Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Jan 16;39(1):42–60. doi: 10.1007/s40242-023-2334-8

Construction and Application of DNAzyme-based Nanodevices

Bo Wang 1,#, Menghui Wang 1,#, Fangqi Peng 1,#, Xiaoyi Fu 3, Mei Wen 1, Yuyan Shi 1, Mei Chen 2, Guoliang Ke 1,, Xiao-Bing Zhang 1,
PMCID: PMC9841151  PMID: 36687211

Abstract

The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.

graphic file with name 40242_2023_2334_Fig1_HTML.jpg

Keywords: DNAzyme, Nanodevice, Biosensor, Therapy

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22122403, 22274042, and 21890744), the Natural Science Foundation of Hunan Province, China(Nos.2021JJ10012, 2022JJ30121) and the Changsha Municipal Natural Science Foundation, China(No.kq2202145).

Conflicts of Interest

The authors declare no conflicts of interest.

Footnotes

These authors contributed equally to this work.

Contributor Information

Guoliang Ke, Email: glke@hnu.edu.cn.

Xiao-Bing Zhang, Email: xbzhang@hnu.edu.cn.

References

  • [1].Di Z, Zhao J, Chu H, Xue W, Zhao Y, Li L. Adv. Mater. 2019;31:e1901885. doi: 10.1002/adma.201901885. [DOI] [PubMed] [Google Scholar]
  • [2].Shi H, Wang Y, Zheng J, Ning L, Huang Y, Sheng A, Chen T, Xiang Y, Zhu X, Li G. ACS Nano. 2019;13:12840. doi: 10.1021/acsnano.9b05082. [DOI] [PubMed] [Google Scholar]
  • [3].Wang X, Kim G, Chu J L, Song T, Yang Z, Guo W, Shao X, Oelze M L, Li K C, Lu Y. J. Am. Chem. Soc. 2022;144:5812. doi: 10.1021/jacs.1c11543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Wang Z, Song L, Liu Q, Tian R, Shang Y, Liu F, Liu S, Zhao S, Han Z, Sun J, Jiang Q, Ding B. Angew. Chem. Int. Ed. 2021;60:2594. doi: 10.1002/anie.202009842. [DOI] [PubMed] [Google Scholar]
  • [5].Molden T A, Niccum C T, Kolpashchikov D M. Angew. Chem. Int. Ed. 2020;59:21190. doi: 10.1002/anie.202006384. [DOI] [PubMed] [Google Scholar]
  • [6].Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, Liu J, Shang Y, Zhao S, Wu T, Zhang Y, Nie G, Ding B. Nat. Mater. 2021;20:421. doi: 10.1038/s41563-020-0793-6. [DOI] [PubMed] [Google Scholar]
  • [7].Yue L, Wang S, Zhou Z, Willner I. J. Am. Chem. Soc. 2020;142:21577. doi: 10.1021/jacs.0c09891. [DOI] [PubMed] [Google Scholar]
  • [8].Deng J, Liu W, Sun M, Walther A. Angew. Chem. Int. Ed. 2022;61:e202113477. doi: 10.1002/anie.202113477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Du Y, Peng P, Li T. ACS Nano. 2019;13:5778. doi: 10.1021/acsnano.9b01324. [DOI] [PubMed] [Google Scholar]
  • [10].Zhang Q., Xia K., Jiang M., Li Q., Chen W., Han M., Li W., Ke R., Wang F., Zhao Y., Liu Y., Fan C., Gu H., Angew. Chem. Int. Ed., 2022, e202212011 [DOI] [PubMed]
  • [11].Ellington A D, Szostak J W. Nature. 1990;346:818. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
  • [12].Beaudry A A, Joyce G F. Science. 1992;257:635. doi: 10.1126/science.1496376. [DOI] [PubMed] [Google Scholar]
  • [13].Liu J, Cao Z, Lu Y. Chem. Rev. 2009;109:1948. doi: 10.1021/cr030183i. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Breaker R R, Joyce G F. Chem. Bio. 1994;1:223. doi: 10.1016/1074-5521(94)90014-0. [DOI] [PubMed] [Google Scholar]
  • [15].Lu L M, Zhang X B, Kong R M, Yang B, Tan W. J. Am. Chem. Soc. 2011;133:11686. doi: 10.1021/ja203693b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Santoro S W, Joyce G F, Sakthivel K, Gramatikova S, Barbas C F. J. Am. Chem. Soc. 2000;122:2433. doi: 10.1021/ja993688s. [DOI] [PubMed] [Google Scholar]
  • [17].Santoro S W, Joyce G F. Proc. Natl. Acad. Sci. USA. 1997;94:4262. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Li J, Zheng W, Kwon A H, Lu Y. Nucleic Acids Res. 2000;28:481. doi: 10.1093/nar/28.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Zhang X B, Wang Z, Xing H, Xiang Y, Lu Y. Anal. Chem. 2010;82:5005. doi: 10.1021/ac1009047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Elbaz J, Shlyahovsky B, Willner I. Chem. Comm. 2008;13:1569. doi: 10.1039/b716774a. [DOI] [PubMed] [Google Scholar]
  • [21].Zhao D, Chang D, Zhang Q, Chang Y, Liu B, Sun C, Li Z, Dong C, Liu M, Li Y. J. Am. Chem. Soc. 2021;143:15084. doi: 10.1021/jacs.1c04925. [DOI] [PubMed] [Google Scholar]
  • [22].Yang Y, Zhu W, Feng L, Chao Y, Yi X, Dong Z, Yang K, Tan W, Liu Z, Chen M. Nano Lett. 2018;18:6867. doi: 10.1021/acs.nanolett.8b02732. [DOI] [PubMed] [Google Scholar]
  • [23].Wang J, Wang H, Wang H, He S, Li R, Deng Z, Liu X, Wang F. ACS Nano. 2019;13:5852. doi: 10.1021/acsnano.9b01589. [DOI] [PubMed] [Google Scholar]
  • [24].Wang J, Yu S, Wu Q, Gong X, He S, Shang J, Liu X, Wang F. Angew. Chem. Int. Ed. 2021;60:10766. doi: 10.1002/anie.202101474. [DOI] [PubMed] [Google Scholar]
  • [25].Wang H, Chen Y, Wang H, Liu X, Zhou X, Wang F. Angew. Chem. Int. Ed. 2019;58:7380. doi: 10.1002/anie.201902714. [DOI] [PubMed] [Google Scholar]
  • [26].Wang Q, Tan K, Wang H, Shang J, Wan Y, Liu X, Weng X, Wang F. J. Am. Chem. Soc. 2021;143:6895. doi: 10.1021/jacs.1c00570. [DOI] [PubMed] [Google Scholar]
  • [27].Wang Y, Nguyen K, Spitale R C, Chaput J C. Nat. Chem. 2021;13:319. doi: 10.1038/s41557-021-00645-x. [DOI] [PubMed] [Google Scholar]
  • [28].Wang Z, Niu J, Zhao C, Wang X, Ren J, Qu X. Angew. Chem. Int. Ed. 2021;60:12431. doi: 10.1002/anie.202016442. [DOI] [PubMed] [Google Scholar]
  • [29].Zhao H, Zhang Z, Zuo D, Li L, Li F, Yang D. Nano Lett. 2021;21:5377. doi: 10.1021/acs.nanolett.1c01727. [DOI] [PubMed] [Google Scholar]
  • [30].Carmi N, Balkhi S R, Breaker R R. Proc. Natl. Acad. Sci. USA. 1998;95:2233. doi: 10.1073/pnas.95.5.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Purtha W E, Coppins R L, Smalley M K, Silverman S K. J. Am. Chem. Soc. 2005;127:13124. doi: 10.1021/ja0533702. [DOI] [PubMed] [Google Scholar]
  • [32].Lu C H, Wang F, Willner I. J. Am. Chem. Soc. 2012;134:10651. doi: 10.1021/ja3037838. [DOI] [PubMed] [Google Scholar]
  • [33].Cuenoud B, Szostak J W. Nature. 1995;375:611. doi: 10.1038/375611a0. [DOI] [PubMed] [Google Scholar]
  • [34].Li Y, Breaker R R. Proc. Natl. Acad. Sci. USA. 1999;96:2746. doi: 10.1073/pnas.96.6.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Chandrasekar J, Silverman S K. Proc. Natl. Acad. Sci. USA. 2013;110:5315. doi: 10.1073/pnas.1221946110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Camden A J, Walsh S M, Suk S H, Silverman S K. Biochemistry. 2016;55:2671. doi: 10.1021/acs.biochem.6b00151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Lyu M, Kong L, Yang Z, Wu Y, McGhee C E, Lu Y. J. Am. Chem. Soc. 2021;143:9724. doi: 10.1021/jacs.1c03129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Zimmermann A C, White I M, Kahn J D. Talanta. 2020;211:120709. doi: 10.1016/j.talanta.2019.120709. [DOI] [PubMed] [Google Scholar]
  • [39].Jimenez R M, Polanco J A, Luptak A. Trends Biochem. Sci. 2015;40:648. doi: 10.1016/j.tibs.2015.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Santoro S W, Joyce G F. Biochemistry. 1998;37:13330. doi: 10.1021/bi9812221. [DOI] [PubMed] [Google Scholar]
  • [41].Schubert S, Gul D C, Grunert H P, Zeichhardt H, Erdmann V A, Kurreck J. Nucleic Acids Res. 2003;31:5982. doi: 10.1093/nar/gkg791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [42].Breaker R R, Joyce G F. Chem. Bio. 1995;2:655. doi: 10.1016/1074-5521(95)90028-4. [DOI] [PubMed] [Google Scholar]
  • [43].Li J, Lu Y. J. Am. Chem. Soc. 2000;122:10466. doi: 10.1021/ja0021316. [DOI] [Google Scholar]
  • [44].Torabi S F, Wu P, McGhee C E, Chen L, Hwang K, Zheng N, Cheng J, Lu Y. Proc. Natl. Acad. Sci. USA. 2015;112:5903. doi: 10.1073/pnas.1420361112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Zhou W, Zhang Y, Huang P J, Ding J, Liu J. Nucleic Acids Res. 2016;44:354. doi: 10.1093/nar/gkv1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Gellert M, Lipsett M N, Davies D R. Proc. Natl. Acad. Sci. USA. 1962;48:2013. doi: 10.1073/pnas.48.12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Kosman J, Juskowiak B. Anal. Chim. Acta. 2011;707:7. doi: 10.1016/j.aca.2011.08.050. [DOI] [PubMed] [Google Scholar]
  • [48].Li Y, Sen D. Biochemistry. 1997;36:5589. doi: 10.1021/bi962694n. [DOI] [PubMed] [Google Scholar]
  • [49].Travascio P, Li Y, Sen D. Chem. Biol. 1998;5:505. doi: 10.1016/S1074-5521(98)90006-0. [DOI] [PubMed] [Google Scholar]
  • [50].Gong L, Zhao Z, Lv Y F, Huan S Y, Fu T, Zhang X B, Shen G L, Yu R Q. Chem. Comm. 2015;51:979. doi: 10.1039/C4CC06855F. [DOI] [PubMed] [Google Scholar]
  • [51].Stadlbauer P, Islam B, Otyepka M, Chen J, Monchaud D, Zhou J, Mergny J-L, Šponer J. J. Chem. Theory Comput. 2021;17:1883. doi: 10.1021/acs.jctc.0c01176. [DOI] [PubMed] [Google Scholar]
  • [52].Cheng X, Liu X, Bing T, Cao Z, Shangguan D. Biochemistry. 2009;48:7817. doi: 10.1021/bi9006786. [DOI] [PubMed] [Google Scholar]
  • [53].Kong D M, Wu J, Wang N, Yang W, Shen H X. Talanta. 2009;80:459. doi: 10.1016/j.talanta.2009.07.010. [DOI] [PubMed] [Google Scholar]
  • [54].Kong D M, Yang W, Wu J, Li C X, Shen H X. Analyst. 2010;135:321. doi: 10.1039/B920293E. [DOI] [PubMed] [Google Scholar]
  • [55].Kong D M, Xu J, Shen H X. Anal. Chem. 2010;82:6148. doi: 10.1021/ac100940v. [DOI] [PubMed] [Google Scholar]
  • [56].Stefan L, Denat F, Monchaud D. Nucleic Acids Res. 2012;40:8759. doi: 10.1093/nar/gks581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].Stefan L, Denat F, Monchaud D. J. Am. Chem. Soc. 2011;133:20405. doi: 10.1021/ja208145d. [DOI] [PubMed] [Google Scholar]
  • [58].Qi C, Zhang N, Yan J L, Liu X J, Bing T, Mei H C, Shangguan D H. RSC Adv. 2014;4:1441. doi: 10.1039/C3RA45429K. [DOI] [Google Scholar]
  • [59].Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S. Nucleic Acids Res. 2016;44:7373. doi: 10.1093/nar/gkw634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Albada H B, Golub E, Willner I. Chem. Sci. 2016;7:3092. doi: 10.1039/C5SC04832J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61].Wang Z G, Wang H, Liu Q, Duan F Y, Shi X H, Ding B Q. ACS Catal. 2018;8:7016. doi: 10.1021/acscatal.8b00896. [DOI] [Google Scholar]
  • [62].Xiao L, Zhou Z, Feng M, Tong A, Xiang Y. Bioconjug. Chem. 2016;27:621. doi: 10.1021/acs.bioconjchem.5b00608. [DOI] [PubMed] [Google Scholar]
  • [63].Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I. Chembiochem. 2004;5:374. doi: 10.1002/cbic.200300794. [DOI] [PubMed] [Google Scholar]
  • [64].Wang D, Chai Y, Yuan Y, Yuan R. Anal. Chem. 2019;91:3561. doi: 10.1021/acs.analchem.8b05407. [DOI] [PubMed] [Google Scholar]
  • [65].Shen P, Li W, Liu Y, Ding Z, Deng Y, Zhu X, Jin Y, Li Y, Li J, Zheng T. Anal. Chem. 2017;89:11862. doi: 10.1021/acs.analchem.7b03592. [DOI] [PubMed] [Google Scholar]
  • [66].Ge C, Luo Q, Wang D, Zhao S, Liang X, Yu L, Xing X, Zeng L. Anal. Chem. 2014;86:6387. doi: 10.1021/ac501739a. [DOI] [PubMed] [Google Scholar]
  • [67].Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng L, Liu Y, Liu Y, He N, Li Z. Small. 2019;15:e1900735. doi: 10.1002/smll.201900735. [DOI] [PubMed] [Google Scholar]
  • [68].Hu Z, Yang J, Xu F, Sun G, Pan X, Xia M, Zhang S, Zhang X. J. Am. Chem. Soc. 2021;143:12361. doi: 10.1021/jacs.1c06370. [DOI] [PubMed] [Google Scholar]
  • [69].Zhang P, Ouyang Y, Willner I. Chem. Sci. 2021;12:4810. doi: 10.1039/D0SC06744J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Zhang R, Wu J, Ao H, Fu J, Qiao B, Wu Q, Ju H. Anal. Chem. 2021;93:9933. doi: 10.1021/acs.analchem.1c02229. [DOI] [PubMed] [Google Scholar]
  • [71].Zhu L, Ye J, Yan M, Yu L, Peng Y, Huang J, Yang X. Anal. Chem. 2021;93:2644. doi: 10.1021/acs.analchem.0c04839. [DOI] [PubMed] [Google Scholar]
  • [72].Shin J S, Pierce N A. J. Am. Chem. Soc. 2004;126:10834. doi: 10.1021/ja047543j. [DOI] [PubMed] [Google Scholar]
  • [73].Tian Y, He Y, Chen Y, Yin P, Mao C. Angew. Chem. Int. Ed. 2005;44:4355. doi: 10.1002/anie.200500703. [DOI] [PubMed] [Google Scholar]
  • [74].Cha T G, Pan J, Chen H, Salgado J, Li X, Mao C, Choi J H. Nat. Nanotechnol. 2014;9:39. doi: 10.1038/nnano.2013.257. [DOI] [PubMed] [Google Scholar]
  • [75].Chen J, Luo Z, Sun C, Huang Z, Zhou C, Yin S, Duan Y, Li Y. Trends Analyt. Chem. 2019;120:115626. doi: 10.1016/j.trac.2019.115626. [DOI] [Google Scholar]
  • [76].Liu X, Niazov-Elkan A, Wang F, Willner I. Nano Lett. 2013;13:219. doi: 10.1021/nl303894h. [DOI] [PubMed] [Google Scholar]
  • [77].Zhu L, Liu Q, Yang B, Ju H, Lei J. Anal. Chem. 2018;90:6357. doi: 10.1021/acs.analchem.8b01146. [DOI] [PubMed] [Google Scholar]
  • [78].He J L, Zhang Y, Mei T T, Tang L, Huang S Y, Cao Z. Biosens. Bioelectron. 2019;144:111692. doi: 10.1016/j.bios.2019.111692. [DOI] [PubMed] [Google Scholar]
  • [79].Chai H, Wang M, Zhang C, Tang Y, Miao P. Bioconjug. Chem. 2020;31:764. doi: 10.1021/acs.bioconjchem.9b00861. [DOI] [PubMed] [Google Scholar]
  • [80].Ge J, Zhao Y, Gao X, Li H, Jie G. Anal. Chem. 2019;91:14117. doi: 10.1021/acs.analchem.9b03990. [DOI] [PubMed] [Google Scholar]
  • [81].Yang X, Shi D, Zhu S, Wang B, Zhang X, Wang G. ACS Sens. 2018;3:1368. doi: 10.1021/acssensors.8b00304. [DOI] [PubMed] [Google Scholar]
  • [82].Cai S, Chen M, Liu M, He W, Liu Z, Wu D, Xia Y, Yang H, Chen J. Biosens. Bioelectron. 2016;85:184. doi: 10.1016/j.bios.2016.05.003. [DOI] [PubMed] [Google Scholar]
  • [83].Qing M, Xie S, Cai W, Tang D, Tang Y, Zhang J, Yuan R. Anal. Chem. 2018;90:11439. doi: 10.1021/acs.analchem.8b02555. [DOI] [PubMed] [Google Scholar]
  • [84].Xiong E, Zhen D, Jiang L, Zhou X. Anal. Chem. 2019;91:15317. doi: 10.1021/acs.analchem.9b04987. [DOI] [PubMed] [Google Scholar]
  • [85].Du H, Yang P, Hou X, Hou X D, Chen J B. Microchem. J. 2018;139:260. doi: 10.1016/j.microc.2018.03.004. [DOI] [Google Scholar]
  • [86].Du H, Yang P, Hou X, Zhou R, Hou X, Chen J. Chem. Comm. 2019;55:3610. doi: 10.1039/C9CC01228A. [DOI] [PubMed] [Google Scholar]
  • [87].Zhang H, Xu X, Jiang W. Chem. Sci. 2020;11:7415. doi: 10.1039/D0SC00109K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [88].Yang K, Wang H, Ma N, Zeng M, Luo H, He D. ACS Appl. Mater. Interfaces. 2018;10:44546. doi: 10.1021/acsami.8b16408. [DOI] [PubMed] [Google Scholar]
  • [89].Peng H, Li X F, Zhang H, Le X C. Nat. Commun. 2017;8:14378. doi: 10.1038/ncomms14378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [90].Liu C, Hu Y, Pan Q, Yi J, Zhang J, He M, He M, Chen T, Chu X. Biosens. Bioelectron. 2019;136:31. doi: 10.1016/j.bios.2019.04.031. [DOI] [PubMed] [Google Scholar]
  • [91].Liu C, Hu Y, Pan Q, Yi J, Zhang J, He M, He M, Nie C, Chen T, Chu X. Chem. Comm. 2020;56:3496. doi: 10.1039/D0CC00017E. [DOI] [PubMed] [Google Scholar]
  • [92].Chen K, Huang Q, Fu T, Ke G, Zhao Z, Zhang X, Tan W. Anal. Chem. 2020;92:7404. doi: 10.1021/acs.analchem.0c01134. [DOI] [PubMed] [Google Scholar]
  • [93].Wang J, Wang D X, Tang A N, Kong D M. Anal. Chem. 2019;91:5244. doi: 10.1021/acs.analchem.9b00007. [DOI] [PubMed] [Google Scholar]
  • [94].Yin Y, Chen G, Gong L, Ge K, Pan W, Li N, Machuki J O, Yu Y, Geng D, Dong H, Gao F. Anal. Chem. 2020;92:9247. doi: 10.1021/acs.analchem.0c01592. [DOI] [PubMed] [Google Scholar]
  • [95].Li H, Gao J, Cao L, Xie X, Fan J, Wang H, Wang H H, Nie Z. Angew. Chem. Int. Ed. 2021;60:26001. doi: 10.1002/anie.202114610. [DOI] [PubMed] [Google Scholar]
  • [96].Chen Y, Wang M, Mao C. Angew. Chem. Int. Ed. 2004;43:3554. doi: 10.1002/anie.200453779. [DOI] [PubMed] [Google Scholar]
  • [97].Chen Y, Mao C. J. Am. Chem. Soc. 2004;126:8626. doi: 10.1021/ja047991r. [DOI] [PubMed] [Google Scholar]
  • [98].Chen X Y, Fu X R, Wu Y Y, Jin Y F, Li W. Anal. Methods. 2020;12:1579. doi: 10.1039/D0AY00142B. [DOI] [Google Scholar]
  • [99].Xiong Z, Wang Q, Zhang J, Yun W, Wang X, Ha X, Yang L. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2020;229:118017. doi: 10.1016/j.saa.2019.118017. [DOI] [PubMed] [Google Scholar]
  • [100].He M, He M, Nie C, Yi J, Zhang J, Chen T, Chu X. ACS Appl. Mater. Interfaces. 2021;13:8015. doi: 10.1021/acsami.0c21601. [DOI] [PubMed] [Google Scholar]
  • [101].Hu Y, Wang F, Lu C H, Girsh J, Golub E, Willner I. Chemistry. 2014;20:16203. doi: 10.1002/chem.201404122. [DOI] [PubMed] [Google Scholar]
  • [102].Li Y J, Ding X J, Li D D, Wu H P, Huang W, Ding S J. Anal. Methods. 2019;11:1613. doi: 10.1039/C9AY00061E. [DOI] [Google Scholar]
  • [103].Wen Z B, Liang W B, Zhuo Y, Xiong C Y, Zheng Y N, Yuan R, Chai Y Q. Chem. Comm. 2017;53:7525. doi: 10.1039/C7CC04104G. [DOI] [PubMed] [Google Scholar]
  • [104].Wu Z, Fan H, Satyavolu N S R, Wang W, Lake R, Jiang J H, Lu Y. Angew. Chem. Int. Ed. 2017;56:8721. doi: 10.1002/anie.201703540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [105].Zhang C, Chen J, Sun R, Huang Z, Luo Z, Zhou C, Wu M, Duan Y, Li Y. ACS Sens. 2020;5:2977. doi: 10.1021/acssensors.0c01453. [DOI] [PubMed] [Google Scholar]
  • [106].Quan K, Li J, Wang J, Xie N, Wei Q, Tang J, Yang X, Wang K, Huang J. Chem. Sci. 2019;10:1442. doi: 10.1039/C8SC04887H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [107].Wei J, Wang H, Wu Q, Gong X, Ma K, Liu X, Wang F. Angew. Chem. Int. Ed. 2020;59:5965. doi: 10.1002/anie.201911712. [DOI] [PubMed] [Google Scholar]
  • [108].Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F. Chem. Sci. 2019;10:9597. doi: 10.1039/C9SC03552D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [109].Gong K, Wu Q, Wang H, He S, Shang J, Wang F. Chem. Comm. 2020;56:11410. doi: 10.1039/D0CC05257D. [DOI] [PubMed] [Google Scholar]
  • [110].Zhang D, Ma F, Leng J, Zhang C Y. Chem. Comm. 2018;54:13678. doi: 10.1039/C8CC08553F. [DOI] [PubMed] [Google Scholar]
  • [111].Batule B S, Kim S U, Mun H, Choi C, Shim W B, Kim M G. J. Agric. Food Chem. 2018;66:3003. doi: 10.1021/acs.jafc.7b05289. [DOI] [PubMed] [Google Scholar]
  • [112].Xu J, Qian J, Li H, Wu Z S, Shen W, Jia L. Biosens. Bioelectron. 2016;75:41. doi: 10.1016/j.bios.2015.08.015. [DOI] [PubMed] [Google Scholar]
  • [113].Park Y, Lee C Y, Kang S, Kim H, Park K S, Park H G. Nanotechnology. 2018;29:085501. doi: 10.1088/1361-6528/aaa3a3. [DOI] [PubMed] [Google Scholar]
  • [114].Long Y, Zhou C, Wang C, Cai H, Yin C, Yang Q, Xiao D. Sci. Rep. 2016;6:23949. doi: 10.1038/srep23949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [115].Xiang B, He K, Zhu R, Liu Z, Zeng S, Huang Y, Nie Z, Yao S. ACS Appl. Mater. Interfaces. 2016;8:22801. doi: 10.1021/acsami.6b03572. [DOI] [PubMed] [Google Scholar]
  • [116].Li D, Cheng W, Yan Y, Zhang Y, Yin Y, Ju H, Ding S. Talanta. 2016;146:470. doi: 10.1016/j.talanta.2015.09.010. [DOI] [PubMed] [Google Scholar]
  • [117].Mi L, Sun Y, Shi L, Li T. ACS Appl. Mater. Interfaces. 2020;12:7879. doi: 10.1021/acsami.9b18053. [DOI] [PubMed] [Google Scholar]
  • [118].Ge J, Hu Y, Deng R, Li Z, Zhang K, Shi M, Yang D, Cai R, Tan W. Anal. Chem. 2020;92:13588. doi: 10.1021/acs.analchem.0c03405. [DOI] [PubMed] [Google Scholar]
  • [119].Zhou T, Huang M, Lin J, Huang R, Xing D. Anal. Chem. 2021;93:2038. doi: 10.1021/acs.analchem.0c03708. [DOI] [PubMed] [Google Scholar]
  • [120].Wang X C, Liu W W, Yin B B, Sang Y W, Liu Z P, Dai Y, Duan X Z, Zhang G, Ding S J, Tao Z H. Microchim Acta. 2017;184:1603. doi: 10.1007/s00604-017-2158-7. [DOI] [Google Scholar]
  • [121].Zhou D H, Wu W, Li Q, Pan J F, Chen J H. Anal. Methods. 2019;11:3546. doi: 10.1039/C9AY00822E. [DOI] [Google Scholar]
  • [122].Orbach R, Remacle F, Levine R D, Willner I. Proc. Natl. Acad. Sci. USA. 2012;109:21228. doi: 10.1073/pnas.1219672110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [123].Lilienthal S, Klein M, Orbach R, Willner I, Remacle F, Levine R D. Chem. Sci. 2017;8:2161. doi: 10.1039/C6SC03892A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [124].Zhang J, Lu Y. Angew. Chem. Int. Ed. 2018;57:9702. doi: 10.1002/anie.201804292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [125].Chen F, Bai M, Cao K, Zhao Y, Cao X, Wei J, Wu N, Li J, Wang L, Fan C, Zhao Y. ACS Nano. 2017;11:11908. doi: 10.1021/acsnano.7b06728. [DOI] [PubMed] [Google Scholar]
  • [126].Qian R C, Zhou Z R, Guo W, Wu Y, Yang Z, Lu Y. J. Am. Chem. Soc. 2021;143:5737. doi: 10.1021/jacs.1c00060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [127].Shlyahovsky B, Li Y, Lioubashevski O, Elbaz J, Willner I. ACS Nano. 2009;3:1831. doi: 10.1021/nn900085x. [DOI] [PubMed] [Google Scholar]
  • [128].Zhu J, Zhang L, Li T, Dong S, Wang E. Adv. Mater. 2013;25:2440. doi: 10.1002/adma.201205360. [DOI] [PubMed] [Google Scholar]
  • [129].Chen J, Pan J, Chen S. Chem. Sci. 2018;9:300. doi: 10.1039/C7SC04007E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [130].Chen J, Pan J, Liu C. Anal. Chem. 2020;92:6173. doi: 10.1021/acs.analchem.0c01022. [DOI] [PubMed] [Google Scholar]
  • [131].Haydell M W, Centola M, Adam V, Valero J, Famulok M. J. Am. Chem. Soc. 2018;140:16868. doi: 10.1021/jacs.8b08738. [DOI] [PubMed] [Google Scholar]
  • [132].Bi S, Yan Y, Hao S, Zhang S. Angew. Chem. Int. Ed. 2010;49:4438. doi: 10.1002/anie.201000840. [DOI] [PubMed] [Google Scholar]
  • [133].Zhang C, Yang J, Jiang S, Liu Y, Yan H. Nano Lett. 2016;16:736. doi: 10.1021/acs.nanolett.5b04608. [DOI] [PubMed] [Google Scholar]
  • [134].Wang J, Zhou Z, Li Z, Willner I. Chem. Sci. 2020;12:341. doi: 10.1039/D0SC04108D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [135].Wang J, Li Z, Willner I. Nat. Commun. 2022;13:4414. doi: 10.1038/s41467-022-32148-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [136].Dong J, Ouyang Y, Wang J, O’Hagan M P, Willner I. ACS Nano. 2022;16:6153. doi: 10.1021/acsnano.1c11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [137].Li Z, Wang J, Zhou Z, O’Hagan M P, Willner I. ACS Nano. 2022;16:3625. doi: 10.1021/acsnano.1c06117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [138].Wang S, Yue L, Shpilt Z, Cecconello A, Kahn J S, Lehn J M, Willner I. J. Am. Chem. Soc. 2017;139:9662. doi: 10.1021/jacs.7b04531. [DOI] [PubMed] [Google Scholar]
  • [139].Zhou Z, Yue L, Wang S, Lehn J M, Willner I. J. Am. Chem. Soc. 2018;140:12077. doi: 10.1021/jacs.8b06546. [DOI] [PubMed] [Google Scholar]
  • [140].Yue L, Wang S, Willner I. J. Am. Chem. Soc. 2019;141:16461. doi: 10.1021/jacs.9b08709. [DOI] [PubMed] [Google Scholar]
  • [141].Yue L, Wang S, Lilienthal S, Wulf V, Remacle F, Levine R D, Willner I. J. Am. Chem. Soc. 2018;140:8721. doi: 10.1021/jacs.8b03450. [DOI] [PubMed] [Google Scholar]
  • [142].Wang S, Yue L, Li Z Y, Zhang J, Tian H, Willner I. Angew. Chem. Int. Ed. 2018;57:8105. doi: 10.1002/anie.201803371. [DOI] [PubMed] [Google Scholar]
  • [143].Wang Z, Yang J, Qin G, Zhao C, Ren J, Qu X. Angew. Chem. Int. Ed. 2022;61:e202204291. doi: 10.1002/anie.202204291. [DOI] [PubMed] [Google Scholar]
  • [144].Jerome C A, Hoshika S, Bradley K M, Benner S A, Biondi E. Proc. Natl. Acad. Sci. USA. 2022;119:e2208261119. doi: 10.1073/pnas.2208261119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [145].Chen L, Luo S, Ge Z, Fan C, Yang Y, Li Q, Zhang Y. Nano Lett. 2022;22:1618. doi: 10.1021/acs.nanolett.1c04583. [DOI] [PubMed] [Google Scholar]
  • [146].Zhao X., Wang Y., Jiang W., Wang Q., Li J., Wen Z., Li A., Zhang K., Zhang Z., Shi J., Liu J., Adv. Mater., 2022, 34 [DOI] [PubMed]
  • [147].Li Y, Chang Y, Ma J, Wu Z, Yuan R, Chai Y. Anal. Chem. 2019;91:6127. doi: 10.1021/acs.analchem.9b00690. [DOI] [PubMed] [Google Scholar]
  • [148].Huang Y, Lin C, Luo F, Qiu B, Guo L, Lin Z, Chen G. ACS Sens. 2019;4:2465. doi: 10.1021/acssensors.9b01085. [DOI] [PubMed] [Google Scholar]
  • [149].Si H, Sheng R, Li Q, Feng J, Li L, Tang B. Anal. Chem. 2018;90:8785. doi: 10.1021/acs.analchem.7b05268. [DOI] [PubMed] [Google Scholar]
  • [150].Yang Z, Loh K Y, Chu Y T, Feng R, Satyavolu N S R, Xiong M, Nakamata Huynh S M, Hwang K, Li L, Xing H, Zhang X, Chemla Y R, Gruebele M, Lu Y. J. Am. Chem. Soc. 2018;140:17656. doi: 10.1021/jacs.8b09867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [151].Yang C, Yin X, Huan S Y, Chen L, Hu X X, Xiong M Y, Chen K, Zhang X B. Anal. Chem. 2018;90:3118. doi: 10.1021/acs.analchem.7b04171. [DOI] [PubMed] [Google Scholar]
  • [152].Cui M R, Li X L, Xu J J, Chen H Y. ACS Appl. Mater. Interfaces. 2020;12:13005. doi: 10.1021/acsami.0c00987. [DOI] [PubMed] [Google Scholar]
  • [153].Lin Y, Yang Z, Lake R J, Zheng C, Lu Y. Angew. Chem. Int. Ed. 2019;58:17061. doi: 10.1002/anie.201910343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [154].Xiong M, Yang Z, Lake R J, Li J, Hong S, Fan H, Zhang X B, Lu Y. Angew. Chem. Int. Ed. 2020;59:1891. doi: 10.1002/anie.201912514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [155].Wu Y, Meng H M, Chen J, Jiang K, Yang R, Li Y, Zhang K, Qu L, Zhang X B, Li Z. Chem. Comm. 2020;56:470. doi: 10.1039/C9CC08598J. [DOI] [PubMed] [Google Scholar]
  • [156].Xu Y, Lu Z, Fu X, Yu F, Chen H, Nie Y. Sensors & Actuators B: Chemical. 2020;306:127549. doi: 10.1016/j.snb.2019.127549. [DOI] [Google Scholar]
  • [157].Li C, Xue C, Wang J, Luo M, Shen Z, Wu Z S. Anal. Chem. 2019;91:11529. doi: 10.1021/acs.analchem.9b00860. [DOI] [PubMed] [Google Scholar]
  • [158].Zhang J, He M, Nie C, He M, Pan Q, Liu C, Hu Y, Yi J, Chen T, Chu X. Anal. Chem. 2019;91:9049. doi: 10.1021/acs.analchem.9b01343. [DOI] [PubMed] [Google Scholar]
  • [159].Zhu D, Wei Y, Sun T, Zhang C, Ang L, Su S, Mao X, Li Q, Fan C, Zuo X, Chao J, Wang L. Anal. Chem. 2021;93:2226. doi: 10.1021/acs.analchem.0c04092. [DOI] [PubMed] [Google Scholar]
  • [160].Meng X, Zhang K, Yang F, Dai W, Lu H, Dong H, Zhang X. Anal. Chem. 2020;92:8333. doi: 10.1021/acs.analchem.0c00782. [DOI] [PubMed] [Google Scholar]
  • [161].Zhang T T, Peng Y, Yuan R, Xiang Y. Sensors & Actuators B: Chemcial. 2018;273:70. doi: 10.1016/j.snb.2018.06.043. [DOI] [Google Scholar]
  • [162].Yang Y, Huang J, Yang X, Quan K, Wang H, Ying L, Xie N, Ou M, Wang K. Anal. Chem. 2016;88:5981. doi: 10.1021/acs.analchem.6b00999. [DOI] [PubMed] [Google Scholar]
  • [163].Fu X, Ke G, Peng F, Hu X, Li J, Shi Y, Kong G, Zhang X B, Tan W. Nat. Commun. 2020;11:1518. doi: 10.1038/s41467-020-15297-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [164].Xu Y T, Ruan Y F, Wang H Y, Yu S Y, Yu X D, Zhao W W, Chen H Y, Xu J J. Small. 2021;17:e2100503. doi: 10.1002/smll.202100503. [DOI] [PubMed] [Google Scholar]
  • [165].Li J, Wang S, Jiang B, Xiang Y, Yuan R. Analyst. 2019;144:2430. doi: 10.1039/C9AN00030E. [DOI] [PubMed] [Google Scholar]
  • [166].Li C, Ma J, Shi H, Hu X, Xiang Y, Li Y, Li G. Anal. Chim. Acta. 2018;1041:102. doi: 10.1016/j.aca.2018.08.052. [DOI] [PubMed] [Google Scholar]
  • [167].Liu C, Zhang S, Li X, Xue Q, Jiang W. Analyst. 2019;144:4241. doi: 10.1039/C9AN00589G. [DOI] [PubMed] [Google Scholar]
  • [168].Gao T, Chai W, Shi L, Shi H, Sheng A, Yang J, Li G. Analyst. 2019;144:6365. doi: 10.1039/C9AN01466G. [DOI] [PubMed] [Google Scholar]
  • [169].Zhang R, Wang Y, Qu X, Li S, Zhao Y, Zhang F, Liu S, Huang J, Yu J. Analyst. 2019;144:4995. doi: 10.1039/C9AN00857H. [DOI] [PubMed] [Google Scholar]
  • [170].Wang Y, Yang L, Wang Y, Liu W, Li B, Jin Y. Analyst. 2019;144:5959. doi: 10.1039/C9AN01271K. [DOI] [PubMed] [Google Scholar]
  • [171].Feng C, Wang Z, Chen T, Chen X, Mao D, Zhao J, Li G. Anal. Chem. 2018;90:2810. doi: 10.1021/acs.analchem.7b04924. [DOI] [PubMed] [Google Scholar]
  • [172].Wang W J, Shu M B, Nie A X, Han H Y. Sensors & Actuators B: Chemical. 2020;304:127380. doi: 10.1016/j.snb.2019.127380. [DOI] [Google Scholar]
  • [173].Shiu S C, Cheung Y W, Dirkzwager R M, Liang S, Kinghorn A B, Fraser L A, Tang M S L, Tanner J A. Adv. Biosyst. 2017;1:e1600006. doi: 10.1002/adbi.201600006. [DOI] [PubMed] [Google Scholar]
  • [174].Shang J, Li C, Li F, Wang Q, Yuan B, Wang F. Anal. Chem. 2021;93:2403. doi: 10.1021/acs.analchem.0c04356. [DOI] [PubMed] [Google Scholar]
  • [175].Zhou W, Ding J, Liu J. Theranostics. 2017;7:1010. doi: 10.7150/thno.17736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [176].Taylor A I, Wan C J K, Donde M J, Peak-Chew S-Y, Holliger P. Nat. Chem. 2022;14:1295. doi: 10.1038/s41557-022-01021-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [177].Qian R-C, Zhou Z-R, Wu Y, Yang Z, Guo W, Li D-W, Lu Y. Angew. Chem. Int. Ed. 2022;61:e202210935. doi: 10.1002/anie.202210935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [178].Singh N, Ranjan A, Sur S, Chandra R, Tandon V. J. Biosci. Bioeng. 2012;37:493. doi: 10.1007/s12038-012-9216-4. [DOI] [PubMed] [Google Scholar]
  • [179].Yu L, Chen Y, Lin H, Gao S, Chen H, Shi J. Small. 2018;14:e1800708. doi: 10.1002/smll.201800708. [DOI] [PubMed] [Google Scholar]
  • [180].Bhindi R, Fahmy R G, Lowe H C, Chesterman C N, Dass C R, Cairns M J, Saravolac E G, Sun L Q, Khachigian L M. Am. J. Pathol. 2007;171:1079. doi: 10.2353/ajpath.2007.070120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [181].Kole R, Krainer A R, Altman S. Nat. Rev. Drug Discov. 2012;11:125. doi: 10.1038/nrd3625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [182].Nedorezova D D, Fakhardo A F, Nemirich D V, Bryushkova E A, Kolpashchikov D M. Angew. Chem. Int. Ed. 2019;58:4654. doi: 10.1002/anie.201900829. [DOI] [PubMed] [Google Scholar]
  • [183].Thai H B D, Levi-Acobas F, Yum S Y, Jang G, Hollenstein M, Ahn D R. Chem. Comm. 2018;54:9410. doi: 10.1039/C8CC05721D. [DOI] [PubMed] [Google Scholar]
  • [184].Meng L, Ma W, Lin S, Shi S, Li Y, Lin Y. ACS Appl. Mater. Interfaces. 2019;11:6850. doi: 10.1021/acsami.8b22444. [DOI] [PubMed] [Google Scholar]
  • [185].Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W. Angew. Chem. Int. Ed. 2015;54:4801. doi: 10.1002/anie.201411417. [DOI] [PubMed] [Google Scholar]
  • [186].Yi J T, Pan Q S, Liu C, Hu Y L, Chen T T, Chu X. Nanoscale. 2020;12:10380. doi: 10.1039/D0NR02096F. [DOI] [PubMed] [Google Scholar]
  • [187].Liu S Y, Xu Y, Yang H, Liu L, Zhao M, Yin W, Xu Y T, Huang Y, Tan C, Dai Z, Zhang H, Zhang J P, Chen X M. Adv. Mater. 2021;33:e2100849. doi: 10.1002/adma.202100849. [DOI] [PubMed] [Google Scholar]
  • [188].Jin Y, Wang H, Li X, Zhu H, Sun D, Sun X, Liu H, Zhang Z, Cao L, Gao C, Wang H, Liang X J, Zhang J, Yang X. ACS Appl. Mater. Interfaces. 2020;12:26832. doi: 10.1021/acsami.0c03274. [DOI] [PubMed] [Google Scholar]
  • [189].Henderson B W, Dougherty T J. Photochem. Photobiol. 1992;55:145. doi: 10.1111/j.1751-1097.1992.tb04222.x. [DOI] [PubMed] [Google Scholar]
  • [190].Moan J, Berg K. Photochem. Photobiol. 1992;55:931. doi: 10.1111/j.1751-1097.1992.tb08541.x. [DOI] [PubMed] [Google Scholar]
  • [191].Li W, Ma Q Y, Wu E X. Int. J. Photoenergy. 2012;2012:1. [Google Scholar]
  • [192].Agostinis P, Berg K, Cengel K A, Foster T H, Girotti A W, Gollnick S O, Hahn S M, Hamblin M R, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson B C, Golab J. CA Cancer J. Clin. 2011;61:250. doi: 10.3322/caac.20114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [193].Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Vinh D, Dai H. J. Am. Chem. Soc. 2011;133:6825. doi: 10.1021/ja2010175. [DOI] [PubMed] [Google Scholar]
  • [194].Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z. Biomaterials. 2014;35:9844. doi: 10.1016/j.biomaterials.2014.09.004. [DOI] [PubMed] [Google Scholar]
  • [195].Feng J, Xu Z, Liu F, Zhao Y, Yu W, Pan M, Wang F, Liu X. ACS Nano. 2018;12:12888. doi: 10.1021/acsnano.8b08101. [DOI] [PubMed] [Google Scholar]
  • [196].Lin H, Chen Y, Shi J. Chem. Soc. Rev. 2018;47:1938. doi: 10.1039/C7CS00471K. [DOI] [PubMed] [Google Scholar]
  • [197].Lin L S, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang H H, Chen X. Angew. Chem. Int. Ed. 2018;57:4902. doi: 10.1002/anie.201712027. [DOI] [PubMed] [Google Scholar]
  • [198].Sang Y, Cao F, Li W, Zhang L, You Y, Deng Q, Dong K, Ren J, Qu X. J. Am. Chem. Soc. 2020;142:5177. doi: 10.1021/jacs.9b12873. [DOI] [PubMed] [Google Scholar]
  • [199].Li Y, Zhao P, Gong T, Wang H, Jiang X, Cheng H, Liu Y, Wu Y, Bu W. Angew. Chem. Int. Ed. 2020;59:22537. doi: 10.1002/anie.202003653. [DOI] [PubMed] [Google Scholar]
  • [200].Liu C, Chen Y, Zhao J, Wang Y, Shao Y, Gu Z, Li L, Zhao Y. Angew. Chem. Int. Ed. 2021;60:14324. doi: 10.1002/anie.202101744. [DOI] [PubMed] [Google Scholar]
  • [201].Li X., Hu H., Shi Y., Liu Y., Zhou M., Huang Z., Li J., Ke G., Chen M., Zhang X.-B., Chem. Eur. J., 2023, 10.1002/chem.202203227
  • [202].Zhou M, Yin Y, Shi Y, Huang Z, Shi Y, Chen M, Ke G, Zhang X-B. Chem. Comm. 2022;58:4508. doi: 10.1039/D2CC00960A. [DOI] [PubMed] [Google Scholar]
  • [203].Tu T, Huan S, Ke G, Zhang X. Chem. Res. Chinece Universities. 2022;38(4):912. doi: 10.1007/s40242-021-2186-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [204].Kong G, Xiong M, Liu L, Hu L, Meng H-M, Ke G, Zhang X-B, Tan W. Chem. Soc. Rev. 2021;50:1846. doi: 10.1039/D0CS00255K. [DOI] [PubMed] [Google Scholar]
  • [205].Fu X, Shi Y, Peng F, Zhou M, Yin Y, Tan Y, Chen M, Yin X, Ke G, Zhang X-B. Anal. Chem. 2021;93:4967. doi: 10.1021/acs.analchem.1c00027. [DOI] [PubMed] [Google Scholar]

Articles from Chemical Research in Chinese Universities are provided here courtesy of Nature Publishing Group

RESOURCES