 1 Jan, 2020 | China | R0 | 3.58 | ||||||||||
| 38 | Matteo Chinazzi(54) | 2020 | 07-Feb | China | R0 | 2.4 | 2.2 | 2.6 | ||||||||||
| Doubling time measured | 4.6 | 4.2 | 5.1 | |||||||||||||||
| On Jan 22, 2020, the projected, no travel restrictions for Mainland China excluding Wuhan | Median number of cases | 3491 | 1924 | 7360 | ||||||||||||||
| On Jan 22, 2020, the projected, in Wuhan | Median number of cases | 58956 | 40760 | 87471 | ||||||||||||||
| Median ascertainment rate of detecting an infected | % | 19.59 | 14.36-35.58 | |||||||||||||||
| 39 | Yi Chen Chong(55) | 2020 | 15-Feb | China | R0 | 4.29 | ||||||||||||
| 40 | Ilaria Dorigatti(56) | 2020 | 10-Feb | China | 26 | China: Parametric model fitted to publicly reported number of cases and Deaths in Hubei as of 5th Feb, assuming exponential growth at rate 0.14/day | Case fatality ratio | 18 | 11* | 81* | % | |||||||
| Outside mainland China:Parametric model fitted to reported traveller cases up to 8th Feb using both Death and recovery outcomes and inferring latest possible dates of onset in traveller cases | Case fatality ratio | 5.1 | 1.1* | 38* | % | |||||||||||||
| Outside mainland China:Parametric model fitted to reported traveller cases up to 8th Feb using only Death outcome and inferring latest possible unreported dates of onset in traveller cases | Case fatality ratio | 5.6 | 2* | 85* | % | |||||||||||||
| Outside mainland China:Kaplan-Meier-like non-parametric model fitted to reported traveller cases up to 8th Feb using both Death and recovery outcomes | Case fatality ratio | 1.2 | 0.9 | 26 | % | |||||||||||||
| all infections (asymptomatic or symptomatic): Scaling CASE FATALITY RATE estimate for Hubei for the level of infection under-ascertainment estimated from infection prevalence detected in repatriation flights, assuming infected individuals test positive for 14 days | Case fatality ratio | 0.9 | 0.5 | 4 | % | |||||||||||||
| all infections (asymptomatic or symptomatic): As previous row, but assuming infected individuals test positive for 7 days | Case fatality ratio | 0.8 | 0.4 | 3 | % | |||||||||||||
| Onset-to-recovery | 18* | 83* | day | 22.2 | 0.45 | |||||||||||||
| Onset-to-Death | 18* | 82* | day | 22.3 | 0.42 | |||||||||||||
| 41 | Mirjam E Kretzschmar(57) | 2020 | Mar | Netherlands | optimistic baseline scenario | R0 | 2.5 | |||||||||||
| realistic scenario | Effective reproduction number | 1.4 | ||||||||||||||||
| realistic scenario | Exponential growth rate | 0.05 | % | |||||||||||||||
| optimistic baseline scenario | Exponential growth rate | 0.127 | % | |||||||||||||||
| optimistic baseline scenario | Doubling time | 5.5 | day | |||||||||||||||
| realistic scenario | Doubling time | 14.4 | day | |||||||||||||||
| Infectious period | 10 | day | ||||||||||||||||
| Latent period | 4 | 6 | day | |||||||||||||||
| Incubation period | 3 | 7.2 | day | 6.54 | 2.3 | |||||||||||||
| 42 | Toshikazu kuniya(58) | 2020 | Mar | Feb | Mar | Japan | (range 2.1-5.1) | R0 | 2.6 | 2.4 | 2.8 | |||||||
| 43 | Alessia Lai(59) | 2020 | Feb | Feb | Feb | China | R0 | 2.6 | ||||||||||
| 44 | Hien Lau(60) | 2020 | Mar | Jan | Feb | China | Doubling time | 2 | 1.9 | 2.6 | day | |||||||
| Doubling time | 4 | 3.5 | 4.3 | day | ||||||||||||||
| 45 | Stephen A Lauer(61) | 2020 | Mar | Jan | Feb | China | 181 | Incubation period | 4.5 | 5.8 | day | 5.1 | ||||||
| 46 | Char Leung(62) | 2020 | Mar | Jan | Feb | China | Incubation period | day | 1.7 | |||||||||
| Incubation period | day | 7.5 | ||||||||||||||||
| Incubation period | day | 1.8 | ||||||||||||||||
| Incubation period | day | 7.2 | ||||||||||||||||
| Incubation period | day | 1.7 | ||||||||||||||||
| Incubation period | day | 7.2 | ||||||||||||||||
| 47 | Qun Li(63) | 2020 | Jan | Dec | Jan | China | 425 | Incubation period | 4.1 | 7 | day | 5.2 | ||||||
| Doubling time | 7.4 | 4.2 | 14 | day | ||||||||||||||
| Serial interval | 5.3 | 19 | day | 7.5 | ||||||||||||||
| R0 | 2.2 | 1.4 | 3.9 | |||||||||||||||
| Growth rate | 0.1 | 0.05 | 0.16 | % | ||||||||||||||
| Time from symptom onset to hospitalization | 12.5 | 10.3 | 14.8 | day | 9.1 | |||||||||||||
| 48 | Tao Liu(64) | 2020 | Jan | Dec | Jan | China | 830 | Time from symptom onset to isolation | 2.9 | day | ||||||||
| Proportion of symptomatic that die | 0.03 | % | ||||||||||||||||
| Incubation period | day | 4.8 | ||||||||||||||||
| R0 | 2.9 | 2.32 | 3.63 | |||||||||||||||
| 49 | Jiaqiang Liao(65) | 2020 | Mar | Jan | Feb | China | 46 | Incubation period | 4.4 | 9.6 | day | 6.6 | ||||||
| Serial interval | 1.9 | 0.4 | 6.2 | day | ||||||||||||||
| 50 | Qiushi Lin(66) | 2020 | Feb | Dec | Jan | China | Cumulative case count | 4090 | 3975 | 4206 | count | |||||||
| Cumulative case count | 56833 | 55242 | 58449 | count | ||||||||||||||
| Latent period | day | 3 | ||||||||||||||||
| Infectious period | day | 5 | ||||||||||||||||
| 51 | Natalie Linton(67) | 2020 | Feb | Jan | Feb | China | Time from hospitalization to Death | 8.3 | 6.4 | 10.5 | day | |||||||
| Time from symptom onset to Death | 13.8 | 11.8 | 16 | day | ||||||||||||||
| Incubation period | 4.6 | 3.3 | 5.7 | day | ||||||||||||||
| Incubation period | 5 | 4.1 | 5.8 | day | ||||||||||||||
| Time from symptom onset to hospitalization | 2.7 | 1.6 | 4.1 | day | ||||||||||||||
| 52 | Tao Liu(68) | 2020 | Feb | Jan | Feb | China | nationwide | Doubling time | 2.4 | day | ||||||||
| Wuhan | Doubling time | 2.8 | day | |||||||||||||||
| Guangdong | Doubling time | 3.6 | day | |||||||||||||||
| nationwide | R0 | 4.5 | 4.4 | 4.6 | ||||||||||||||
| Wuhan | R0 | 4.4 | 4.3 | 4.6 | ||||||||||||||
| 53 | Kenji Mizumoto(69) | 2020 | Feb | Jan | Feb | China | Effective reproduction number | 3.24 | 3.16 | 3.32 | num | |||||||
| Proportion of symptomatic that die | 0.0406 | % | ||||||||||||||||
| R0 | 7.05 | 6.11 | 8.18 | |||||||||||||||
| Cumulative case count | 983006 | 759175 | 1296258 | count | ||||||||||||||
| 54 | Kamalich Muniz-Rodriguez(70) | 2020 | Mar | Feb | Feb | Iran | R0 | 3.6 | 3.2 | 4.2 | ||||||||
| SI: mean=4.41; sd=3.17 | R0 | 3.58 | 1.29 | 8.46 | ||||||||||||||
| Doubling time | 1.2 | 1.05 | 1.44 | day | ||||||||||||||
| Doubling time | 2.4 | day | ||||||||||||||||
| Growth rate | 0.85 | 0.69 | 1 | % | ||||||||||||||
| 55 | Hiroshi Nishiura(71) | 2020 | Feb | Jan | Feb | Japan | 565 | Ascertainment rate | 9.2 | 5 | 20 | % | ||||||
| Serial interval | day | 7.5 | ||||||||||||||||
| 56 | Hiroshi Nishiura(72) | 2020 | Mar | Feb | Feb | China | Serial interval | 4 | 3.1* | 4.9* | day | |||||||
| Serial interval | 4.6 | 3.5* | 5.9* | day | ||||||||||||||
| 57 | Ryosuke Omori(73) | 2020 | Mar | Feb | Japan | Ascertainment rate | 0.44 | 0.37 | 0.5 | % | ||||||||
| 58 | Sang Woo Park(74) | 2020 | Feb | Feb | China | R0 | 2.9 | 2.1 | 4.5 | |||||||||
| 59 | Liangrong Peng(75) | 2020 | Feb | Feb | China | Latent period | 2 | day | ||||||||||
| Mainland | Quarantine time | 6.6 | day | |||||||||||||||
| Hubei | Quarantine time | 7.2 | day | |||||||||||||||
| Wuhan | Quarantine time | 7.4 | day | |||||||||||||||
| Beijing | Quarantine time | 5.7 | day | |||||||||||||||
| Shanghai | Quarantine time | 5.6 | day | |||||||||||||||
| 60 | Rachael Pung(76) | 2020 | Mar | Feb | Feb | China | 36 | Incubation period | day | 4 | 3-6 | |||||||
| Serial interval | 3 | 8 | day | |||||||||||||||
| Time from symptom onset to hospitalization | day | 4 | 3-6 | |||||||||||||||
| 61 | Guo-Qing Qian(77) | 2020 | Mar | Feb | Feb | China | 91 | Incubation period | day | 6 | 3-8 | |||||||
| 62 | Jomar F Rabajante( 78) | 2020 | Feb | Feb | Philippine | R0 | 2 | |||||||||||
| Infectious period | 14 | day | ||||||||||||||||
| 63 | Jonathan M Read(79) | 2020 | Feb | Jan | China | Infectious period | 3.6 | 3.6 | 3.6 | day | ||||||||
| R0 | 3.8 | 3.6 | 4 | |||||||||||||||
| Ascertainment rate | 5.1 | 4.8 | 5.5 | % | ||||||||||||||
| 64 | Julien Riou(80) | 2020 | Jan | Dec | Jan | Wuhan | Dispersion rate | 0.54 | % | |||||||||
| R0 | 2.2 | |||||||||||||||||
| 65 | Steven Sanche(81) | 2020 | Feb | Dec | Feb | China | Time from hospitalization to Death | 11.2 | 8.7 | 14.9 | day | |||||||
| Time from hospitalization to discharge | 11.5 | 8 | 17.3 | % | ||||||||||||||
| Growth rate | 0.29 | 0.21 | 0.37 | % | ||||||||||||||
| Growth rate | 0.14 | 0.12 | 0.15 | day | ||||||||||||||
| Incubation period | 4.2 | 3.5 | 5.1 | day | ||||||||||||||
| 66 | Mingwang Shen(82) | 2020 | Jan | Jan | China | R0 | 4.71 | 4.5 | 4.92 | |||||||||
| 67 | Eunha Shim(83) | 2020 | Mar | Jan | Feb | South Korea | Effective reproduction number | 1.5 | 1.4 | 1.6 | num | |||||||
| Growth rate | 0.6 | 0.5 | 0.7 | % | ||||||||||||||
| 68 | Yaqing Fang(84) | 2020 | Mar | 20-Jan | 29-Feb | China - Wuhan | 291 | 20-Jan | R0 | 2.47 | ||||||||
| 437 | 21-Jan | R0 | 2.56 | |||||||||||||||
| 560 | 22-Jan | R0 | 2.67 | |||||||||||||||
| 805 | 23-Jan | R0 | 2.81 | |||||||||||||||
| 1230 | 24-Jan | R0 | 2.92 | |||||||||||||||
| 1892 | 25-Jan | R0 | 2.98 | |||||||||||||||
| 2635 | 26-Jan | R0 | 3.1 | |||||||||||||||
| 4371 | 27-Jan | R0 | 3.14 | |||||||||||||||
| 5761 | 28-Jan | R0 | 3.17 | |||||||||||||||
| 7439 | 29-Jan | R0 | 3.19 | |||||||||||||||
| 9331 | 30-Jan | R0 | 3.2 | |||||||||||||||
| 11315 | 31-Jan | R0 | 3.2 | |||||||||||||||
| 13775 | 01-Feb | R0 | 3.19 | |||||||||||||||
| 16400 | 02-Feb | R0 | 3.17 | |||||||||||||||
| 19414 | 03-Feb | R0 | 3.15 | |||||||||||||||
| 22974 | 04-Feb | R0 | 3.13 | |||||||||||||||
| 26334 | 05-Feb | R0 | 3.11 | |||||||||||||||
| 29017 | 06-Feb | R0 | 3.09 | |||||||||||||||
| 31774 | 07-Feb | R0 | 3.06 | |||||||||||||||
| 33738 | 08-Feb | R0 | 3.03 | |||||||||||||||
| 35982 | 09-Feb | R0 | 2.98 | |||||||||||||||
| 37626 | 10-Feb | R0 | 2.94 | |||||||||||||||
| 38800 | 11-Feb | R0 | 2.89 | |||||||||||||||
| 52526 | 12-Feb | R0 | 2.9 | |||||||||||||||
| 55748 | 13-Feb | R0 | 2.87 | |||||||||||||||
| 56873 | 14-Feb | R0 | 2.84 | |||||||||||||||
| 57416 | 15-Feb | R0 | 2.8 | |||||||||||||||
| 57934 | 16-Feb | R0 | 2.77 | |||||||||||||||
| 58016 | 17-Feb | R0 | 2.74 | |||||||||||||||
| 57805 | 18-Feb | R0 | 2.7 | |||||||||||||||
| 56303 | 19-Feb | R0 | 2.67 | |||||||||||||||
| 54965 | 20-Feb | R0 | 2.64 | |||||||||||||||
| 53284 | 21-Feb | R0 | 2.61 | |||||||||||||||
| 51606 | 22-Feb | R0 | 2.57 | |||||||||||||||
| 49824 | 23-Feb | R0 | 2.54 | |||||||||||||||
| 47672 | 24-Feb | R0 | 2.51 | |||||||||||||||
| 45604 | 25-Feb | R0 | 2.47 | |||||||||||||||
| 43258 | 26-Feb | R0 | 2.44 | |||||||||||||||
| 39919 | 27-Feb | R0 | 2.41 | |||||||||||||||
| 37414 | 28-Feb | R0 | 2.37 | |||||||||||||||
| 35329 | 29-Feb | R0 | 2.34 | |||||||||||||||
| 69 | Ganyani Tapiwa(85) | 2020 | Mar | 27-Feb | Singapore | Incubation period mean:5.2 - SD:2.8 | Generation interval | 5.2 | 3.78 | 6.78 | day | 1.72 | ||||||
| Incubation period mean:5.2 - SD:2.8 | Serial interval | 5.21 | -3.35 | 13.94 | day | 4.32 | ||||||||||||
| Tianjin/ China | Incubation period mean:5.2 - SD:2.8 | Generation interval | 3.95 | 3.01 | 4.91 | day | 1.51 | |||||||||||
| Incubation period mean:5.2 - SD:2.8 | Serial interval | 3.95 | -4.47 | 12.51 | day | 4.24 | ||||||||||||
| Singapore | Incubation period mean:6.4 - SD:2.3 | Generation interval | 5.29 | 3.89 | 6.77 | day | 2.08 | |||||||||||
| Incubation period mean:6.4 - SD:2.3 | Serial interval | 5.29 | -2.13 | 13.16 | day | 3.86 | ||||||||||||
| Incubation period mean:4.8 - SD:2.6 | Generation interval | 5.19 | 3.82 | 6.74 | day | 1.77 | ||||||||||||
| Incubation period mean:4.8 - SD:2.6 | Serial interval | 5.19 | -2.86 | 13.45 | day | 4.08 | ||||||||||||
| Tianjin/ China | Incubation period mean:6.4 - SD:2.3 | Generation interval | 4.02 | 3.11 | 5 | day | 2.29 | |||||||||||
| Incubation period mean:6.4 - SD:2.3 | Serial interval | 4.02 | -4.83 | 13.45 | day | 3.98 | ||||||||||||
| Incubation period mean:4.8 - SD:2.6 | Generation interval | 3.95 | 3.05 | 4.93 | day | 1.75 | ||||||||||||
| Incubation period mean:4.8 - SD:2.6 | Serial interval | 3.95 | -4.6 | 12.73 | day | 4.07 | ||||||||||||
| Singapore | mean:5.2 - SD:2.8- allowing SI negative | Generation interval | 3.86 | 2.22 | 5.6 | day | 2.65 | |||||||||||
| mean:5.2 - SD:2.8- allowing SI negative | Serial interval | 3.86 | -5.15 | 13.88 | day | 4.76 | ||||||||||||
| Tianjin/ China | mean:5.2 - SD:2.8- allowing SI negative | Generation interval | 2.9 | 1.85 | 4.12 | day | 2.86 | |||||||||||
| mean:5.2 - SD:2.8- allowing SI negative | Serial interval | 2.9 | -6.12 | 13.47 | day | 4.88 | ||||||||||||
| Singapore | mean:5.2 - SD:2.8- using GI- baseline | R0 | 1.27 | 1.19 | 1.36 | |||||||||||||
| mean:5.2 - SD:2.8- using SI- baseline | R0 | 1.25 | 1.17 | 1.34 | ||||||||||||||
| mean:5.2 - SD:2.8- using GI- all negative SI | R0 | 1.19 | 1.1 | 1.28 | ||||||||||||||
| mean:5.2 - SD:2.8- using SI- all negative SI | R0 | 1.17 | 1.08 | 1.26 | ||||||||||||||
| Tianjin/ China | mean:5.2 - SD:2.8- using GI- baseline | R0 | 1.59 | 1.42 | 1.78 | |||||||||||||
| mean:5.2 - SD:2.8- using SI- baseline | R0 | 1.41 | 1.26 | 1.58 | ||||||||||||||
| mean:5.2 - SD:2.8- using GI- all negative SI | R0 | 1.32 | 1.18 | 1.51 | ||||||||||||||
| mean:5.2 - SD:2.8- using SI- all negative SI | R0 | 1.17 | 1.05 | 1.34 | ||||||||||||||
| Singapore | mean:5.2 - SD:2.8-baseline | Proportion of pre-symptomatic transmission | 48 | 32 | 67 | % | ||||||||||||
| Tianjin/ China | mean:5.2 - SD:2.8-baseline | Proportion of pre-symptomatic transmission | 62 | 50 | 76 | % | ||||||||||||
| Singapore | mean:5.2 - SD:2.8-all negative SI | Proportion of pre-symptomatic transmission | 66 | 45 | 84 | % | ||||||||||||
| Tianjin/ China | mean:5.2 - SD:2.8-all negative SI | Proportion of pre-symptomatic transmission | 77 | 65 | 87 | % | ||||||||||||
| 70 | Guan Wei-Jie(86) | 2020 | Mar | 29-Jan | China | 1099 | Incubation period | 4 | day | 4 | 5 | 2 | ||||||
| Duration of hospitalization | day | 12.8 | 12 | |||||||||||||||
| 71 | Slav W. Hermanowicz(87) | 2020 | Feb | 16-Jan | 08-Feb | China | 62 | 17-Jan | R0 | 1.38 | ||||||||
| 121 | 18-Jan | R0 | 1.95 | |||||||||||||||
| 198 | 19-Jan | R0 | 1.64 | |||||||||||||||
| 291 | 20-Jan | R0 | 1.47 | |||||||||||||||
| 440 | 21-Jan | R0 | 1.51 | |||||||||||||||
| 571 | 22-Jan | R0 | 1.3 | |||||||||||||||
| 830 | 23-Jan | R0 | 1.45 | |||||||||||||||
| 1287 | 24-Jan | R0 | 1.55 | |||||||||||||||
| 1975 | 25-Jan | R0 | 1.53 | |||||||||||||||
| 2744 | 26-Jan | R0 | 1.39 | |||||||||||||||
| 4515 | 27-Jan | R0 | 1.65 | |||||||||||||||
| 5974 | 28-Jan | R0 | 1.32 | |||||||||||||||
| 7711 | 29-Jan | R0 | 1.29 | |||||||||||||||
| 9692 | 30-Jan | R0 | 1.26 | |||||||||||||||
| 11860 | 31-Jan | R0 | 1.22 | |||||||||||||||
| 14380 | 01-Feb | R0 | 1.21 | |||||||||||||||
| 17307 | 02-Feb | R0 | 1.2 | |||||||||||||||
| 20467 | 03-Feb | R0 | 1.18 | |||||||||||||||
| 24324 | 04-Feb | R0 | 1.19 | |||||||||||||||
| 28018 | 05-Feb | R0 | 1.15 | |||||||||||||||
| 31161 | 06-Feb | R0 | 1.11 | |||||||||||||||
| 31774 | 07-Feb | R0 | 1.02 | |||||||||||||||
| 33738 | 08-Feb | R0 | 1.06 | |||||||||||||||
| 72 | Zhiliang Hu(88) | 2020 | 28-Jan | 09-Feb | Jiangsu Province, China | 24 | Median communicable period | 21 | 24 | day | ||||||||
| 73 | Xuan Jiang(89) | 2020 | Feb | Incubation period | 4.9 | 4.4 | 5.5 | day | ||||||||||
| 74 | Sung-mok Jung(90) | 2020 | Feb | 08-Dec | 24-Jan | China | scenario 1: exponential growth started from the assumed illness onset date of index case,(8 Dec) | Case fatality rate | 5.3 | 3.5 | 7.5 | % | ||||||
| scerio2: all parameters are variable, and calculation begins on the date the first exported case was observed (i.e., 13 Jan 2020) | Case fatality rate | 8.4 | 5.3 | 12.3 | % | |||||||||||||
| scenario 1: exponential growth started from the assumed illness onset date of index case,(8 Dec) | R0 | 2.1 | 2 | 2.2 | ||||||||||||||
| scerio2: all parameters are variable, and calculation begins on the date the first exported case was observed (i.e., 13 Jan 2020) | R0 | 3.2 | 2.7 | 3.7 | ||||||||||||||
| scenario 1: exponential growth started from the assumed illness onset date of index case,(8 Dec) | Cumulative incidence | 6924 | 4885 | 9211 | count | |||||||||||||
| scerio2: all parameters are variable, and calculation begins on the date the first exported case was observed (i.e., 13 Jan 2020) | Cumulative incidence | 19289 | 10901 | 30158 | count | |||||||||||||
| 75 | Moran Ki(91) | 2020 | Feb | 20-Jan | Korea | 28 | Incubation period | 3.9 | day | 3.9 | 3 | |||||||
| Serial interval | 6.6 | day | 6.6 | 4 | ||||||||||||||
| Symptoms onset to diagnosis | 5.2 | day | 5.2 | 4 | ||||||||||||||
| Symptoms onset to quarantine or isolation | 4.3 | day | 4.3 | 3 | ||||||||||||||
| Diagnosis to discharge | 13 | day | 13 | 12.5 | ||||||||||||||
| total Poisson | R0 | 0.48 | 0.25 | 0.84 | ||||||||||||||
| total binomial | R0 | 0.48 | 0.28 | 0.69 | ||||||||||||||
| first generation (n=9) Poisson | R0 | 0.56 | 0.26 | 1.07 | ||||||||||||||
| first generation (n=9) binomial | R0 | 0.56 | 0.3 | 0.8 | ||||||||||||||
| second generation (n=3) Poisson | R0 | 0.33 | 0.07 | 0.97 | ||||||||||||||
| second generation (n=3) binomial | R0 | 0.33 | 0.07 | 0.7 | ||||||||||||||
| 76 | Weier Wang(92) | 2020 | Jan | 1-Dec | 26-Jan | China | 41 | 10-Jan | Case fatality rate$ | 2.44 | % | |||||||
| 440 | 21-Jan | Case fatality rate$ | 2.05 | % | ||||||||||||||
| 571 | 22-Jan | Case fatality rate$ | 2.98 | % | ||||||||||||||
| 830 | 23-Jan | Case fatality rate$ | 3.01 | % | ||||||||||||||
| 1287 | 24-Jan | Case fatality rate$ | 3.19 | % | ||||||||||||||
| 1975 | 25-Jan | Case fatality rate$ | 2.84 | % |
Cite this article as : Izadi N, Taherpour N, Mokhayeri Y, Sotoodeh Ghorbani S, Rahmani Kh, Hashemi Nazari SS. Epidemiologic Parameters for COVID-19: A Systematic Review and Meta-Analysis. Med J Islam Repub Iran. 2022 (19 Dec);36:155. https://doi.org/10.47176/mjiri.36.155
References
- 1.Reusken CBEM, Raj VS, Koopmans MP, Haagmans BL. Cross host transmission in the emergence of MERS coronavirus. Curr Opin Virol. 2016 doi: 10.1016/j.coviro.2016.01.004. [DOI] [PMC free article] [PubMed]
- 2.Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health. 2020 doi: 10.1016/S2468-2667(20)30073-6. [DOI] [PMC free article] [PubMed]
- 3. Coronavirus disease (COVID-19) outbreak.2020. Available at: https://www.who.int/westernpacific/emergencies/covid-19 Access Apr, 2020.
- 4. COVID-19 Coronavirus Pandemic.2020. Available at: https://www.worldometers.info/coronavirus/#countries Access Apr, 2020.
- 5. Overview of coronavirus.2020. Available at: https://www.who.int/health-topics/coronavirus#tab=tab_1 Access Apr, 2020.
- 6. Coronavirus disease 2019 (COVID-19) Situation Report – 66.2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200326-sitrep-66-covid-19.pdf?sfvrsn=9e5b8b48_2 Access Apr,2020.
- 7. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) .2020. Available at: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf Access Mar, 2020.
- 8.Berhe H. W, Makinde O. D, Theuri D. M
- 9. Incubation period.2020. Available at: https://www.cdc.gov/training/QuickLearns/exposure/2.html Access Apr,2020.
- 10.Vink MA, Bootsma MC, Wallinga J. Serial intervals of respiratory infectious diseases: a systematic review and analysis. Am J Epidemiol. 2014 Nov 1:865. doi: 10.1093/aje/kwu209. [DOI] [PubMed]
- 11.Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the Basic Reproduction Number (R0) Emerg Infect Dis. 2019:1. doi: 10.3201/eid2501.171901. [DOI] [PMC free article] [PubMed]
- 12.Zhao S, Cao P, Gao D, Zhuang Z, Wang W, Ran J. et al. Modelling COVID-19 outbreak on the Diamond Princess ship using the public surveillance data. Infect Dis Model. 2022 Jun:189. doi: 10.1016/j.idm.2022.05.005. [DOI] [PMC free article] [PubMed]
- 13.Singhal T. A Review of Coronavirus Disease-2019 (COVID-19) Indian J Pediatr. 2020:281. doi: 10.1007/s12098-020-03263-6. [DOI] [PMC free article] [PubMed]
- 14. How do case fatality rates from COVID-19 compare to those of the seasonal flu?. 2020. Available at: https://ourworldindata.org/coronavirus Access Apr, 2020.
- 15. Coronavirus disease 2019 (COVID-19) Situation Report – 30.2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200219-sitrep-30-covid-19.pdf?sfvrsn=3346b04f_2 Access Mar, 2020.
- 16.Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, Wang M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020 Feb 21 doi: 10.1001/jama.2020.2565. [DOI] [PMC free article] [PubMed]
- 17.Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y. et al. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. J Clin Med. 2020 Feb 7:462. doi: 10.3390/jcm9020462. [DOI] [PMC free article] [PubMed]
- 18.Tang B, Xia F, Bragazzi NL, McCarthy Z, Wang X, He S. et al. Lessons drawn from China and South Korea for managing COVID-19 epidemic: Insights from a comparative modeling study. ISA Trans. 2022 May doi: 10.1016/j.isatra.2021.12.004. [DOI] [PMC free article] [PubMed]
- 19.Ahmadi A, Fadaei Y, Shirani M, Rahmani F. Modeling and forecasting trend of COVID-19 epidemic in Iran until May 13, 2020. Med J Islam Repub Iran. 2020 Mar 31 doi: 10.34171/mjiri.34.27. [DOI] [PMC free article] [PubMed]
- 20.Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health. 2020 doi: 10.1016/S2589-7500(20)30026-1. [DOI] [PMC free article] [PubMed]
- 21.Tang S, Tang B, Bragazzi NL, Xia F, Li T, He S. et al. Stochastic discrete epidemic modeling of COVID-19 transmission in the Province of Shaanxi incorporating public health intervention and case importation. medRxiv. 2020
- 22.Tariq A, Lee Y, Roosa K, Blumberg S, Yan P, Ma S. et al. Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Med. 2020 Jun 3:166. doi: 10.1186/s12916-020-01615-9. [DOI] [PMC free article] [PubMed]
- 23.Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z. et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020 Apr:401. doi: 10.1016/j.jinf.2020.02.018. [DOI] [PMC free article] [PubMed]
- 24.Tindale L, Coombe M, Stockdale JE, Garlock E, Lau WYV, Saraswat M. et al. Transmission interval estimates suggest pre-symptomatic spread of COVID-19. medRxiv. 2020:2020
- 25.Tuite AR, Fisman DN. Reporting, Epidemic Growth, and Reproduction Numbers for the 2019 Novel Coronavirus (2019-nCoV) Epidemic. Ann Intern Med. 2020 Apr 21:567. doi: 10.7326/M20-0358. [DOI] [PMC free article] [PubMed]
- 26.Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020:1061. doi: 10.1001/jama.2020.1585. [DOI] [PMC free article] [PubMed]
- 27.Wang M, Qi J. A deterministic epidemic model for the emergence of COVID-19 in China. medRxiv. 2020
- 28.Wang W, Chen Y, Wang Q, Cai P, He Y, Hu S. et al. The Transmission Dynamics of SARS-COV-2 in China: Modeling Study and the Impact of Public Health Interventions. Available at SSRN 3551319. 2020
- 29.Wang Y, You XY, Wang YJ, Peng LP, Du ZC, Gilmour S. et al. [Estimating the basic reproduction number of COVID-19 in Wuhan, China] Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Apr 10:476. doi: 10.3760/cma.j.cn112338-20200210-00086. [DOI] [PubMed]
- 30.Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020 Apr:506. doi: 10.1038/s41591-020-0822-7. [DOI] [PMC free article] [PubMed]
- 31.Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020 Feb 29:689. doi: 10.1016/S0140-6736(20)30260-9. [DOI] [PMC free article] [PubMed]
- 32.Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT. et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill. 2020 Jan:2000044. doi: 10.2807/1560-7917.ES.2020.25.3.2000044. [DOI] [PMC free article] [PubMed]
- 33.Xu T, Chen C, Zhu Z, Cui M, Chen C, Dai H. et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis. 2020 May doi: 10.1016/j.ijid.2020.03.022. [DOI] [PMC free article] [PubMed]
- 34.Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL. et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ (Clinical Research ed. ) doi: 10.1136/bmj.m606. [DOI] [PMC free article] [PubMed]
- 35.Yang S, Cao P, Du P, Wu Z, Zhuang Z, Yang L. et al. Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Ann Transl Med. 2020 Feb:128. doi: 10.21037/atm.2020.02.66. [DOI] [PMC free article] [PubMed]
- 36.You C, Deng Y, Hu W, Sun J, Lin Q, Zhou F. et al. Estimation of the time-varying reproduction number of COVID-19 outbreak in China. Int J Hyg Environ Health. 2020 Jul doi: 10.1016/j.ijheh.2020.113555. [DOI] [PMC free article] [PubMed]
- 37.Yu P, Zhu J, Zhang Z, Han Y. A Familial Cluster of Infection Associated With the 2019 Novel Coronavirus Indicating Possible Person-to-Person Transmission During the Incubation Period. J Infect Dis. 2020 May 11:1757. doi: 10.1093/infdis/jiaa077. [DOI] [PMC free article] [PubMed]
- 38.Zhan C, Tse CK, Lai Z, Hao T, Su J. Prediction of COVID-19 spreading profiles in South Korea, Italy and Iran by data-driven coding. PLoS One. 2020 Jul 6:e0234763. doi: 10.1371/journal.pone.0234763. [DOI] [PMC free article] [PubMed]
- 39.Zhang B, Zhou H, Zhou F. Study on SARS-CoV-2 transmission and the effects of control measures in China. PLoS One. 2020 Nov 30:e0242649. doi: 10.1371/journal.pone.0242649. [DOI] [PMC free article] [PubMed]
- 40.Wan K, Chen J, Lu C, Dong L, Wu Z, Zhang L. When will the battle against novel coronavirus end in Wuhan: A SEIR modeling analysis. J Glob Health. 2020 Jun:011002. doi: 10.7189/jogh.10.011002. [DOI] [PMC free article] [PubMed]
- 41.Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int J Infect Dis. 2020 Apr doi: 10.1016/j.ijid.2020.02.033. [DOI] [PMC free article] [PubMed]
- 42.Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg Infect Dis. 2020 Jun:1341. doi: 10.3201/eid2606.200357. [DOI] [PMC free article] [PubMed]
- 43.Zhao H, Man S, Wang B, Ning Y. Epidemic size of novel coronavirus-infected pneumonia in the Epicenter Wuhan: using data of five-countries' evacuation action. medRxiv. 2020:2020
- 44.Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W. et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020 doi: 10.1016/j.ijid.2020.01.050. [DOI] [PMC free article] [PubMed]
- 45.Zhao S, Musa SS, Lin Q, Ran J, Yang G, Wang W. et al. Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. J Clin Med. 2020 doi: 10.3390/jcm9020388. [DOI] [PMC free article] [PubMed]
- 46.Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020 Mar 28:1054. doi: 10.1016/S0140-6736(20)30566-3. [DOI] [PMC free article] [PubMed]
- 47.ZHOU G, CHI C. A model simulation study on effects of intervention measures in Wuhan COVID-19 epidemic. medRxiv. 2020:2020
- 48.Zhou T, Liu Q, Yang Z, Liao J, Yang K, Bai W. et al. Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV. J Evid Based Med. 2020 Feb:3. doi: 10.1111/jebm.12376. [DOI] [PMC free article] [PubMed]
- 49.Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS One. 2020 Mar 31:e0230405. doi: 10.1371/journal.pone.0230405. [DOI] [PMC free article] [PubMed]
- 50.Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020 Feb:2000062. doi: 10.2807/1560-7917.ES.2020.25.5.2000062. [DOI] [PMC free article] [PubMed]
- 51.Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020 Jul:773. doi: 10.1016/S1473-3099(20)30195-X. [DOI] [PMC free article] [PubMed]
- 52.Cao Z, Zhang Q, Lu X, Pfeiffer D, Jia Z, Song H. et al. Estimating the effective reproduction number of the 2019-nCoV in China. medRxiv. 2020:2020
- 53.Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty. 2020 Feb 28:24. doi: 10.1186/s40249-020-00640-3. [DOI] [PMC free article] [PubMed]
- 54.Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020:395. doi: 10.1126/science.aba9757. [DOI] [PMC free article] [PubMed]
- 55.Chong YC. A Novel Method for the Estimation of a Dynamic Effective Reproduction Number (Dynamic-R) in the CoViD-19 Outbreak. medRxiv. 2020
- 56.Dorigatti I, Okell L, Cori A, Imai N, Baguelin M, Bhatia S, Boonyasiri A, Cucunubá Z, Cuomo-Dannenburg G, FitzJohn R, Fu H. Report 4: severity of 2019-novel coronavirus (nCoV) Imperial College London, London. 2020 Feb 10
- 57.Kretzschmar ME, Rozhnova G, van Boven. Effectiveness of isolation and contact tracing for containment and slowing down a COVID-19 epidemic: a modelling study. medRxiv. 2020
- 58.Kuniya T. Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020. J Clin Med. 2020 Mar 13:789. doi: 10.3390/jcm9030789. [DOI] [PMC free article] [PubMed]
- 59.Lai A, Bergna A, Acciarri C, Galli M, Zehender G. Early phylogenetic estimate of the effective reproduction number of SARS-CoV-2. J Med Virol. 2020 Jun:675. doi: 10.1002/jmv.25723. [DOI] [PMC free article] [PubMed]
- 60.Lau H, Khosrawipour V, Kocbach P, Mikolajczyk A, Schubert J, Bania J. et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J Travel Med. 2020 May 18:taaa037. doi: 10.1093/jtm/taaa037. [DOI] [PMC free article] [PubMed]
- 61.Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR. et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020 May 5:577. doi: 10.7326/M20-0504. [DOI] [PMC free article] [PubMed]
- 62.Leung C. The difference in the incubation period of 2019 novel coronavirus (SARS-CoV-2) infection between travelers to Hubei and nontravelers: the need for a longer quarantine period. Infect. Control Hosp doi: 10.1017/ice.2020.81. [DOI] [PMC free article] [PubMed]
- 63.Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020 Mar 26:1199. doi: 10.1056/NEJMoa2001316. [DOI] [PMC free article] [PubMed]
- 64.Li X, Wang W, Zhao X, Zai J, Zhao Q, Li Y. et al. Transmission dynamics and evolutionary history of 2019-nCoV. J Med Virol. 2020 May:501. doi: 10.1002/jmv.25701. [DOI] [PMC free article] [PubMed]
- 65.Liao J, Fan S, Chen J, Wu J, Xu S, Guo Y. et al. Epidemiological and Clinical Characteristics of COVID-19 in Adolescents and Young Adults. Innovation (Camb) 2020 May 21:100001. doi: 10.1016/j.xinn.2020.04.001. [DOI] [PMC free article] [PubMed]
- 66.Lin QS, Hu TJ, Zhou XH. Estimating the daily trend in the size of the COVID-19 infected population in Wuhan. Infect. Dis doi: 10.1186/s40249-020-00693-4. [DOI] [PMC free article] [PubMed]
- 67.Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM. et al. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J Clin Med. 2020 Feb 17:538. doi: 10.3390/jcm9020538. [DOI] [PMC free article] [PubMed]
- 68.Xiao J, Hu J, He G, Liu T, Kang M, Rong Z. et al. The time-varying transmission dynamics of COVID-19 and synchronous public health interventions in China. Int J Infect Dis. 2021 doi: 10.1016/j.ijid.2020.11.005. [DOI] [PMC free article] [PubMed]
- 69.Mizumoto K, Kagaya K, Chowell G. Early epidemiological assessment of the transmission potential and virulence of coronavirus disease 2019 (COVID-19) in Wuhan City, China, January-February, 2020. BMC Med. 2020 Jul 15:217. doi: 10.1186/s12916-020-01691-x. [DOI] [PMC free article] [PubMed]
- 70.Muniz-Rodriguez K, Fung IC-H, Ferdosi SR, Ofori SK, Lee Y, Tariq A. et al. Transmission potential of COVID-19 in Iran. medRxiv. 2020:2020 doi: 10.3201/eid2608.200536. [DOI] [PMC free article] [PubMed]
- 71.Nishiura H, Kobayashi T, Yang Y, Hayashi K, Miyama T, Kinoshita R, Linton NM, Jung SM, Yuan B, Suzuki A, Akhmetzhanov AR. The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. J Clin Med. 2020 Feb 4:419. doi: 10.3390/jcm9020419. [DOI] [PMC free article] [PubMed]
- 72.Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020 Apr doi: 10.1016/j.ijid.2020.02.060. [DOI] [PMC free article] [PubMed]
- 73.Omori R, Mizumoto K, Nishiura H. Ascertainment rate of novel coronavirus disease (COVID-19) in Japan. Int J Infect Dis. 2020 Jul doi: 10.1016/j.ijid.2020.04.080. [DOI] [PMC free article] [PubMed]
- 74.Park SW, Bolker BM, Champredon D, Earn DJD, Li M, Weitz JS. et al. Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak. J R Soc Interface. 2020 Jul:20200144. doi: 10.1098/rsif.2020.0144. [DOI] [PMC free article] [PubMed]
- 75.Peng L, Yang W, Zhang D, Zhuge C, Hong L. Epidemic analysis of COVID-19 in China by dynamical modeling. arXiv preprint arXiv:200206563. 2020
- 76.Pung R, Chiew CJ, Young BE, Chin S, Chen MI, Clapham HE. et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet. 2020 Mar 28:1039. doi: 10.1016/S0140-6736(20)30528-6. [DOI] [PMC free article] [PubMed]
- 77.Qian GQ, Yang NB, Ding F, Ma AHY, Wang ZY, Shen YF. et al. Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: a retrospective, multi-centre case series. QJM. 2020 Jul 1:474. doi: 10.1093/qjmed/hcaa089. [DOI] [PMC free article] [PubMed]
- 78.Rabajante JF. Insights from early mathematical models of dynamics2019-ncov acute respiratory disease (COVID-19) J Environ Sci Manag. 2020 Jun 1
- 79.Read JM, Bridgen JRE, Cummings DAT, Ho A, Jewell CP. Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates. Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19:20200265. doi: 10.1098/rstb.2020.0265. [DOI] [PMC free article] [PubMed]
- 80.Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020 Jan:2000058. doi: 10.2807/1560-7917.ES.2020.25.4.2000058. [DOI] [PMC free article] [PubMed]
- 81.Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. The Novel Coronavirus, 2019-nCoV, is Highly Contagious and More Infectious Than Initially Estimated. medRxiv. 2020:2020
- 82.Shen M, Peng Z, Xiao Y, Zhang L. Modeling the Epidemic Trend of the 2019 Novel Coronavirus Outbreak in China. Innovation (Camb) 2020 Nov 25:100048. doi: 10.1016/j.xinn.2020.100048. [DOI] [PMC free article] [PubMed]
- 83.Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission potential and severity of COVID-19 in South Korea. Int J Infect Dis. 2020 Apr doi: 10.1016/j.ijid.2020.03.031. [DOI] [PMC free article] [PubMed]
- 84.Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis. J Med Virol. 2020 Jun:645. doi: 10.1002/jmv.25750. [DOI] [PMC free article] [PubMed]
- 85.Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J. et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill. 2020 Apr:2000257. doi: 10.2807/1560-7917.ES.2020.25.17.2000257. [DOI] [PMC free article] [PubMed]
- 86.Eastin C, Eastin T. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med doi: 10.1056/NEJMoa2002032. [DOI] [PMC free article] [PubMed]
- 87.Hermanowicz SW. Forecasting the Wuhan coronavirus (2019-nCoV) epidemics using a simple (simplistic) model. medRxiv. 2020
- 88.Hu Z, Song C, Xu C, Jin G, Chen Y, Xu X. et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020 May:706. doi: 10.1007/s11427-020-1661-4. [DOI] [PMC free article] [PubMed]
- 89.Jiang X, Rayner S, Luo MH. Does SARS-CoV-2 has a longer incubation period than SARS and MERS. J Med Virol. 2020:476. doi: 10.1002/jmv.25708. [DOI] [PMC free article] [PubMed]
- 90.Jung SM, Akhmetzhanov AR, Hayashi K, Linton NM, Yang Y, Yuan B. et al. Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J Clin Med. 2020 Feb 14:523. doi: 10.3390/jcm9020523. [DOI] [PMC free article] [PubMed]
- 91.Ki M;. Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiol Health. 2020 doi: 10.4178/epih.e2020007. [DOI] [PMC free article] [PubMed]
- 92.Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020:441. doi: 10.1002/jmv.25689. [DOI] [PMC free article] [PubMed]
- 93.White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M. et al. Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other Respir Viruses. 2009 Nov:267. doi: 10.1111/j.1750-2659.2009.00106.x. [DOI] [PMC free article] [PubMed]
- 94.Bettencourt LM, Ribeiro RM. Real time bayesian estimation of the epidemic potential of emerging infectious diseases. PLoS One. 2008 doi: 10.1371/journal.pone.0002185. [DOI] [PMC free article] [PubMed]
- 95.Obadia T, Haneef R, Boëlle PY. The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks. BMC Med Inform Decis Mak. 2012 Dec 18 doi: 10.1186/1472-6947-12-147. [DOI] [PMC free article] [PubMed]
- 96.Alimohamadi Y, Taghdir M, Sepandi M. Estimate of the Basic Reproduction Number for COVID-19: A Systematic Review and Meta-analysis. J Prev Med Public Health. 2020 May:151. doi: 10.3961/jpmph.20.076. [DOI] [PMC free article] [PubMed]
- 97.Donnelly CA, Ghani AC, Leung GM, Hedley AJ, Fraser C, Riley S. et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003:1761. doi: 10.1016/S0140-6736(03)13410-1. [DOI] [PMC free article] [PubMed]
- 98.Majumder MS, Rivers C, Lofgren E, Fisman D. Estimation of MERS-Coronavirus Reproductive Number and Case Fatality Rate for the Spring 2014 Saudi Arabia Outbreak: Insights from Publicly Available Data. PLoS Curr. 2014 Dec 18 doi: 10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c. [DOI] [PMC free article] [PubMed]
- 99.Ghani AC, Donnelly CA, Cox DR, Griffin JT, Fraser C, Lam TH. et al. Methods for estimating the case fatality ratio for a novel, emerging infectious disease. Am J Epidemiol. 2005 Sep 1:479. doi: 10.1093/aje/kwi230. [DOI] [PMC free article] [PubMed]
- 100.Rahmanian V, Rabiee MH, Sharifi H. Case fatality rate of coronavirus disease 2019 (COVID-19) in Iran-a term of caution. Asian Pac J Trop Med. 2020 Jul 1:328.
- 101.Li J, Huang DQ, Zou B, Yang H, Hui WZ, Rui F. et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021 Mar:1449. doi: 10.1002/jmv.26424. [DOI] [PMC free article] [PubMed]
- 102. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020 May 5;172(9):577-582. [DOI] [PMC free article] [PubMed]
- 103.Zhang P, Wang T, Xie SX. Meta-analysis of several epidemic characteristics of COVID-19. J Data Sci. 2020 Jul:536. doi: 10.6339/JDS.202007_18(3).0019. [DOI] [PMC free article] [PubMed]
- 104.Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis. 2020 Jul:1470. doi: 10.3201/eid2607.200282. [DOI] [PMC free article] [PubMed]
- 105. Muniz-Rodriguez K, Fung IC-H, Ferdosi SR, Ofori SK, Lee Y, Tariq A, et al. Transmission potential of COVID-19 in Iran. medRxiv. 2020:2020.03.08.20030643. [DOI] [PMC free article] [PubMed]
- 106.Rai B, Shukla A, Dwivedi LK. Estimates of serial interval for COVID-19: A systematic review and meta-analysis. Clin Epidemiol Glob Health. 2021 Jan-Mar doi: 10.1016/j.cegh.2020.08.007. [DOI] [PMC free article] [PubMed]
- 107. Kretzschmar ME, Rozhnova G, van Boven ME. Effectiveness of isolation and contact tracing for containment and slowing down a COVID-19 epidemic: a modelling study. medRxiv. 2020.
