Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Jan 21;43(1):22–34. doi: 10.1007/s11596-022-2652-y

Optimization of the Process for Preparing Bivalent Polysaccharide Conjugates to Develop Multivalent Conjugate Vaccines against Streptococcus pneumoniae or Neisseria meningitidis and Comparison with the Corresponding Licensed Vaccines in Animal Models

Fang Huang 1,2, Xiao-bing Jing 2, Yin-bo Li 2, Qian Wang 2, Si-li Liu 2, Zhi-rong Yang 1, Su Feng 1,
PMCID: PMC9862236  PMID: 36680685

Abstract

Objective

This study aimed to describe, optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides (CPs) with tetanus toxoid (TT) as bivalent conjugates.

Methods

Different molecular weights (MWs) of polysaccharides, activating agents and capsular polysaccharide/protein (CP/Pro) ratio that may influence conjugation and immunogenicity were investigated and optimized to prepare the bivalent conjugate bulk. Using the described method and optimized parameters, a 20-valent pneumococcal conjugate vaccine and a bivalent meningococcal vaccine were developed and their effectiveness was compared to that of corresponding licensed vaccines in rabbit or mouse models.

Results

The immunogenicity test revealed that polysaccharides with lower MWs were better for Pn1-TT-Pn3 and MenA-TT-MenC, while higher MWs were superior for Pn4-TT-Pn14, Pn6A-TT-Pn6B, Pn7F-TT-Pn23F and Pn8-TT-Pn11A. For activating polysaccharides, 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) was superior to cyanogen bromide (CNBr), but for Pn1, Pn3 and MenC, N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDAC) was the most suitable option. For Pn6A-TT-Pn6B and Pn8-TT-Pn11A, rabbits immunized with bivalent conjugates with lower CP/Pro ratios showed significantly stronger CP-specific antibody responses, while for Pn4-TT-Pn14, higher CP/Pro ratio was better. Instead of interfering with the respective immunological activity, our bivalent conjugates usually induced higher IgG titers than their monovalent counterparts.

Conclusion

The result indicated that the described conjugation technique was feasible and efficacious to prepare glycoconjugate vaccines, laying a solid foundation for developing extended-valent multivalent or combined conjugate vaccines without potentially decreased immune function.

Key words: multivalent conjugate vaccine, pneumococcal conjugate vaccine, meningococcal conjugate vaccine, bioconjugation, immunogenicity

Acknowledgments

We would like to thank Ping XUE for technical assistance.

Conflict of Interest Statement

The authors have no conflict of interest.

Contributor Information

Fang Huang, Email: huang_fun@163.com.

Su Feng, Email: fengsu_fs@163.com.

References

  • 1.Pace D. Glycoconjugate vaccines. Expert Opin Biol Ther. 2013;13(1):11–33. doi: 10.1517/14712598.2012.725718. [DOI] [PubMed] [Google Scholar]
  • 2.Principi N, Esposito S. Development of pneumococcal vaccines over the last 10 years. Expert Opin Biol Ther. 2018;18(1):7–17. doi: 10.1080/14712598.2018.1384462. [DOI] [PubMed] [Google Scholar]
  • 3.Masomian M, Ahmad Z, Gew LT, et al. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines. 2020;8(1):132. doi: 10.3390/vaccines8010132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Oligbu G. Higher Valent Pneumococcal Conjugate Vaccines: is it a roller coaster? AIMS Public Health. 2020;7(1):29–32. doi: 10.3934/publichealth.2020004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Pelton SI. The Global Evolution of Meningococcal Epidemiology Following the Introduction of Meningococcal Vaccines. J Adolesc Health. 2016;59(2):S3–S11. doi: 10.1016/j.jadohealth.2016.04.012. [DOI] [PubMed] [Google Scholar]
  • 6.Adamo R, Nilo A, Harfouche C, et al. Investigating the immunodominance of carbohydrate antigens in a bivalent unimolecular glycoconjugate vaccine against serogroup A and C meningococcal disease. Glycoconjugate J. 2014;31(9):637–647. doi: 10.1007/s10719-014-9559-1. [DOI] [PubMed] [Google Scholar]
  • 7.Méndez Y, Chang J, Humpierre AR, et al. Multicomponent polysaccharide—protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chem Sci. 2018;9(9):2581–2588. doi: 10.1039/C7SC05467J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Humpierre AR, Zanuy A, Saenz M, et al. Expanding the Scope of Ugi Multicomponent Bioconjugation to Produce Pneumococcal Multivalent Glycoconjugates as Vaccine Candidates. Bioconjugate Chem. 2020;31(9):2231–2240. doi: 10.1021/acs.bioconjchem.0c00423. [DOI] [PubMed] [Google Scholar]
  • 9.Lees A, Nelson BL, Mond JJ. Activation of soluble polysaccharides with 1-cyano-4-dimethy-laminopyridinium tetrafluoroborate for use in protein—polysaccharide conjugate vaccines and immunological reagents. Vaccine. 1996;14(3):190–198. doi: 10.1016/0264-410X(95)00195-7. [DOI] [PubMed] [Google Scholar]
  • 10.Chu C, Schneerson R, Robbins JB, et al. Further Studies on the Immunogenicity of Haemophilus influenzae Type b and Pneumococcal Type 6A Polysaccharide-Protein Conjugates. Infect Immun. 1983;40(1):245–256. doi: 10.1128/iai.40.1.245-256.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Berti F, Romano MR, Micoli F, et al. Relative stability of meningococcal serogroup A and X polysaccharides. Vaccine. 2012;30(45):6409–6415. doi: 10.1016/j.vaccine.2012.08.021. [DOI] [PubMed] [Google Scholar]
  • 12.Thompson A, Lamberth E, Severs J, et al. Phase 1 trial of a 20-valent pneumococcal conjugate vaccine in healthy adults. Vaccine. 2019;37(42):6201–6207. doi: 10.1016/j.vaccine.2019.08.048. [DOI] [PubMed] [Google Scholar]
  • 13.Scott DA, Komjathy SF, Hu BT, et al. Phase 1 trial of a 13-valent pneumococcal conjugate vaccine in healthy adults. Vaccine. 2007;25(33):6164–6166. doi: 10.1016/j.vaccine.2007.06.004. [DOI] [PubMed] [Google Scholar]
  • 14.Berti F, Micoli F. Improving efficacy of glycoconjugate vaccines: from chemical conjugates to next generation constructs. Curr Opin Immunol. 2020;65:42–49. doi: 10.1016/j.coi.2020.03.015. [DOI] [PubMed] [Google Scholar]
  • 15.Bröker M, Berti F, Costantino P. Factors contributing to the immunogenicity of meningococcal conjugate vaccines. Hum Vacc Immunother. 2016;12(7):1808–1824. doi: 10.1080/21645515.2016.1153206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Biemans R, Micoli F, Romano MR. 8-Glycoconjugate vaccines, production and characterization. In: Rauter AP, BE Christensen, L Somsák, et al., eds. Recent Trends in Carbohydrate Chemistry: Elsevier, 2020:285–313
  • 17.Avci F, Berti F, Dull P, et al. Glycoconjugates: What It Would Take To Master These Well-Known yet Little-Understood Immunogens for Vaccine Development. mSphere. 2019;4(5):e00520–00519. doi: 10.1128/mSphere.00520-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Micoli F, Del Bino L, Alfini R, et al. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines. 2019;18(9):881–895. doi: 10.1080/14760584.2019.1657012. [DOI] [PubMed] [Google Scholar]
  • 19.Rana R, Dalal J, Singh D, et al. Development and characterization of Haemophilus influenzae type b conjugate vaccine prepared using different polysacc-haride chain lengths. Vaccine. 2015;33(23):2646–2654. doi: 10.1016/j.vaccine.2015.04.031. [DOI] [PubMed] [Google Scholar]
  • 20.Lockyer K, Gao F, Francis RJ, et al. Higher mass meningococcal group C-tetanus toxoid vaccines conjugated with carbodiimide correlate with greater immunogenicity. Vaccine. 2020;38(13):2859–2869. doi: 10.1016/j.vaccine.2020.02.012. [DOI] [PubMed] [Google Scholar]
  • 21.Laferriere CA, Sood RK, De Muys JM, et al. Streptococcus pneumoniae Type 14 Polysaccharide-Conjugate Vaccines: Length Stabilization of Opsono-phagocytic Conformational Polysaccharide Epitopes. Infect Immun. 1998;66(6):2441–2446. doi: 10.1128/IAI.66.6.2441-2446.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Laferrière CA, Sood RK, De Muys J-M, et al. The synthesis of Streptococcus pneumoniae polysaccharide-tetanus toxoid conjugates and the effect of chain length on immunogenicity. Vaccine. 1997;15(2):179–186. doi: 10.1016/S0264-410X(96)00148-X. [DOI] [PubMed] [Google Scholar]
  • 23.Kaplonek P, Khan N, Reppe K, et al. Improving vaccines against Streptococcus pneumoniae using synthetic glycans. Proc Natl Acad Sci. 2018;115(52):13353–13358. doi: 10.1073/pnas.1811862115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Schumann B, Reppe K, Kaplonek P, et al. Development of an Efficacious, Semisynthetic Glycoconjugate Vaccine Candidate against Streptococcus pneumoniae Serotype 1. ACS Cent Sci. 2018;4(3):357–361. doi: 10.1021/acscentsci.7b00504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Javed, Mandal PK. Bacterial surface capsular polysaccharides from Streptococcus pneumoniae: A systematic review on structures, syntheses, and glycoconjugate vaccines. Carbohydr Res. 2021;502:108277. doi: 10.1016/j.carres.2021.108277. [DOI] [PubMed] [Google Scholar]
  • 26.Schneerson R, Barrera O, Sutton A, et al. Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J Exp Med. 1980;152(2):361–376. doi: 10.1084/jem.152.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Frasch CE. Preparation of bacterial polysaccharide—protein conjugates: Analytical and manufacturing challenges. Vaccine. 2009;27(46):6468–6470. doi: 10.1016/j.vaccine.2009.06.013. [DOI] [PubMed] [Google Scholar]
  • 28.Jin Z, Chu C, Robbins JB, et al. Preparation and Characterization of Group A Meningococcal Capsular Polysaccharide Conjugates and Evaluation of Their Immunogenicity in Mice. Infect Immun. 2003;71(9):5115–5120. doi: 10.1128/IAI.71.9.5115-5120.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Avci FY, Li X, Tsuji M, et al. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med. 2011;17(12):1602–1609. doi: 10.1038/nm.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Dagan R, Poolman J, Siegrist CA. Glycoconjugate vaccines and immune interference: A review. Vaccine. 2010;28(34):5513–5523. doi: 10.1016/j.vaccine.2010.06.026. [DOI] [PubMed] [Google Scholar]
  • 31.Woodruff MC, Kim EH, Luo W, et al. B Cell Competition for Restricted T Cell Help Suppresses Rare-Epitope Responses. Cell Rep. 2018;25(2):321–327. doi: 10.1016/j.celrep.2018.09.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Fattom A, Cho YH, Chu C, et al. Epitopic overload at the site of injection may result in suppression of the immune response to combined capsular polysaccharide conjugate vaccines. Vaccine. 1999;17(2):126–133. doi: 10.1016/S0264-410X(98)00162-5. [DOI] [PubMed] [Google Scholar]
  • 33.Porro M, Costantino P, Giovannoni F, et al. A molecular model of artificial glycoprotein with predetermined multiple immunodeterminants for gram-positive and gram-negative encapsulated bacteria. Mol Immunol. 1986;23(4):385–391. doi: 10.1016/0161-5890(86)90136-7. [DOI] [PubMed] [Google Scholar]
  • 34.Yeh SH, Gurtman A, Hurley DC, et al. Immunogenicity and Safety of 13-Valent Pneumococcal Conjugate Vaccine in Infants and Toddlers. Pediatrics. 2010;126(3):e493–e505. doi: 10.1542/peds.2009-3027. [DOI] [PubMed] [Google Scholar]
  • 35.Fitz-Patrick D, Young M, Jr, Scott DA, et al. Arandomized phase 1 study of the safety and immunogenicity of 2 novel pneumococcal conjugate vaccines in healthy Japanese adults in the United States. Hum Vacc Immunother. 2021;17(7):1–8. doi: 10.1080/21645515.2020.1863177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Caro-Aguilar I, Indrawati L, Kaufhold RM, et al. Immunogenicity differences of a 15-valent pneumococcal polysaccharide conjugate vaccine (PCV15) based on vaccine dose, route of immunization and mouse strain. Vaccine. 2017;35(6):865–872. doi: 10.1016/j.vaccine.2016.12.055. [DOI] [PubMed] [Google Scholar]

Articles from Current Medical Science are provided here courtesy of Nature Publishing Group

RESOURCES