Skip to main content
Biodiversity Data Journal logoLink to Biodiversity Data Journal
. 2022 Oct 27;10:e94088. doi: 10.3897/BDJ.10.e94088

Phaeoisarialaianensis (Pleurotheciales, Pleurotheciaceae), a new species from freshwater habitats in China

Yu Liu 1, Gui-Ping Xu 1, Xin-Yi Yan 1, Min-Hui Chen 1,2, Yang Gao 1,2, Hai-Jing Hu 1,2, Hai-Yan Song 3, Dian-Ming Hu 1,2,, Zhi-Jun Zhai 1,2,
PMCID: PMC9836530  PMID: 36761506

Abstract

Background

Freshwater fungi play an indispensable role in the ecosystem and have great research value. Based on morphological and phylogenetic analyses of a concatenated dataset of ITS, LSU and SSU sequences, a new species, Phaeoisarialaianensis, was introduced as a freshwater hyphomycete from Anhui Province, China.

New information

Phaeoisarialaianensis was morphologically described as erect, rigid, dark brown to black, velvety synnemata which has macronematous, septate, branched, brown to dark brown, parallel adpressed conidiophores with polyblastic, integrated, terminal, hyaline to pale brown, smooth, denticulate, sympodial conidiogenous cells and ellipsoidal to obovoid, rounded at the apex, obtuse and tapering towards base, septate, guttulate conidia. Based on molecular and morphological characteristics, it is confirmed to be a new species. All illustrations and descriptions have been provided.

Keywords: Ascomycota, Phaeoisaria , morphology, phylogenetic anaysis, taxonomy

Introduction

Phaeoisaria (Pleurotheciales) was established by Höhnel (1909) to accommodate Phaeoisariabambusae as the type species, a hyphomycetous taxon isolated from a bamboo substrate. This genus is characterised by indeterminate synnemata with parallel adpressed conidiophores with numerous sympodially extending denticulate conidiogenous cells and aseptate or septate ellipsoidal, obovoidal, fusiform-cylindrical to falcate, hyaline conidia (Höhnel 1909, Réblová et al. 2016, Hyde et al. 2018, Luo et al. 2018, Boonmee et al. 2021). Nevertheless, indeterminate synnemata have not been observed in some species, such as P.curvata (de Hoog and Papendorf 1976), P.glauca (de Hoog and Papendorf 1976), P.loranthacearum (Crous et al. 2015), P.fasciculata (Réblová et al. 2016), P.annesophieae (Crous et al. 2017) and P.dalbergiae (Crous et al. 2021).

In the past decades, an increasing number of new species was assigned to Phaeoisaria by distinguishing characters (Crous et al. 2017, Hyde et al. 2018, Hyde et al. 2019, Luo et al. 2019, Boonmee et al. 2021, Crous et al. 2021). Until now, 26 species have been accepted in the genus Phaeoisaria (http://www.speciesfungorum.org/Names/Names.asp). These species are relatively common and have a worldwide distribution, while only four of them have been recorded in China. Moreover, there are presently only 15 species having the molecular data in Phaeoisaria. In this study, we depicted a new species, Phaeoisarialaianensis, from submerged wood in Anhui Province of China, with both morphological examination and molecular phylogenetic analysis.

Materials and methods

Samples collection, specimen examination and isolation

Submerged rotting wood samples were gathered from Laian County, Anhui Province, China and were brought back to the laboratory to be incubated in plastic boxes at room temperature. Fungi on the host surface were observed with a Nikon SMZ-1270 microscope (Nikon Corporation, Japan) and morphologically photographed with a Nikon ECLIPSE Ni-U compound microscope (Nikon Corporation, Japan), which was equipped with a Nikon DS-Fi3 camera. The structure of fungi was determined by PhotoRuler 1.1.3.0 (The Genus Inocybe, Hyogo, Japan) and figures were processed by Adobe Photoshop 2020 (Adobe Systems, USA). According to the method of Li et al. (2021), single spore isolation and pure culture were carried out. Fungal specimens were deposited in the Fungus Herbarium, Jiangxi Agricultural University, Nanchang, China.

DNA extraction, PCR amplification and sequencing

By using the improved CTAB method (Doyle and Doyle 1987), fungal total genomic DNA was extracted from fresh mycelium. Three gene regions (ITS, LSU and SSU), were respectively amplified by polymerase chain reaction (PCR) using the primers of ITS1/ITS4 (White et al. 1990), LROR/LR7 (Hopple and Vilgalys 1999) and NS1/NS4 (White et al. 1990), with 25 μl of the final volume including 9.5 μl ddH2O, 12.5 μl 2× Taq PCR MasterMix (Qingke, Changsha, China), 1 μl of DNA template and 1 μl of each primer (10 μM). Then amplifications were conducted under the PCR conditions described by Zhai et al. 2022. The PCR products were purified and the sequencing reactions were commercially conducted with the corresponding forward and reverse primers by QingKe Biotechnology Co. (Changsha, China). All sequences were edited with SeqMan v. 7.1.0 (DNASTAR, lnc, Madison, WI) and were deposited in the NCBI GenBank database.

Phylogenetic analysis

The sequences of 69 strains were retrieved from recent articles (Luo et al. 2018, Hyde et al. 2019, Boonmee et al. 2021) and downloaded from GenBank (Table 1). Each matrix of ITS, LSU and SSU was aligned using the online service of MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/large.html, Katoh et al. 2019) and then the sequences of three regions were concatenated by PhyloSuite v.1.2.2 (Zhang et al. 2020). By using RAxML v.7.2.6 (Stamatakis and Alachiotis 2010), Maximum Likelihood (ML) analysis was performed, which used a GTRGAMMA substitution model with 1000 bootstrap replicates. The Markov Chain Monte Carlo (MCMC) method in MrBayes was used to estimate the posterior probabilities (PP) (Zhaxybayeva and Gogarten 2002) and it was set as four chains (2 hot chains and 2 cold chains) running 2,000,000 generations synchronously, resulting in 40002 trees in total. Based on the initial 25% of sampled data being cut off as burn-in, PhyloSuite v.1.2.2 (Zhang et al. 2020) was used to infer Bayesian inference phylogeny under the JC+I+G+F model of the concatenation of ITS, LSU and SSU. After visualisation by FigTree v.1.4.4 (Rambaut 2018), the phylogenetic tree was edited and illustrated using Adobe Illustrator 2020 (Adobe Systems Inc., USA). The aligned matrices and trees were submitted to TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29791).

Table 1.

Sequences used in this study. Note: Ex-type strains are in bold. The sequences of new species are indicated as underlined and unavailable sequences in GenBank are indicated by hyphen "-".

Taxonomy Strain GenBank accession numbers
ITS LSU SSU
Adelosphaeriacatenata CBS 138679 KT278721 KT278707 KT278692
Ascotaiwaniafusiformis MFLUCC 15-0625 KX550894 KX550898
Ascotaiwaniafusiformis MFLU 15-1156 MG388215 NG–057114
Ascotaiwanialignicola NIL 00005 HQ446341 HQ446364 HQ446284
Ascotaiwaniasawadae SS00051 HQ446340 HQ446363 HQ446283
Bactrodesmiastrumobovatum FMR 6482 FR870264 FR870266
Bactrodesmiastrumpyriforme FMR 10747 FR870263 FR870265
Brachysporiellasetosa HKUCC 3713 AF132334
Canalisporiumexiguum SS 00809 GQ390296 GQ390281 GQ390266
Canalisporiumgrenadoideum BCC 20507 GQ390267 GQ390252
Canalisporiumpulchrum SS03982 GQ390292 GQ390277 GQ390262
Conioscyphalignicola CBS 335.93 AY484513 JQ437439
Conioscyphaminutispora CBS 137253 MH878131
Conioscyphaperuviana CBS 137657 KF781539
Conioscyphavaria CBS 113653 AY484512 AY484511
Fuscosporellapyriformis MFLUCC 16-0570 MG388217 KX550896 KX550900
Helicoonfarinosum DAOM 241947 JQ429145 JQ429230
Leotialubrica AFTOLID 1 DQ491484 AY544644 AY544746
Melanotrigonumovale CBS 138815 KT278722 KT278711 KT278698
Melanotrigonumovale CBS 138744 KT278725 KT278710 KT278697
Melanotrigonumovale CBS 138743 KT278724 KT278709 KT278696
Melanotrigonumovale CBS 138742 KT278723 KT278708 KT278695
Microglossumrufum OSC100641 DQ470981 DQ471033
Mucisporaobscuriseptata MFLUCC 15-0618 MG388218 KX550892 KX550897
Parafuscosporellamoniliformis MFLUCC 15-0626 MG388219 KX550895 KX550899
Phaeoisariaannesophieae CBS 143235 MG022180 MG022159
Phaeoisariaannesophieae MFLU190531 MT559109 MT559084
Phaeoisariaaquatica MFLUCC 16-1298 MF399237 MF399254
Phaeoisariaclematidis MFLUCC 16-1273 MF399229 MF399246
Phaeoisariaclematidis MFLUCC 17-1341 MF399230 MF399247 MF399216
Phaeoisariaclematidis MFLUCC 17-1968 MG837022 MG837017 MG837027
Phaeoisariaclematidis DAOM 226789 JQ429155 JQ429231 JQ429243
Phaeoisariadalbergiae CPC 39540 OK664703
Phaeoisariafasciculata CBS 127885 KT278719 KT278705 KT278693
Phaeoisariafasciculata DAOM 230055 KT278720 KT278706 KT278694
Phaeoisariafiliformis MFLUCC 18-0214 MK878381 MK835852 MK834785
Phaeoisariaguttulata MFLUCC 17-1965 MG837021 MG837016 MG837026
Phaeoisarialaianensis CCTCC AF 2022069 ON937559 ON937557 ON937562
Phaeoisarialaianensis CCTCC AF 2022073 ON937560 ON937561 ON937558
Phaeoisarialoranthacearum CBS 140009 KR611888 MH878676
Phaeoisarialoranthacearum BYCDW25 MG820097
Phaeoisarialoranthacearum BYCDW24 MG820098
Phaeoisariamicrospora MFLUCC 16-0033 MF671987 MF167351
Phaeoisariapseudoclematidis MFLUCC 11-0393 KP744457 KP744501 KP753962
Phaeoisariasedimenticola CGMCC3.14949 JQ074237 JQ031561
Phaeoisariasedimenticola S-908 MK878380 MK835851
Phaeoisariasiamensis MFLUCC 16-0607 MK607610 MK607613 MK607612
Phaeoisariasparsa FMR 11939 HF677185
Phaeoisariasynnematica NFCCI 4479 MK391494 MK391492
Phragmocephalastemphylioides KAS 4277 KT278730 KT278717
Plagiascomafrondosum CBS 139031 KT278713 KT278701
Pleurotheciellacentenaria DAOM 229631 JQ429151 JQ429234 JQ429246
Pleurotheciellarivularia CBS 125237 JQ429161 JQ429233 JQ429245
Pleurotheciellarivularia CBS 125238 JQ429160 JQ429232 JQ429244
Pleurotheciellauniseptata KUMCC 15-0407 MF399231 MF399248
Pleurotheciumaquaticum MFLUCC 17-1331 MF399245 MF399263
Pleurotheciumaquaticum MFLUCC 21-0148 OM654775 OM654772 OM654807
Pleurotheciumfloriforme MFLUCC 15-0628 KY697281 KY697277 KY697279
Pleurotheciumobovoideum CBS 209.95 EU041784 EU041841
Pleurotheciumpulneyense MFLUCC 16-1293 MF399262 MF399228
Pleurotheciumrecurvatum CBS 138747 KT278728 KT278714 KT278703
Pleurotheciumrecurvatum CBS 131272 JQ429149 JQ429237 JQ429251
Pleurotheciumrecurvatum CBS 101581 JQ429148 AF261070 JQ429248
Pleurotheciumsemifecundum CBS 131482 JQ429158 JQ429239 JQ429253
Pleurotheciumsemifecundum CBS 131271 JQ429159 JQ429240 JQ429254
Savoryellalongispora SAT 00322 HQ446359 HQ446380 HQ446302
Savoryellapaucispora SAT 00866 HQ446381 HQ446303
Savoryellaverrucosa SS 00052 HQ446353 HQ446374 HQ446296
Sterigmatobotrysmacrocarpa DAOM 230059 JQ429154 GU017316
Sterigmatobotrysmacrocarpa PRM 915682 JQ429153 GU017317 JQ429255
Sterigmatobotrysrudis DAOM 229838 JQ429152 JQ429241 JQ429256

Taxon treatments

Phaeoisaria laianensis

Y. Liu, G.P. Xu, X.Y. Yan, D.M. Hu & Z.J. Zhai sp. nov.

2EE81D2F-85F9-51D4-9628-863AEF4186AB

844773

Materials

  1. Type status: Holotype. Occurrence: recordedBy: Yu Liu; occurrenceID: 99B9C819-CA87-5634-AB08-7E7A79E1ADE0; Taxon: scientificName: Phaeoisarialaianensis; acceptedNameUsage: Phaeoisarialaianensis Y. Liu, D.M. Hu & Z.J. Zhai; kingdom: Fungi; phylum: Ascomycota; class: Sordariomycetes; order: Pleurotheciales; family: Pleurotheciaceae; genus: Phaeoisaria; specificEpithet: laianensis; taxonRank: species; verbatimTaxonRank: species; scientificNameAuthorship: Y. Liu, D.M. Hu & Z.J. Zhai; Location: continent: Asia; country: China; stateProvince: Anhui; county: Laian; locality: Wawuzhuang; verbatimElevation: 35; locationRemarks: Label transliteration; verbatimCoordinates: 32.66 N, 118.65 E; verbatimLatitude: 32.66; verbatimLongitude: 118.65; Identification: identifiedBy: Yu Liu and Zhi-jun Zhai; dateIdentified: 2021; Event: samplingProtocol: collecting; eventDate: 06-05-2021; year: 2021; month: 5; day: 6; habitat: Freshwater; Record Level: type: PhysicalObject; language: en; rightsHolder: Dian-Ming Hu and Zhi-jun Zhai; institutionID: HFJAU10040; collectionID: LKJ17; institutionCode: the Herbarium of Fungi, Jiangxi Agricultural University (HFJAU); collectionCode: Fungi; ownerInstitutionCode: HFJAU

Description

Saprobic on decaying wood submerged in freshwater habitats. Sexual morph: Undetermined. Asexual morph: Colonies effuse, solitary, scattered, dark brown to black, hairy, covered by white conidial mass. Mycelium partly superficial, partly immersed. Synnemata 290–848 × 9.3–30.7 µm (x̅ = 532 × 18.6, SD = 159 × 5, n = 20), erect, rigid, dark brown to black, velvety, smooth, composed of compactly and parallel adpressed conidiophores. Conidiophores 116.2–491.1 × 2–3.2 µm (x̅ = 276.1 × 2.4, SD = 96.7 × 0.5, n = 10), macronematous, synnematous, septate, branched, brown to dark brown, smooth. Conidiogenous cells 8.3–27.5 × 2.3–3.8 µm (x̅ = 17.1 × 2.7, n = 10), polyblastic, integrated, terminal, hyaline to pale brown, smooth, denticulate, sympodial, each with several denticulate conidiogenous loci, 0.8–1.6 × 0.4–0.8 µm (x̅ = 1.3 × 0.7, n = 10). Conidia 5–7.2 × 1.7–2.9 µm (x̅ = 5.9 × 1.7, SD = 0.5 × 0.3, n = 50), ellipsoidal to obovoid, straight, rounded at the apex, obtuse and tapering towards base, hyaline, aseptate, guttulate, smooth-walled. (Fig. 1).

Figure 1.

Figure 1.

Phaeoisarialaianensis (HFJAU 10040, Holotype) a, b Colonies on wood; c, d Conidiophores; e, f Conidiogenous cells with conidia; g Germinating conidium; h Conidia; i, j Colony on PDA for 26 days from above and reverse. Scale bars: a, b = 100 µm, c, d = 50 µm, e–h = 10 µm.

Culture characteristics: Conidia germinated within 24 h in which germ tubes were produced from both ends or sides at 28℃ on PDA. The colony on PDA grows up slowly and reaches 24.5 mm in 26 days, periphery grey, surface folded, middle grey-green to black, raised with mycelium in the centre, covered with lots of white conidia, powdery, reverse grey to black.

Material examined: China, Anhui Province, alt. 35 m, near 32.66°N, 118.65°E, on decaying wood submerged in a freshwater stream, 6 May 2021, Y. Liu, G.P. Xu and Z.J. Zhai, LKJ17 (HFJAU 10040, holotype), ex-type living culture, CCTCC AF 2022069 = CCTCC AF 2022073.

Etymology

The name reflects the district where this fungus was found.

Notes

Phylogenetic analysis shows that Phaeoisarialaianensis is a phylogenetically-distinct species, most closely related to P.dalbergiae and then to P.clematidis (Fig. 2). However, P.laianensis is easily distinguished from P.dalbergiae by its ellipsoidal to obovoid, rounded at the apex and tapering towards base conidia (Crous et al. 2021). In addition, P.laianensis has synnemata, which is absent in P.dalbergiae (Crous et al. 2021), also in P.curvata, P.glauca (de Hoog and Papendorf 1976), P.loranthacearum (Crous et al. 2015), P.annesophieae and P.fasciculata (Réblová et al. 2016) (Table 2). The new species is similar to P.clematidis in having resembling synnemata or conidia (Hughes 1958, Luo et al. 2018), while the former has shorter synnemata (290–848 µm vs. 1000–1500 µm) and smaller conidia (5–7.2 µm wide vs. 4–10 µm wide) than P.clematidis (Table 2). Likewise, P.laianensis has longer synnemata than P.siameneis (290–848 µm vs. 330–380 µm), smaller conidiophores than P.guttulata (Hyde et al. 2018) and P.aquatica (116.2–491.1 × 2–3 µm vs. 480–700 × 2–5 µm and 1028–1262 × 3.5–4.5 µm) (Luo et al. 2018) and smaller conidia (5–7.2 × 1.7–2.9 µm) than P.annesophiae (4.5–9 × 2–3.5 µm) (Crous et al. 2017), P.synnematica (4–11 µm long) (Boonmee et al. 2021) and P.siamensis (3–4 µm wide) (Table 2). In addition, it can be differentiated from P.filiforms by the indeterminate asexual morph of the latter species (Luo et al. 2019).

Figure 2.

Figure 2.

Phylogenetic tree of Bayesian analysis, based on a concatenated alignment of ITS, LSU and SSU sequences. Branch support is shown at the nodes, Maximum Likelihood bootstrap support (BS, black) ≥ 60% and Bayesian posterior probability (PP, red) ≥ 0.95. Leotialubrica (AFTOLID 1) and Microglossumrufum (OSC100641) are selected as the outgroup taxa. The new species is marked in red and ex-type strains are in bold.

Table 2.

Synopsis 1 of asexual morphological characteristics of Phaeoisaria species. Note: Hyphens “-” are indeterminate or unavailable data.

Species Synnemata (µm) Synnemata characteristics Conidiophores (µm) Conidiophores characteristics Conidia (µm) References
Phaeoisarialaianensis 290‒848 × 9.3‒30.7 Erect, rigid, dark brown to black, velvety, smooth, composed of compactly and parallel adpressed conidiophores 116.2‒491.1 × 2‒3.2 Macronematous, synnematous, septate, branched, brown to dark brown, smooth 5‒7.2 × 1.7‒2.9 This study
P.aguilerae - - - - 18–29.5 × 4–5 Castañeda Ruiz et al. (2002)
P.annesophieae - - Conidiophores indeterminate Sometimes grouping in strands of 2–4 hyphae, a rising from aerial hyphae, cylindrical, hyaline to pale brown 4.5–9 × 2–3.5 Crous et al. (2017)
P.aquatica - Erect, rigid, dark brown to black, velvety, smooth 1028–1262 × 3.5–4.5 Macronematous, synnematous, brown to dark brown, smooth 6.5–7.5 × 2.5–3.5 Luo et al. (2018)
P.bambusae - Erect, rigid, dark brown toblack, velvety, smooth - Macronematous, synnematous, brown to dark brown, smooth - Höhnel (1909), Hyde et al. (2019), Luo et al. (2019), Réblová et al. (2016)
P.caffra - Synnemata composed of at least 10 adpressed hyphae - Conidiophores not tuberculate 7.5–12 × 2.5–3.5 Castañeda Ruiz et al. (2002), de Hoog and Papendorf (1976)
P.clavulata - Stiff synnemata, composed of parallel hyphae, packed with slender, curved conidiogenous cells with very thin, fragile conidiogenous rachides - - 1–2 long Castañeda Ruiz et al. (2002), de Hoog and Papendorf (1976), Mason and Ellis (1953)
P.clematidis 1000–1500 × 20–80 Conidiomata scattered, indeterminate, erect, rigid, superficial, dark brown composed of compact appressed conidiophores 312–568 × 2.5–3.5 Macronematous, septate, branched, brown to dark brown, smooth 4–10 × 1.5–2.5 Castañeda Ruiz et al. (2002), Hughes (1958), Luo et al. (2018)
P.curvata - - Conidiophores indeterminate - (4–)6–8(–11) × (1–)2–3 de Hoog and Papendorf (1976)
P.dalbergiae - - 10–50 × 1.5–2.5 Indeterminate, erect, subcylindrical, hyaline, smooth, 0–2-septate, unbranched or branched at apex 0.5 µm diam, (5 –)6–7 × (1.5–)2 Crous et al. (2021)
P.fasciculata - Synnemata absent 25–65 × 3.0–3.5 Macronematous, arising from brown, thick-walled cells, cylindrical, pale brown, subhyaline towards the apex, unbranched, smooth-walled 6.0–8.0 (–9.0) × 2.0 Réblová et al. (2016)
P.filiformis - - - - - Luo et al. (2019)
P.glauca - - Conidiophores indeterminate - 2.5–3.5 × 1.6–2.2 de Hoog and Papendorf (1976)
P.guttulata - Erect, rigid, dark brown to black, velvety, smooth, composed of compactly and parallel adpressed conidiophores 480–700 × 2–5 Macronematous, synnematous, erect, septate, smooth, mid-brown to dark brown 3.5–5.5 × 2.5–4.8 Hyde et al. (2018)
P.infrafertilis - Synnemata narrow, composed of only 5-6 brown adpressed hyphae - - 19.5–22 × 2–3 de Hoog and Papendorf (1976), Sutton and Hodges (1976)
P.loranthacearum - - 10–30 × 2–3 Arising from superficial hyphae, erect, solitary, branched at base or not, subcylindrical, straight to geniculate-sinuous, 1–3-septate, hyaline (5)7– 8(9) × (1.5) 2(3) Crous et al. (2015)
P.magnifica - Synnemata brush-like, synnemata with flaring hyphae at the tip - Growing well away from the column in the apical portion 5–6.5 × 4–4.5 de Hoog and Papendorf (1976), Deighton (1974)
P.microspora 35–238 µm long, 4–31 µm wide at the base, 5–35 µm wide at the apex Erect, straight or flexuous, dark brown at base, pale brown at apex 25–225 × 1–3 Macronematous, synnematous, septate, branched at the apex, smooth, pale to dark brown 4.5–6.9 × 1.3–3.1 Hyde et al. (2017)
P.muscariformis - - - - 12–22 × 4 Castañeda Ruiz et al. (2002), Siboe et al. (1999)
P.pseudoclematidis 200–500 µm long, 40–80 µm wide at the base, 40– 60 µm wide in the middle, 20–30 µm wide at the apex Erect, rigid, dark brown, velvety, smooth, composed of compactly and parallel adpressed conidiophores 50–500 × 2–3 Macronematous, synnematous, brown to dark brown, septate, branched, smooth 5–8.5 × 3–4 Liu et al. (2015)
P.sedimenticola up to 4000 µm high or sometimes longer, 70– 90 µm wide Erect, cylindrical to subulate, consisting of very regular, parallel, brown hyphae aseptate (3.5–)4.5–5.5(–7.5) ×
(2.5–)3–4(–4.5) 1-septate (4.5–)5.5–6.5(–9) × (2–)2.5–3.5(–4.5)
Cheng et al. (2014)
P.siamensis 330–380 × 20–25(–30) Conidiomata scattered, indeterminate, erect, rigid, superficial, dark brown composed of compactly appressed conidiophores 2–2.5(–3) µm wide Macronematous, in synnematous conidiomata, scattered, synnemata subulate or cylindrical, indeterminate, at the base 13–15 µm beneath the fertile portion with conidiogenous cells, composed of medium to dark brown, smooth, septate parallel hyphae, splaying out at the middle to apex 5–8 × 3–4 Hyde et al. (2019)
P.sparsa - Synnemata composed of at least 10 adpressed hyphae - Not tuberculate 10–15.5 × 2.5–3.5 de Hoog and Papendorf (1976), Sutton (1973)
P.sparsavar.cubensis - - - - (4–)7– 11(–17) ×(1.5–) 2– 3(–4) Mercado-Sierra et al. (1997), Mel’nik (2012)
P.synnematica 399–960 × 12–30 Synnematal, erect, rigid, dark brown to olivaceous brown, composed of compactly parallel appressed conidiophores, cylindrical to clavate 1.5–960 × 1–3.5 Macronematous to semi- macronematous, highly geniculate, dark brown to olivaceous brown, synnematous, simple to dichotomously branched, emerging out at the apex and along the sides of the upper half or two thirds of each synnema, dark brown at the base, brown to pale brown 4–11 × 2–5 Boonmee et al. (2021)
P.tuberculata - Synnemata composed of at least 10 adpressed hyphae - Conspicuously tuberculate 8–13.5 × 1.5–2 Castañeda Ruiz et al. (2002), Sutton (1993)
P.uniseptata - - - - (3.5–) 5.5– 7.5 (–10) × 1.5–3 de Hoog and Papendorf (1976), Mercado-Sierra (1984), Mel’nik (2012)
P.vietnamensis 330–380 µm high, 20–25(– 30) µm wide at the base - 2–2.5(–3) µm wide Macronematous, in synnematous conidiomata, scattered, synnemata subulate or cylindrical, indeterminate composed of medium to dark brown, smooth, septate parallel hyphae 18.5– 23.5 × 4.5–5 Mel’nik (2012)

Analysis

Phylogenetic analysis

The aligned matrix for the combined analysis, ITS+LSU+SSU had 3105 bp, including ITS = 509 bp, LSU = 1172 bp and SSU = 1424 bp. No topological conflict exists between the tree generated by ML analysis and the Bayesian tree. The Bayesian tree is shown with BS and PP in Fig. 2. All 15 Phaeoisaria species in our analyses form a monophyletic group (BS/PP = 59/1.00). Most importantly, the two collections of Phaeoisarialaianensis form an independent lineage with strong support (BS/PP = 100/1.00). This lineage groups with P.dalbergiae into a highly supported clade (BS/PP = 98/1.00), which is sister to P.clematidis (BS/PP = 54/1.00). After searching of NCBIs GenBank nucleotide database based on a megablast, the ITS sequence of P.laianensis was found to share 97.46% similarity with P.dalbergiae (CPC 39540) and 96.35% similarity with P.clematidis (DAOM 226789). In addition, the sequence has nine different loci from that of P.dalbergiae and 15 different loci from that of P.clematidis.

Discussion

In our molecular phylogenetic tree, Phaeoisaria consists of 15 species and is supported as a monophyletic group (BS/PP = 59/1.00, Fig. 2). The low ML bootstrap might be due to a large number of unavailable sequences for 13 species in Phaeoisaria. However, the independent lineage of P.laianensis (BS/PP = 100/1.00, Fig. 2) is established and groups with P.dalbergiae into a highly supported clade (BS/PP = 98/1.00, Fig. 2). This clade is sister to the four collections of P.clematidis although with lower support (BS/PP = 54/1.00, Fig. 2). In addition, the morphological characters of P.laianensis can be effortlessly distinguished from P.dalbergiae and P.clematidis and other species in Phaeoisaria (Tables 2, 3). Notably, our results favour P.laianensis as a new species in the genus. However, molecular data for Phaeoisaria species require enriching to clarify more species relationships in the genus.

Table 3.

Synopsis 2 of asexual morphological characteristics of Phaeoisaria species. Note: Hyphens "-" are indeterminate or unavailable data.

Species Conidia septation Conidia characteristics Host District References
Phaeoisarialaianensis Aseptate Ellipsoidal to obovoid, straight, rounded at the apex, obtuse and tapering towards base, hyaline, guttulate, smooth-walled Decaying wood China, Anhui Province This study
P.aguilerae 1-septate, rarely 2–3-septate Clavate or cylindrical, curved, with obtuse, rounded apex, slightly uncinate, and truncate base, hyaline, smooth Decaying twig submerged in river Cuba Castañeda Ruiz et al. (2002)
P.annesophieae Aseptate Ellipsoidal to obovoid, straight or slightly curved, rounded at the ends or sometimes tapering towards the base, hyaline, guttulate, smooth-walled Isolated from soil The Netherlands, Geldermalsen Crous et al. (2017)
P.aquatica Aseptate Ellipsoidal to obovoidal, rounded at the apex, hyaline, with two guttules smooth-walled Decaying wood submerged in Jinsha River China, Yunnan Province Luo et al. (2018)
P.bambusae aseptate or septate Ellipsoidal to obovoidal, fusiform-cylindrical to falcate, hyaline, straight, guttulate, smooth-walled Unidentified submerged bamboo Indonesia Höhnel (1909), Hyde et al. (2019), Luo et al. (2019), Réblová et al. (2016)
P.caffra Aseptate, rarely 1-sepate Conidia straight, ellipsoidal to clavate, obovoid, not attenuated at the apex, pale yellow brown, smooth On decaying leaf of Podocarpus Cape Province Castañeda Ruiz et al. (2002), de Hoog and Papendorf (1976)
P.clavulata Aseptate Broadly ellipsoidal to ± spherical, subspherical, smooth, hyaline On rotten decorticated wood Great Britain Castañeda Ruiz et al. (2002), de Hoog and Papendorf (1976), Mason and Ellis (1953)
P.clematidis Aseptate Obovoidal, rounded at the apex, obtuse and tapering towards base, hyaline, smooth-walled Decaying wood submerged in Lancang River China, Yunnan Province Castañeda Ruiz et al. (2002), Hughes (1958), Luo et al. (2018)
P.curvata Aseptate Smooth, thin-walled, hyaline, clavate to obovoid and pointed at base, curved, occasionally sickle-shaped Rotten leaves of Parinaricapensis South West Africa de Hoog and Papendorf (1976)
P.dalbergiae Aseptate Solitary, hyaline, smooth, thin-walled, guttulate, subcylindrical to obovoid, tapering towards both ends, apex subobtuse, base with truncate hilum On bark of Dalbergiaarmata South africa, Northern Province Crous et al. (2021)
P.fasciculata Aseptate Ellipsoidal to obovoid, straight, rounded at the apex, obtuse and tapering towards base, hyaline, smooth-walled Decorticated wood of Sambucusnigra Canada, Ontario, Goulbourn Twp Réblová et al. (2016)
P.filiformis - - Decaying wood submerged in freshwater stream Thailand, Sai khu Waterfall Luo et al. (2019)
P.glauca Aseptate Smooth, thin-walled, hyaline, guttuliform to ellipsoidal,with pointed base, occasionally sickle-shaped On rotten wood of Quercus sp. America, Newfield de Hoog and Papendorf (1976)
P.guttulata Aseptate Globose to obovoid, hyaline, smooth-walled, guttulate Decaying wood submerged in Suoluo River China, Guizhou Province Hyde et al. (2018)
P.infrafertilis Aseptate, rarely 1-sepate Conidia falcate,hyaline On dead leaves of Eucalyptus Brazil de Hoog and Papendorf (1976), Sutton and Hodges (1976)
P.loranthacearum - Solitary, hyaline, smooth, fusoidal-ellipsoidal with obtuse ends, straight to falcate, guttulate On twigs of Loranthuseuropaeus Germany Crous et al. (2015)
P.magnifica Aseptate Straight, ellipsoidal to obovo1d, clavate, very pale olivaceous, smooth On Bambusa New Caledonia de Hoog and Papendorf (1976), Deighton (1974)
P.microspora Aseptate Solitary, fusiform, straight, smooth-walled, guttulate, hyaline On decaying wood Thailand, Krabi, Wat ThumSua Hyde et al. (2017)
P.muscariformis 3-sepate Cylindrical-fusiform, subhyaline, smooth On leaves of Tiliacorakenyensis Kenya Castañeda Ruiz et al. (2002), Siboe et al. (1999)
P.pseudoclematidis Aseptate Cylindrical-ovate, straight, hyaline, smooth-walled, guttulate On dead culm of bamboo (Bambusae) Thailand, Chiang Rai Liu et al. (2015)
P.sedimenticola Aseptate, 1-septate Smooth-walled, hyaline, with a pointed base, usually aseptate when attached to the conidiogenous cells, 0–1-septate after release; aseptate conidia, obovoid to ellipsoidal; 1-septate conidia, obovoid, slightly constricted at septum Isolated from surface of marine sediment in intertidal zone China, Shandong Province Cheng et al. (2014)
P.siamensis Aseptate Globose to subglobose, hyaline Saprobic on decaying fruits Thailand, Chiang Mai Province Hyde et al. (2019)
P.sparsa 0-3-septate Fusiform to clavate, conidia straight, ellipsoidal to fusiform, hyaline, not attenuated at the apex On bark of Acerspicatum Saskatchewan de Hoog and Papendorf (1976), Sutton (1973)
P.sparsavar.cubensis 0–1(–4)-septate Fusiform, cylindrical or clavate, hyaline, sometimes slightly curved On dead branch Cuba Mercado-Sierra et al. (1997), Mel’nik (2012)
P.synnematica 0–1-septate Dimorphic, clavate to ellipsoidal, cylindrical to falcate, base narrowly truncate, tip obtuse, variable in size, sometimes constricted near septa, 1–2-guttulate, hyaline, smooth-walled Dead bark of Azadirachtaindica (Meliaceae) India, Maharashtra Boonmee et al. (2021)
P.tuberculata Asepate, rarely 1-sepate Conidia fusiform, straight, the apex attenuated, hyaline, smooth, guttulate On Labiatae Malawi Castañeda Ruiz et al. (2002), de Hoog and Papendorf (1976), Sutton (1993)
P.uniseptata Mostly with a median septum Two-celled, fusiform, ellipsoid, hyaline, cylindrical or clavate On dead branch Cuba de Hoog and Papendorf (1976), Mercado-Sierra (1984), Mel’nik (2012)
P.vietnamensis A single median septum Fusiform-subcylindrical to short obovoid-subclavate, somewhat attenuated towards the base, apex obtuse, straight to slightly curved, not constricted, hyaline, smooth, often guttulate On bark of a living unidentified liane South Vietnam, Dong Nai Province Mel’nik (2012)

Phaeoisaria predominantly occurs on leaves, barks, decaying wood and twigs of plants from the freshwater or terrestrial habitats (Table 3), while some are isolated from surface marine sediments (e.g. P.sedimenticola, Cheng et al. 2014), some from soil (e.g. P.annesophieae, Crous et al. 2017) and some from saprobic decaying fruits (e.g. P.siameneis, Hyde et al. 2019). Consequently, the habitats of Phaeoisaria are various. In this research, we introduce another lignicolous freshwater fungus, P.laianensis, discovered in China and it is noteworthy that the freshwater in which this species exists has been somewhat polluted. Phaeoisaria is thought to play an important role in nutrient and carbon cycling, biological diversity and ecosystem functioning of freshwater ecosystems, for their ability to decompose lignocellulose in woody litter, softening the wood and releasing nutrients (Bucher et al. 2004, Vijaykrishna et al. 2005, Hyde et al. 2016, Luo et al. 2018). Nonetheless, some Phaeoisaria species are pathogenic to humans, for example, it has been reported that P.clematidis and Phaeoisaria sp. can cause corneal inflammation of the eye (keratitis) (Guarro et al. 2000, Chew et al. 2010) and the former species is saprotrophic, which is similar to P.laianensis. What is the role of P.laianensis in ecosystem functioning? Is this species also pathogenic to humans? Such questions are waiting to be investigated by researchers.

Supplementary Material

XML Treatment for Phaeoisaria laianensis

Acknowledgements

We are grateful to Deng-Mei Fan (Agricultural college, Jiangxi Agricultural University) for very helpful comments on earlier drafts of this manuscript. This study was supported by the National Natural Science Foundation of China (NSFC 32070023 and NSFC 32060014), the Natural Science Foundation of Jiangxi Province (20151BAB214002) and Science and Technology Plan Project of Jiangxi Province (GJJ160417).

Funding Statement

Natural Science Foundation of China (NSFC 32070023 and NSFC 32060014), the Natural Science Foundation of Jiangxi Province (20151BAB214002) and Science and Technology Plan Project of Jiangxi Province (GJJ160417)

Contributor Information

Dian-Ming Hu, Email: hudianming1@163.com.

Zhi-Jun Zhai, Email: zhjzh002@163.com.

References

  1. Boonmee S., Wanasinghe D. N., Calabon M. S., Huanraluek N., Chandrasiri S. K. U., Jones G. E. B., Rossi W., Leonardi M., Singh S. K., Rana S., Singh P. N., Maurya D. K., Lagashetti A. C., Choudhary D., Dai Y. C., Zhao C. L., Mu Y. H., Yuan H. S., He S. H., Phookamsak R., Jiang H. B., Martín M. P., Dueñas M., Telleria M. T., Kałucka I. L., Jagodziński A. M., Liimatainen K., Pereira D. S., Phillips A. J. L., Suwannarach N., Kumla J., Khuna S., Lumyong S., Potter T. B., Shivas R. G., Sparks A. H., Vaghefi N., Abdel-Wahab M. A., Abdel-Aziz F. A., Li G. J., Lin W. F., Singh U., Bhatt R. P., Lee H. B., Nguyen T. T. T., Kirk P. M., Dutta A. K., Acharya K., Sarma V. V., Niranjan M., Rajeshkumar K. C., Ashtekar N., Lad S., Wijayawardene N. N., Bhat D. J., Xu R. J., Wijesinghe S. N., Shen H. W., Luo Z. L., Zhang Z. Y., Sysouphanthong P., Thongklang N., Bao D. F., Aluthmuhandiram J. V. S., Abdollahzadeh J., Javadi A., Dovana F., Usman M., Khalid A. N., Dissanayake A. J., Telagathoti A., Probst M., Peintner U., Garrido-Benavent I., Bóna L., Merényi Z., Boros L., Zoltán B., Stielow J. B., Jiang N., Tian C. M., Shams E., Dehghanizadeh F., Pordel A., Javan-Nikkhah M., Denchev T. T., Denchev C. M., Kemler M., Begerow D., Deng C. Y., Harrower E., Bozorov T., Kholmuradova T., Gafforov Y., Abdurazakov A., Xu J. C., Mortimer P. E., Ren G. C., Jeewon R., Maharachchikumbura S. S. N., Phukhamsakda C., Mapook A., Hyde K. D. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity. 2021;111:1–335. doi: 10.1007/s13225-021-00489-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bucher V. V. C., Pointing S. B., Hyde K. D., Reddy C. A. Production of wood decay enzymes, loss of mass, and lignin solubilization in wood by diverse tropical freshwater fungi. Microbial Ecology. 2004;48:331–337. doi: 10.1007/s00248-003-0132-x. [DOI] [PubMed] [Google Scholar]
  3. Castañeda Ruiz R. F., Velasquez S., Cano J., Saikawa M., Guarro J. Phaeoisariaaguilerae anam. sp. nov. from submerged wood in Cuba with notes and reflections in the genus Phaeoisaria. Cryptogamie Mycologie. 2002;23(1):9–18. [Google Scholar]
  4. Cheng X., Li W., Zhang T. A new species of Phaeoisaria from intertidal marine sediment collected in Weihai, China. Mycotaxon. 2014;127(1):17–24. doi: 10.5248/127.17. [DOI] [Google Scholar]
  5. Chew H. F., Jungkind D. L., Mah D. Y., Raber I. M., Toll A. D., MJ Tokarczyk, Cohen E. J. Post-traumatic fungal keratitis caused by Carpoligna sp. Cornea. 2010;29(4):449–452. doi: 10.1097/ICO.0b013e3181af3954. [DOI] [PubMed] [Google Scholar]
  6. Crous P. W., Schumacher R. K., Wingfield M. J., Lombard L., Giraldo A., Christensen M., Gardiennet A., Nakashima C., Pereira O. L., AJ Smith, Groenewald J. Z. Fungal systematics and evolution: FUSE 1. Sydowia. 2015;67:81–118. doi: 10.12905/0380.sydowia67-2015-0081. [DOI] [Google Scholar]
  7. Crous P. W., Wingfield M. J., Burgess T. I., Carnegie A. J., Hardy G. E.S.J., Smith D., Summerell B. A., Cano-Lira J. F., Guarro J., Houbraken J., Lombard L., Martín M. P., Sandoval-Denis M., Alexandrova A. V., Barnes C. W., Baseia I. G., Bezerra J. D.P., Guarnaccia V., May T. W., Hernández-Restrepo M., Stchigel A. M., Miller A. N., Ordoñez M. E., Abreu V. P., Accioly T., Agnello C., Agustincolmn A., Albuquerque C. C., Alfredo D. S., Alvarado P., Araújo-Magalhães G. R., Arauzo S., Atkinson T., Barili A., Barreto R. W., Bezerra J. L., Cabral T. S., Camello R. F., Cruz R. H.S.F., Daniëls P. P., Da Silva B. D.B., De Almeida D. A.C., De Carvalho Júnior A. A., Decock C. A., Delgat L., Denman S., Dimitrov R. A., Edwards J., Fedosova A. G., Ferreira R. J., Firmino A. L., Flores J. A., García D., Gené J., Giraldo A., Góis J. S., Gomes A. A.M., Gonçalves C. M., Gouliamova D. E., Groenewald M., Guéorguiev B. V., Guevara-Suarez M., Gusmão L. F.P., Hosaka K., Hubka V., Huhndorf S. M., Jadan M., Jurjević Ž, B Kraak, V Kučera, TKA Kušan, I Lacerda, Lamlertthon S., Lisboa W. S., Loizides M., Luangsa-Ard J. J., Lysková P., Maccormack W. P., Macedo D. M., Machado A. R., Malysheva E. F., Marinho P., Matočec N., Meijer M., Mešić A., Mongkolsamrit S., Moreira K. A., Morozova O. V., Nair K. U., Nakamura N., Noisripoom W., Olariaga I., Oliveira R. J.V., Paiva L. M., Pawar P., Pereira O. L., Peterson S. W., Prieto M., Rodríguez-Andrade E., Rojodeblas C., Roy M., Santos E. S., Sharma R., Silva G. A., Souza-Motta C. M., Takeuchi-Kaneko Y., Tanaka C., Thakur A., Smith M. T., Tkalčec Z., Valenzuela-Lopez N., Vanderkleij P., Verbeken A., Viana M. G., Wang X. W., Groenewald J. Z. Fungal Planet description sheets: 625-715. Persoonia: Molecular Phylogeny and Evolution of Fungi. 2017;39(1):270–467. doi: 10.3767/persoonia.2017.39.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crous P. W., Osieck E. R., Jurjević Ž., Boers J., Iperen A. L., Starink-Willemse M., Dima B., Balashov S., Bulgakov T. S., Johnston P. R., Morozova O. V., Pinruan U., Sommai S., Alvarado P., Decock C. A., Lebel T., McMullan-Fisher S., Moreno G., Shivas R. G., Zhao L., Abdollahzadeh J., Abrinbana M., Ageev D. V., Akhmetova G., Alexandrova A. V., Altés A., Amaral A. G.G., Angelini C., Antonín V., Arenas F., Asselman P., Badali F., Baghela A., Bañares A., Barreto R. W., Baseia I. G., Bellanger J. M., Berraf-Tebbal A., Biketova A. Yu., Bukharova N. V., Burgess T. I., Cabero J., Câmara M. P.S., Cano-Lira J. F., Ceryngier P., Chávez R., Cowan D. A., de Lima A. F., Oliveira R. L., Denman S., Dang Q. N., Dovana F., Duarte I. G., Eichmeier A., Erhard A., Esteve-Raventós F., Fellin A., Ferisin G., Ferreira R. J., Ferrer A., Finy P., Gaya E., Geering A. D.W., Gil-Durán C., Glässnerová K., Glushakova A. M., Gramaje D., Guard F. E., Guarnizo A. L., Haelewaters D., Halling R. E., Hill R., Hirooka Y., Hubka V., Iliushin V. A., Ivanova D. D., Ivanushkina N. E., Jangsantear P., Justo A., Kachalkin A. V., Kato S., Khamsuntorn P., Kirtsideli I. Y., Knapp D. G., Kochkina G. A., Koukol O., Kovács G. M., Kruse J., Kumar T. K. A., Kušan I., Læssøe T., Larsson E., Lebeuf R., Levicán G., M Loizides, P Marinho, JJ Luangsa-ard, EG Lukina, Magaña-Dueñas V., Maggs-Kölling G., Malysheva E. F., Malysheva V. F., Martín B., Martín M. P., Matočec N., McTaggart A. R., Mehrabi-Koushki M., Mešić A., Miller A. N., Mironova P., Moreau P. A., Morte A., Müller K., Nagy L. G., Nanu S., Navarro-Ródenas A., Nel W. J., Nguyen T. H., Nóbrega T. F., Noordeloos M. E., Olariaga I., Overton B. E., Ozerskaya A. M., Palani P., Pancorbo F., Papp V., Pawłowska J., Pham T. Q., Phosri C., Popov E. S., Portugal A., Pošta A., Reschke K., Reul M., Ricci G. M., Rodríguez A., Romanowski J., Ruchikachorn N., Saar I., Safi A., Sakolrak B., Salzmann F., Sandoval-Denis M., Sangwichein E., Sanhueza L., Sato T., Sastoque A., Senn-Irlet B., Shibata A., Siepe K., Somrithipol S., Spetik M., Sridhar P., Stchigel A. M., Stuskova K., Suwannasai N., Tan Y. P., Thangavel R., Tiago I., Tiwari S., Tkalčec Z., Tomashevskaya M. A., Tonegawa C., Tran H. X., Tran N. T., Trovão J., Trubitsyn V. E., Van Wyk J., Vieira W. A.S., Vila J., Visagie C. M., Vizzini A., Volobuev S. V., Vu D. T., Wangsawat N., Yaguchi T., Ercole E., Ferreira B. W., de Souza A. P., Vieira B. S., Groenewald J. Z. Fungal Planet description sheets: 1284-1382. Persoonia: Molecular Phylogeny and Evolution of Fungi. 2021;47(1):178–374. doi: 10.3767/persoonia.2021.47.06. [DOI] [Google Scholar]
  9. de Hoog G. S., Papendorf M. C. The genus Phaeoisaria. Persoonia: Molecular Phylogeny and Evolution of Fungi. 1976;8(4):407–414. [Google Scholar]
  10. Deighton F. C. Four synnematous hyphomycetes. Transactions of British Mycological Society. 1974;62:243–252. doi: 10.1016/S0007-1536(74)80033-1. [DOI] [Google Scholar]
  11. Doyle J. J., Doyle J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11–15. [Google Scholar]
  12. Guarro J., Vieira L. A., de Freitas D., Gené J., Zaror L., Hofling-Lima A. L., Fischman O., Zorat-Yu C., Figueras M. J. Phaeoisariaclematidis as a cause of keratomycosis. Journal of Clinical Microbiology. 2000;38(6):2434–2437. doi: 10.1128/JCM.38.6.2434-2437.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Höhnel F. V. Fragmente zur Mykologie (VI. Mitteilung, Nr. 182 bis 288) Sitzungsberichten der Kaiserliche Akademie der Wissenschaften in Wien Mathematische-Naturwissenschaftliche Klasse, Abt I. 1909;118(182):275–452. [Google Scholar]
  14. Hopple J. S.J., Vilgalys R. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: Divergent domains, outgroups, and monophyly. Molecular Phylogenetics and Evolution. 1999;13(1):1–19. doi: 10.1006/mpev.1999.0634. [DOI] [PubMed] [Google Scholar]
  15. Hughes S. J. Revisiones hyphomycetum aliquot cum appendice de nominibus rejiciendis. Canadian Journal of Botany. 1958;36(6):727–836. doi: 10.1139/b58-067. [DOI] [Google Scholar]
  16. Hyde K. D., Fryar S., Tian Q., Bahkali A. H., Xu J. C. Lignicolous freshwater fungi along a north-south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecology. 2016;19:190–200. doi: 10.1016/j.funeco.2015.07.002. [DOI] [Google Scholar]
  17. Hyde K. D., Norphanphoun C., Abreu V. P., Bazzicalupo A. L., Chethana K. W. Thilini, Clericuzio M., Dayarathne M. C., Dissanayake A. J., Ekanayaka A. H., He M. Q., Hongsanan S., Huang S. K., Jayasiri S. C., Jayawardena R. S., Karunarathna A., Konta S., Kušan I., Lee H. G., Li J., Lin CG., Liu N. G., Lu Y. Z., Luo Z. L., Manawasinghe I. S., Mapook A., Perera R. H., Phookamsak R., Phukhamsakda C., Siedlecki I., Soares A. M., Tennakoon D. S., Tian Q., Tibpromma S., Wanasinghe D. N., Xiao Y. P., Yang J., Zeng X. Y., Abdel-Aziz F. A., Li W. J., Senanayake I. C., Shang Q. J., Daranagama D. A., de Silva N. I., Thambugala K. M., Abdel-Wahab M. A., Bahkali A. H., Berbee M. L., Boonmee S., Bhat D. J., Bulgakov T. S., Buyck B., Camporesi E., Castañeda-Ruiz R. F., Chomnunti P., Doilom M., Dovana F., Gibertoni T. B., Jadan M., Jeewon R., Jones E. B.G., Kang J. C., Karunarathna S. C., Lim Y. W., Liu J. K., Liu Z. Y., Plautz H. L., Lumyong S., Maharachchikumbura S. S.N., Matočec N., McKenzie E. H.C., Mešić A., Miller D., Pawłowska J., Pereira O. L., Promputtha I., Romero A. I., Ryvarden L., Su H. Y., Suetrong S., Tkalčec Z., Vizzini A., Wen T. C., Wisitrassameewong K., Wrzosek M., Xu J. C., Zhao Q., Zhao R. L., Mortimer P. E. Fungal diversity notes 603-708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity. 2017;87(1):1–235. doi: 10.1007/s13225-017-0391-3. [DOI] [Google Scholar]
  18. Hyde K. D., Chaiwan N., Norphanphoun C., Boonmee S., Camporesi E., Chethana K. W.T., Dayarathne M. C., Silva N. I., Dissanayake A. J., Ekanayaka A. H., Hongsanan S., Huang S. K., Jayasiri S. C., Jayawardena R. S., Jiang H. B., Karunarathna A., Lin C. G., Liu J. K., Liu N. G., Lu Y. Z., Luo Z. L., Maharachchimbura S. S.N., Manawasinghe I. S., Pem D., Perera R. H., Phukhamsakda C., Samarakoon M. C., Senwanna C., Shang Q. J., Tennakoon D. S., Thambugala K. M., Tibpromma S., Wanasinghe D. N., Xiao Y. P., Yang J., Zeng X. Y., Zhang J. F., Zhang S. N., Bulgakov T. S., Bhat D. J., Cheewangkoon R., Goh T. K., Jones E. B.G., Kang J. C., Jeewon R., Liu Z. Y., Lumyong S., Kuo C. H., McKenzie E. H.C., Wen T. C., Yan J., Zhao Q. Mycosphere notes 169-224. Mycosphere. 2018;9(2):271–430. doi: 10.5943/mycosphere/9/2/8. [DOI] [Google Scholar]
  19. Hyde K. D., Tennakoon D. S., Jeewon R., Bhat D. J., Maharachchikumbura S. S. N., Rossi W., Leonardi M., Lee H. B., Mun H. Y., Houbraken J., Nguyen T. T. T., Jeon S. J., Frisvad J. C., Wanasinghe D. N., Luücking R., Aptroot A., Cáceres M. E. S., Karunarathna S. C., Hongsanan S., Phookamsak R., de Silva N. I., Thambugala K. M., Jayawardena R. S., Senanayake I. C., Boonmee S., Chen J., Luo Z. L., Phukhamsakda C., Pereira O. L., Abreu V. P., Rosado A. W.C., Bart B., Randrianjohany E., Hofstetter V., Gibertoni T. B., da Silva Soares A. M., Plautz Jr. H. L., Sotão H. M. P., Xavier W. K. S., Bezerra J. D. P., de Oliveira T. G. L., de Souza Motta C. M., Magalhães O. M. C., Bundhun D., Harishchandra D., Manawasinghe I. S., Dong W., Zhang S. N., Bao D. F., Samarakoon M. C., Pem D., Karunarathna A., Lin C. G., Yang J., Perera R. H., Kumar V., Huang S. K., Dayarathne M. C., Ekanayaka A. H., Jayasiri S. C., Xiao Y., Konta S., Niskanen T., Liimatainen K., Dai Y. C., Ji X. H., Tian X. M., Mešić A., Singh S. K., Phutthacharoen K., Cai L., Sorvongxay T., Thiyagaraja V., Norphanphoun C., Chaiwan N., Lu Y. Z., Jiang H. B., Zhang J. F., Abeywickrama P. D., Aluthmuhandiram J. V.S., Brahmanage R. S., Zeng M., Chethana T., Wei D., Réblová M., Fournier J., Nekvindová J., do Nascimento Barbosa R., dos Santos J. E.F., de Oliveira N. T., Li G. J., Ertz D., Shang Q. J., Phillips A. J. L., Kuo C. H., Camporesi E., Bulgakov T. S., Lumyong S., Jones E. B. G., Chomnunti P., Gentekaki E., Bungartz F., Zeng X. Y., Fryar S., Tkalčec Z., Liang J., Li G., Wen T. C., Singh P. N., Gafforov Y., Promputtha I., Yasanthika E., Goonasekara I. D., Zhao R. L., Zhao Q., Kirk P. M., Liu J. K., Yan J., Mortimer P. E., Xu J. C. Fungal diversity notes 1036-1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity. 2019;96(1):1–242. doi: 10.1007/s13225-019-00429-2. [DOI] [Google Scholar]
  20. Katoh K., Rozewicki J., Yamada K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu J. K., Hyde K. D., Jones E. B. G., Ariyawansa H. A., Bhat D. J., Boonmee S., Maharachchikumbura S. S., McKenzie E. H. C., Phookamsak R., Phukhamsakda C., Shenoy B. D., Abdel-Wahab M. A., Buyck B., Chen J., Chethana K. W. T., Singtripop C., Dai D. Q., Dai Y. C., Daranagama D. A., Dissanayake A. J., Doilom M., D’souza M. J., Fan X. L., Goonasekara I. D., Hirayama K., Hongsanan S., Jayasiri S. C., Jayawardena R. S., Karunarathna S. C., Li W. J., Mapook A., Norphanphoun C., Pang K. L., Perera R. H., Peršoh D., Pinruan U., Senanayake I. C., Somrithipol S., Suetrong S., Tanaka K., Thambugala K. M., Tian Q., Tibpromma S., Udayanga D., Wijayawardene N. N., Wanasinghe D., Wisitrassameewong K., Zeng X. Y., Abdel-Aziz F. A., Adamčík S., Bahkali A. H., Boonyuen N., Bulgakov T. S., Callac P., Chomnunti P., Greiner K., Hashimoto A., Hofstetter V., Kang J. C., Lewis D., Li X. H., Liu X. Z., Liu Z. Y., Matsumura M., Mortimer P. E., Rambold G., Randrianjohany E., Sato G., Sriindrasutdhi V., Tian C. M., Verbeken A., Brackel W. V., Wang Y., Wen T. C., Xu J. C., Yan J. Y., Zhao R. L., Camporesi E. Fungal diversity notes 1-110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity. 2015;72:1–197. doi: 10.1007/s13225-015-0324-y. [DOI] [Google Scholar]
  22. Li X. H., Liu Y. L., Song H. Y., Hu D. M., Gao Y., Hu H. J., Zhou J. P. Sporidesmiellalignicola sp. nov., a new hyphomycetous fungus from freshwater habitats in China. Biodiversity Data Journal. 2021;9:77414. doi: 10.3897/BDJ.9.e77414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luo Z. L., Hyde K. D., Bhat D. J., Maharachchikumbura S. S.N., Bao D. F., Li W. L., Su X. J., Yang X. Y. Morphological and molecular taxonomy of novel species Pleurotheciaceae from freshwater habitats in Yunnan, China. Mycological Progress. 2018;17(5):511–530. doi: 10.1007/s11557-018-1377-6. [DOI] [Google Scholar]
  24. Luo Z. L., Hyde K. D., Liu J. K., Maharachchikumbura S. S.N., Jeewon R., Bao D. F., Bhat D. J., Lin C. G., Li W. L., Yang J., Liu N. G., Lu Y. Z., Jaya-wardena R. S., Li J. F., Su H. Y. Freshwater sordariomycetes. Fungal Diversity. 2019;99:451–660. doi: 10.1007/s13225-019-00438-1. [DOI] [Google Scholar]
  25. Mason E. W., Ellis M. B. British species of Periconia. Mycological Paper. 1953;56:1–127. [Google Scholar]
  26. Mel’nik V. A. Phaeoisariavietnamensis sp. nov. and P.clematidis (hyphomycetes) from Vietnam. Mycosphere. 2012;3(6):957–960. doi: 10.5943/mycosphere/3/6/10. [DOI] [Google Scholar]
  27. Mercado-Sierra A. Nuevas especis de Deightoniella, Phaeoisaria, Sporidesmium, Y Taeniolella (Hyphomycetes) de Cuba. Acta Botánica Cubana. 1984;21:1–10. [Google Scholar]
  28. Mercado-Sierra A., Figueras M. J., Gene J. New or rare hyphomycetes from Cuba Ⅷ. Species of Lylea, Phaeisaria, Arxiella, Graphium, Periconia, and Ramichloridium. Mycotaxon. 1997;63:369–375. [Google Scholar]
  29. Rambaut A. FigTree v1.4.4: Tree figure drawing tool. https://github.com/rambaut/figtree/releases 2018
  30. Réblová M., Seifert K. A., Fournier J., Štěpánek V. Newly recognized lineages of perithecial ascomycetes: the new orders Conioscyphales and Pleurotheciales. Persoonia: Molecular Phylogeny and Evolution of Fungi. 2016;37(1):57–81. doi: 10.3767/003158516X689819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Siboe G. M., Kipk P. M., Cannon P. F. New dematiaceous hyphomycetes from Kenyan rare plants. Mycotaxon. 1999;73:283–302. [Google Scholar]
  32. Stamatakis A., Alachiotis N. Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics. 2010;26(12):132–139. doi: 10.1093/bioinformatics/btq205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sutton B. C. Hyphomycetes from Manitoba and Saskatchewan, Canada. Mycological Papers. 1973;132:1–143. [Google Scholar]
  34. Sutton B. C., Hodges C. S. Eucalyptus micofungi. Microdochium and Phaeoisaria species from Brazil. Nova Hedwigia. 1976;27:215–222. [Google Scholar]
  35. Sutton B. C. Mitosporic fungi from Malawi. Mycological Papers. 1993;167:1–93. [Google Scholar]
  36. Vijaykrishna D., Jeewon R., Hyde K. D. Fusoidisporaaquatica: a new freshwater ascomycete from Hong Kong based on morphology and phylogeny inferred from rDNA gene sequences. Sydowia. 2005;57(2):267–280. [Google Scholar]
  37. White T. J., Bruns T., Lee S. J.W.T., Taylor J. In: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Innis M., Gelfand D., Shinsky J., White T., editors. Academic Press; 1990. PCR protocols: a guide to methods and applications. Academic Press, New York. [DOI] [Google Scholar]
  38. Zhai Z. J., Yan J. Q., Li W. W., Gao Y., Hu H. J., Zhou J. P., Song H. Y., Hu D. M. Three novel species of Distoseptispora (Distoseptisporaceae) isolated from bamboo in Jiangxi Province, China. MycoKeys. 2022;88:35–54. doi: 10.3897/mycokeys.88.79346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang D., Gao F., Jakovlić I., Zou H., Zhang J., Li W. X., Wang G. T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources. 2020;20(1):348–355. doi: 10.1111/1755-0998.13096. [DOI] [PubMed] [Google Scholar]
  40. Zhaxybayeva O., Gogarten J. P. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC genomics. 2002;3(1):1–15. doi: 10.1186/1471-2164-3-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

XML Treatment for Phaeoisaria laianensis

Articles from Biodiversity Data Journal are provided here courtesy of Pensoft Publishers

RESOURCES