Skip to main content
Journal of Personalized Medicine logoLink to Journal of Personalized Medicine
. 2022 Dec 22;13(1):14. doi: 10.3390/jpm13010014

Genetic Predictors of the Development of Complications after Coronary Stenting

Dana Taizhanova 1, Akerke Kalimbetova 1,*, Roza Bodaubay 1, Aliya Toleuova 1, Rakhima Toiynbekova 1, Zhazira Beysenbekova 1, Olga Visternichan 1, Zauresh Tauesheva 1, Irina Kadyrova 1, Dmitriy Babenko 1, Lyudmila Akhmaltdinova 1, Svetlana Kolesnichenko 1, Yevgeniya Kolesnikova 1, Olga V Avdienko 2, Ainur Akilzhanova 3, Grigorios T Gerotziafas 4
Editor: Prasanth Puthanveetil
PMCID: PMC9863814  PMID: 36675675

Abstract

Due to the fact that there are scientific discussions about the significance of gene polymorphisms in the risk of developing cardiovascular complications after a percutaneous coronary intervention, it is of interest to evaluate the genetic predictors of the development of cardiovascular events. This study is a molecular genetic study. Association with the genes of biomarkers for inflammation and immune response increases the risk of cardiovascular events: rs1234313 (TNFSF4): (A/G, OR-4.57 (2.35–8.87), p ≤ 0.0001), (A/G-A/A, OR-3.14 (1.75–5.63), p ≤ 0.0001), and (A/G, OR = 4.01 (2.19–7.36), p ≤ 0.0001); rs3184504 (SH2D3); ATXN2: (C/T, OR-2.53 (1.28–5.01), T/T, OR-2.99 (1.13–7.92), p = 0.017)), (C/T-T/T, OR-2.61 (1.35–5.07), p = 0.000), and (OR-1.89 (1.15–3.09), p = 0.009)). According to the lipid metabolism biomarker genes, rs2943634: (A/C OR-2.57 (1.18–5.62), p = 0.013); according to the endothelial biomarker genes, rs2713604: (DNAJB8-AS1; GATA2): (C/T, OR-4.27 (2.35–7.76), p ≤ 0.0001), (C/T-C/C, OR-4.13 (2.31–7.40), p ≤ 0.0001), (OR-4.05 (2.24–7.30), p ≤ 0.0001), and (C/T, OR-3.46 (1.99–6.00), p ≤ 0.0001). The regression analysis found that in the presence of the rs2943634 gene polymorphism, the risk of late cardiovascular events increases by 4.007 times with 95% CI (1.502:10.692), p = 0.006. The genes of biomarkers for the risk of cardiovascular events are rs1234313(TNFSF4), rs3184504 (SH2D3; ATXN2), rs2943634, and rs2713604 (DNAJB8-AS1; GATA2). The only predictor of the development of new cardiovascular events was rs2943634, which belongs to the group of lipid metabolism biomarkers.

Keywords: genetic predictors, risk factors, coronary stenting, complication

1. Introduction

Cardiovascular disease (CVD) continues to top the list of the top 10 causes of death. CVD has been the leading cause of death worldwide for 20 years. However, it has never taken as many lives as it does today. Since 2000, the number of deaths from CVD has increased by more than 2 million, reaching almost 9 million in 2019. Currently, CVD accounts for 16% of all deaths in the world [1].

In the Republic of Kazakhstan, diseases of the circulatory system (CVD) occupy first place in the structure of diseases among the causes of death. In 2018, 167.38 per every 100,000 people died from CVD, which was 13% lower than in 2015. Among the patients who died from CVD in hospitals, 40.4% were of working age (from 15 to 64 years). Coronary heart disease (CHD) is the leader among all CVDs, from which 11,300 people die in Kazakhstan per year (71.7 per 100,000 people), followed by acute cerebrovascular accidents (hereinafter referred to as stroke), from which 11,100 people die per year (71.8 per 100,000 people) [2].

One recent trend of interest is the study of the role of gene polymorphisms in the development of fatal cardiovascular events. Since there are scientific discussions about the significance of gene polymorphisms for the risk of developing cardiovascular complications after an intervention, it is of interest to evaluate the genetic predictors of the development of cardiovascular events.

2. Methods

This study is a prospective genetic validation study.

Population study. The sample of study participants was formed from among patients who applied for emergency specialized medical care in connection with Acute coronary syndrome (ACS) as well as practically healthy individuals. The selection of patients included in the study was made in accordance with the inclusion and exclusion criteria, per the protocol for the diagnosis and treatment within the Republic of Kazakhstan and international ESC recommendations. A total of 254 respondents participated in the study: 163 patients with coronary heart disease who underwent percutaneous coronary intervention, including members of both sexes over the age of 18, were included in the main group; 91 healthy controls were included in the control group.

Clinical assessments. The endpoints were new cardiovascular events: angina pectoris, recurrent MI, death from cardiovascular causes, revascularization, hospitalization for CHF, stroke, and non-coronary revascularization with indication of the timing and reasons for the end of hospitalization, arrhythmia, etc. Blood was taken from all patients for the study of molecular genetic markers.

The scientific study was approved by the ethical committee of NJSC “Medical University of Karaganda” (Protocol No. 32; dated 23 December 2019).

The material of the study was the venous blood of patients and practically healthy individuals.

Blood samples were collected in Becton Dickinson, Franklin Lakes, NJ, USA (BD Vacutainer) 2.7 mL vacutainers containing ethylenediaminetetraacetic acid (EDTA) potassium manufactured in the USA. Then, DNA was isolated from whole blood by the salting out method. The protocol for the salting out method was adopted from the authors Miller, Dukes, and Polesky, 1988 [3].

Genotyping. Genotyping was carried out by a method based on the polymerase chain reaction in real-time mode. The study method was performed in accordance with the protocol of the manufacturer. Sample preparation was performed using TaqMan® OpenArray® Genotyping Master Mix (Applied Biosystems, Waltham, MA, USA) for real-time PCR. Gene polymorphisms were determined using the QuantStudio TM 12K Flex Real-Time PCR system (Applied Biosystems) on TaqMan® OpenArray® Genotyping Plate, Custom Format 64 QuantStudio TM 12K Flex (Applied Biosystems) genotyping plates using a cardiological-profile genetic panel. The plates were filled with the reaction mixture using a QuantStudio TM 12K Flex Accufill System automated station (Applied Biosystems).

After automatic annotation and visual control, genotypes were determined for each sample (patient), which could also be edited, and the results loaded into MS Excel for further statistical data processing.

Data analysis. Statistical processing of the obtained data was carried out using the SPSS 19.0 software package.

The nature of the distribution for the normality of quantitative data was evaluated by the Kolmogorov–Smirnov criteria, since the number of observations was more than 50. Since we have 2 groups, the type of data distribution was determined for each group. With a normal distribution of quantitative data, the mean (M) and standard deviation (SD) were used for description. In case of non-normal distribution, quantitative data were described based on the median (Me) and the upper and lower quartiles (Q25, Q75).

To describe the qualitative data, the proportion of individuals with the trait of interest and the 95% confidence interval of the proportion calculated using Pearson’s χ2 method were calculated.

The Mann–Whitney U test was used to compare two independent samples on a quantitative basis. Logistic regression analysis was performed to determine the predictive value of adverse cardiovascular events.

Statistical analysis of genotyping data was carried out using the SNPStat program.

For each polymorphism included in the genotyping panel, major and minor alleles, the minor allele frequency (MAF) index, relative values for alleles and genotypes, as well as the p value index when calculating the Hardy–Weinberg equilibrium (HWE).

The association of genetic polymorphisms with the disease/condition was assessed according to a case–control design based on a generalized linear model (GLM), assuming underlying patterns (recessive, dominant, and log-additive).

3. Results

Based on the study, all quantitative variables in the main group were distributed abnormally, so we applied non-parametric criteria.

The quantitative variables in the control group (age, abdominal circumference, smoker index) were not normally distributed, but the weight variable was normally distributed.

Given that our sample in the main group had an abnormal distribution, quantitative data were described based on the median (Me) and the upper and lower quartiles (Q25, Q75). The age of half (Me) of the patients was 62 years, but a quarter of the patients was about 57 years old, while another quarter of the patients was over 68 years old. The abdominal circumference in all patients was more than 80 cm (relative to international standards), which increases their cardiovascular risk. The SBP in a quarter of patients (Q75) was more than 150 mm Hg. In addition, hypercholesterolemia (Q75) was also observed.

According to the study, Asians prevailed in both groups: 73% in the main group and 76.9% in the control group. Moreover, in both groups, there were more men than women: 68.7% and 53.8%, respectively. Respondents who were overweight prevailed in the main group, while in the control group there were more people with a normal BMI. At the same time, in the control group there were both patients who were overweight and with an obesity of 1 or 2 degrees. In accordance with the European classification of obesity in the main group, all three degrees of obesity were presented. Regarding bad habits, there were more people who smoked in the main group than in the control group. For the consumption of fats of animal origin, the maximum percentage was noted in both groups.

Based on the anamnestic data, a comparative characteristic of the general clinical data and laboratory parameters was developed, depending on gender in the main group, is presented in Table 1.

Table 1.

Comparative characteristics of general clinical data and laboratory parameters depending on gender in the main group.

Indicators Male
(n = 112)
Female
(n = 51)
p
1 2 3 4
Nationality
1—Kazakhs 84 (75%) 35 (68.6%) -
2—Russians 17 (15.2%) 12 (23.5%) -
3—Ukrainians 4 (3.6%) 2 (3.9%) -
4—Others 7 (6.3%) 2 (3.9%) -
Asians 84 (75%) 35 (68.6%) -
Caucasians 28 (25%) 16 (31.4%)
BMI (classification of obesity according to BMI based on European studies)
0—Normal BMI 39 (34.8%) 19 (37.3%) -
1—Overweight 50 (44.6%) 16 (31.4%) -
2—Obesity of 1 degree 16 (14.3%) 7 (13.7%) -
3—Obesity of 2 degrees 5 (4.5%) 9 (17.6%) -
4—Obesity of 3 degrees 2 (1.8%) 0 -
Smoking
0—No 59 (52.7%) 41 (80.4%) -
1—Yes 53 (47.31%) 10 (19.6%) -
Alcohol
0—No 70 (62.5%) 43 (84.3%) -
1—Yes 42 (37.5%) 8 (15.7%) -
Consumption of animal fat
0—No 10 (8.9%) 5 (9.8%) -
1—Yes 102 (91.1%) 46 (90.2%) -
Predisposition to coronary artery disease
0—No 69 (61.6%) 29 (56.9%) -
1—Yes 43 (38.4%) 22 (43.1%) -
Stable angina
0—None 28 (25%) 12 (23.5%) -
FK1 46 (41.1%) 19 (37.3%) -
FK2 29 (25.9%) 13.5 (25.5%) -
FK3 8 (7.1%) 5 (9.8%) -
FK4 1 (9%) 2 (3.9%) -
Arterial hypertension
0—None 26 (23.2%) 2 (3.9%) -
1 degree 13 (11.6%) 7 (13.7%) -
2 degrees 28 (25%) 13 (25.5%) -
3 degrees 45 (40.2%) 29 (56.9%) -
CHF
0—None 17 (15.2%) 5 (9.8%) -
FK1-1 60 (53.6%) 31 (60.8%) -
FK2-2 23 (20.5%) 15 (29.4%) -
FK3-3 12 (10.7%) 0 -
FK4-4 0 0 -
Rhythm disturbance
0—No 92 (82.1%) 41 (80.4%) -
1—Yes 20 (17. 9%) 10 (19.6%) -
Diabetes
0—No 89 (79.5%) 33 (64.7%) -
1—Yes 23 (20.5%) 18 (35.3%) -
Ulcer
0—No 104 (92.9%) 48 (94.1%) -
1—Yes 8 (7.1%) 3 (5.9%) -
Past myocardial infarction
0—No 29 (25.9%) 19 (37.3%) -
1—Yes 83 (74.1%) 32 (62.7%) -
Coronary lesion
0—None 0 3 (5.9%) -
1—Single-vessel 37 (33%) 15 (29.4%) -
2–Double-vessel 29 (25.9%) 15 (29.4%) -
3–Triple-vessel 46 (41.1%) 18 (35.3%) -
RCA
0—No 42 (37.5%) 19 (37.3%) -
1—Yes 70 (62.5%) 32 (62.7%) -
PDA
0—No 86 (76.8%) 44 (86.3%) -
1—Yes 26 (23.2%) 7 (13.7%) -
LCA
0—No 95 (84.8%) 48 (94.1%) -
1—Yes 17 (15.2%) 3 (5.9%) -
LAD
0—No 26 (23.2%) 11 (21.6%) -
1—Yes 86 (76.8%) 40 (78.4%) -
CX
0—No 51 (45.5%) 21 (41.2%) -
1—Yes 61 (54.5%) 30 (58.8%) -
OM
0—No 77 (68.8%) 32 (62.7%) -
1—Yes 35 (31.3%) 19 (37.3%) -
Type of PCI (stenting)
0—No 44 (39.3%) 25 (49%) -
1—Yes 68 (60.7%) 26 (51%) -
Aorta Coronary Bypass Surgery
0—No 76 (67.9%) 30 (70.6%) -
1—Yes 36 (32.1%) 15 (29.4%) -
Type of PCI (balloon angioplasty)
0—No 101 (90.2%) 44 (86.3%) -
1—Yes 11 (9.8%) 7 (13.7%)
Complications and outcome -
0—No 75 (67%) 33 (64.7%)
1—Recurrent MI, restenosis of the coronary arteries, early post-infarction angina pectoris 15 (13.4%) (13.7%) -
2—Life-threatening arrhythmia (0.9%) (2%) -
3—Total mortality 9 (8%) (5.9%) -
4—AHF and CHF 9 (8%) 4 (7.8%) -
5—Stroke 3 (2.7%) 3 (5.9%) -
Complications 37 (33%) 18 (35.3%) -
No complications 75 (67%) 33 (64.7)
Early complications (≥3 months) 15 (68.2%) 7 (31.8%)
Late complications (≤3 months) 22 (66.7%) 11(33.3%)
Age
Me (Q25, Q75)
60 (54.25;65) 66 (59;76) 0.000 *
Abdominal circumference
Me (Q25, Q75)
98 (88;115) 98 (88;113) 0.837
Smoker index
Me (Q25, Q75)
0 (0;20) 0 0.005 *
Syst BP
Me (Q25, Q75)
130 (112.5;150) 130 (120;160) 0.074
Diast BP
Me (Q25, Q75)
80 (80;90) 90 (80;90) 0.104
Cholesterol
Me (Q25, Q75)
4.445 (3.3;5.5) 4.8 (3.8;5.8) 0.036
HDL
Me (Q25, Q75)
1.06 (0.8;1.4) 1.0 (0.9;1.3) 0.801
LDL
Me (Q25, Q75)
1.3 (1.02;2.3) 2.0 (0.98;2.7) 0.471
Triglycerides
Me (Q25, Q75)
1.2 (0.9;1.8) 1.41 (1.0;2.0) 0.083
RBC
Me (Q25, Q75)
4.8 (4.52;5.1) 4.41 (4.2;4.7)
PLT
Me (Q25, Q75)
230 (196;284.5) 265 (216;295) 0.081
Hb
Me (Q25, Q75)
143.5 (132;153) 132 (121;138)
WBC
Me (Q25, Q75)
8.5 (6.7;11.47) 7.8 (6.5;9.0) 0.103
ESR
Me (Q25, Q75)
10 (5.0;18.0) 14 (8.0;20.0)
APTT
Me (Q25, Q75)
33 (30;36.75) 32 (31;38) 0.509
Fibrinogen
Me (Q25, Q75)
2.85 (2.0;3.775) 3.02 (2.3;3.8) 0.244
PTI
Me (Q25, Q75)
91.5 (85;98) 95 (86;100) 0.145
PT
Me (Q25, Q75)
16 (15.25;18) 16 (15;18) 0.883
FMK
Me (Q25, Q75)
3 (0;3.875) 3 (0;4) 0.267
INR
Me (Q25, Q75)
1.10 (1.0;1.195) 1.05 (1.0;1.16) 0.412

*—Statistically significant differences according to the non-parametric Mann–Whitney U test for comparing two independent samples on a quantitative basis.

Based on Table 1, it can be argued that the respondents in the main group were ethnically heterogeneous: there were more than twice as many Kazakh men as women; while other ethnic groups did not differ significantly by gender. Taking into account the literature data on genetic polymorphisms, depending on ethnicity, the subjects were divided by race: Asians (Kazakhs); Caucasians (Russians, Ukrainians, Germans, Belarusians). More than 50% of men were overweight, while women both had a normal BMI and were overweight. In men and women in the main group, the consumption of animal fat was observed with the maximum figures: 91.1% and 90.2%, respectively.

Regarding coronary angiography, among men and women, there was a triple-vessel lesion of the coronary bed: 41.1% and 35.3%, respectively. LAD lesions were predominantly noted in both sexes, and, therefore, coronary artery stenting was performed in both men and women. Complications were noted in 55 patients (recurrence of myocardial infarction, restenosis of the coronary arteries, early post-infarction angina pectoris, life-threatening arrhythmias, total mortality, AHF, CHF, stroke), predominantly in men (33%). The most common complications in both sexes were recurrent MI, restenosis of the coronary arteries, and early postinfarction angina pectoris, which was mainly related to early cardiovascular complications. Complications were also considered according to the criteria of early complications (≥3 months) and late complications (≤3 months). Both early and late complications prevailed in men; in both cases, at a rate of more than 50%. The statistically significant differences between the sexes were age (p = 0.000) and smoker index (p = 0.005). No statistically significant differences between the sexes were found in the laboratory parameters.

Based on the literature data, we selected 53 SNPs that were associated with CAD. For analysis, we divided according to the predominant mechanisms of action: (1) the genes of biomarkers of the inflammation and immune response associated with the risk of developing cardiovascular events; (2) the genes of biomarkers of the hemostasis system associated with the risk of developing cardiovascular events; (3) the genes of biomarkers of the lipid metabolism associated with cardiovascular events; (4) the genes of endothelial biomarkers associated with cardiovascular events. The general panel of polymorphisms associated with cardiovascular events after coronary artery stenting is presented in Table 2.

Table 2.

Panel of polymorphisms associated with cardiovascular events after coronary artery stenting.

rs Gene Name Abbreviation Chromosome Locus
1 rs1234313 TNFSF4 tumor necrosis factor (ligand) superfamily; member 4 1 1q25.1a
2 rs2243250 IL4 interleukin 4 5 5q31.1b
3 rs3850641 TNFSF4 tumor necrosis factor (ligand) superfamily; member 4 1 1q25.1a
4 rs4986790 TLR4 toll-like receptor 4 9 9q33.1c
5 rs17576 LOC100128028; MMP9 uncharacterized LOC100128028; matrix metallopeptidase 9 20 20q13.12b
6 rs3184504 SH2B3; ATXN2 SH2B adaptor protein 3; ataxin 2 12 12q24.12a
7 rs3782886 BRAP BRCA1-associated protein 12 12q24.12b
8 rs1234315 TNFSF4 tumor necrosis factor (ligand) superfamily; member 4 1 1q25.1a
9 rs17228212 SMAD3 SMAD family member 3 15 15q22.33c
10 rs788016 HSPD1 heat shock 60kDa protein 1 (chaperonin) 2 2q33.1b
11 rs2340690 HSPE1; HSPE1-MOB4; HSPD1 heat shock 10kDa protein 1 (chaperonin 10) 2 2q33.1b
12 rs6725887 ICA1L; WDR12 islet cell autoantigen 1;69kDa-like; WD repeat domain 12 2 2q33.2a
13 rs1799963 CKAP5; F2 cytoskeleton-associated protein 5; coagulation factor II (thrombin) 11 11p11.2b
14 rs6025 F5 coagulation factor V (proaccelerin, labile factor) 1 1q24.2b
15 rs1800787 FGB fibrinogen beta chain 4 4q31.3d
16 rs1799983 CKAP5; F2 cytoskeleton-associated protein 5; coagulation factor II (thrombin) 11 11p11.2b
17 rs2306374 MRAS muscle RAS oncogene homolog 3 3q22.3c
18 rs5918 ITGB3 integrin; beta 3 (platelet glycoprotein IIIa; antigen CD61) 17 17q21.32a
19 rs1746048 10 10q11.21c
20 rs688034 SEZ6L seizure related 6 homolog (mouse)-like 22 22q12.1a
21 rs5361 SELE selectin E 1 1q24.2c
22 rs6922269 MTHFD1L methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like 6 6q25.1b
23 rs183130 CETP cholesteryl ester transfer protein; plasma 16 16q13b
24 rs1800588 LIPC lipase; hepatic 15 15q21.3d
25 rs3843763 PLTP phospholipid transfer protein 20 20q13.12b
26 rs268 LPL lipoprotein lipase 8 8p21.3c
27 rs326 LPL lipoprotein lipase 8 8p21.3c
28 rs17465637 MIA3 melanoma inhibitory activity family; member 3 1 1q41e
29 rs2229616 MC4R melanocortin 4 receptor 18 18q21.32b
30 rs501120 10 10q11.21c
31 rs2230500 PRKCH protein kinase C; eta 14 14q23.1c
32 rs2516839 USF1; ARHGAP30; TSTD1 upstream transcription factor 1; Rho GTPase activating protein 30 1 1q23.3a
33 rs2943634 2 2q36.3a
34 rs599839 CELSR2; PSRC1 cadherin; EGF LAG seven-pass G-type receptor 2 1 1p13.3b
35 rs5443 LEPREL2; GNB3; CDCA3; USP5 leprecan-like 2; guanine nucleotide binding protein (G protein); beta polypeptide 3 12 12p13.31d
36 rs1042714 ADRB2 adrenoceptor beta 2; surface 5 5q32d
37 rs8055236 CDH13 cadherin 13 16 16q23.3b
38 rs2774279 USF1; ARHGAP30; TSTD1 upstream transcription factor 1; Rho GTPase activating protein 30 1 1q23.3a
39 rs2073658 USF1; ARHGAP30; TSTD1 upstream transcription factor 1; Rho GTPase activating protein 30 1 1q23.3a
40 rs11206510 PCSK9 proprotein convertase subtilisin/kexin type 9 1 1p32.3a
41 rs383830 5 5q21.1b
42 rs5370 EDN1 endothelin 1 6 6p24.1b
43 rs1800779 NOS3 nitric oxide synthase 3 (endothelial cell) 7 7q36.1c
44 rs1800783 NOS3 nitric oxide synthase 3 (endothelial cell) 7 7q36.1c
45 rs1051730 NOS3 nitric oxide synthase 3 (endothelial cell) 7 7q36.1c
46 rs2383206 CDKN2B-AS1 CDKN2B antisense RNA 1 9 9p21.3c
47 rs10757278 CDKN2B-AS1 CDKN2B antisense RNA 1 9 9p21.3c
48 rs10116277 CDKN2B-AS1 CDKN2B antisense RNA 1 9 9p21.3c
49 rs1333049 CDKN2B-AS1 CDKN2B antisense RNA 1 9 9p21.3c
50 rs2383207 CDKN2B-AS1 CDKN2B antisense RNA 1 9 9p21.3c
51 rs3803 DNAJB8-AS1; GATA2 DNAJB8 antisense RNA 1; GATA binding protein 2 3 3q21.3c
52 rs2713604 DNAJB8-AS1; GATA2 DNAJB8 antisense RNA 1; GATA binding protein 2 3 3q21.3c
53 rs9536314 KL klotho 13 13q13.1b

As a result of statistical analysis of genotyping, it was found that association with the genes of biomarkers of inflammation and immune response increases the risk of cardiovascular events: rs1234313 of the TNFSF4 gene: codominant model (A/G, OR- 4.57 (2.35–8.87), p ≤ 0.0001), dominant (A/G-A/A, OR-3.14 (1.75–5.63), p ≤ 0.0001), and overdominant (A/G, OR = 4.01 (2.19–7.36), p ≤ 0.0001); rs3184504 of the SH2D3 gene, ATXN2: codominant model (C/T, OR-2.53 (1.28–5.01), T/T, OR-2.99 (1.13–7.92), p = 0.017)), dominant (C/T-T/T, OR-2.61 (1.35–5.07), p = 0.000), and log-additive (OR-1.89 (1.15–3.09), p = 0.009)). According to the lipid metabolism biomarker genes, rs2943634: heterozygous genotype overdominant model (A/C OR-2.57 (1.18–5.62), p = 0.013); rs2713604 (DNAJB8-AS1; GATA2): codominant model (C/T, OR-4.27 (2.35–7.76), p ≤ 0.0001), dominant (C/T-C/C, OR-4.13 (2.31–7.40), p ≤ 0.0001), overdominant (OR-4.05 (2.24–7.30), p ≤ 0.0001), and log-additive (C/T, OR-3.46 (1.99–6.00), p ≤ 0.0001); according to the endothelial biomarker genes, rs2713604 (DNAJB8-AS1; GATA2): codominant model (C/T, OR-4.27 (2.35–7.76), p ≤ 0.0001), dominant (C/T-C/C, OR-4.13 (2.31–7.40), p ≤ 0.0001), overdominant (OR-4.05 (2.24–7.30), p ≤ 0.0001), and log-additive (C/T, OR-3.46 (1.99–6.00), p ≤ 0.0001).

In order to determine the prognostic role of genetic polymorphism in the development of the complications and outcomes of cardiovascular events, a logistic regression analysis was performed, taking into account early and late complications. The results of the regression analysis are presented in Table 3.

Table 3.

Regression analysis of genetic polymorphism regarding the risk of developing cardiovascular events (the dependent variable is outcome, outcome is not).

Variable cOR (95% CI) p aOR (95% CI) p
rs2943634
(AC)
Late (≥3)
0.471
(0.256—0.869)
0.016 4.007
(1.502–10.692)
0.006

Based on the regression analysis of genetic polymorphism regarding the risk of developing cardiovascular events, in the presence of rs2943634 gene polymorphism, the heterozygous AC genotype, the risk of developing late cardiovascular events increases by 4.007 times with 95% CI (1.502:10.692), p = 0.006. This gene is included in the group of the biomarkers of lipid metabolism disorders.

4. Discussion

An important role in the pathophysiology of CHD is played by the processes of inflammation and immune response. In this regard, a large number of studies have been devoted to the study of the associative relationships between the polymorphism of the genes involved in the cascade of inflammation and immune responses, the expression of these genes, and the risk of developing a cardiovascular pathology.

The TNF gene, also known as TNF-alpha, codes for a cytokine with extensive inflammatory and immune functions. Among the best-studied TNF SNPs are two found in the promoter, both of which can affect either constitutive or induced TNF expression [4].

The main metabolic changes underlying the development of CHD are lipid metabolism disorders and dyslipoproteinemia, which are controlled by various polymorphic gene variants. The predisposition to the vast majority of CHD forms is due precisely to the cumulative contribution of the many polymorphic gene variants, each of which is characterized by a relatively weak or moderate effect on lipid metabolism and the development of the disease. However, numerous studies aimed at confirming the identified associations of CHD with individual candidate genes have shown a low degree of reproducibility of results in various populations of the world. Thus, a number of researchers have also identified significant differences in the genetic structure and the contribution of individual genes to the pathogenesis of CHD in European and Asian populations [5,6]. The low reproducibility of genetic associations can be explained not only by differences in the genetic structure between populations but also by the influence of various environmental risk factors. In this regard, the study of the genetic structure of Kazakh populations in the context of its impact on the risk of developing coronary artery disease opens up wide opportunities for the large-scale screening of genetic markers and the monitoring of the main markers for the purpose of the primary prevention of the disease in the Republic of Kazakhstan.

According to the literature, the gene rs2943634 is associated with high-density lipoprotein cholesterol (HDL), and, when this polymorphism is identified in patients, the risk of ischemic stroke increases by 2.5 times [7]. According to the current study, among the patients of the main group, this polymorphism (rs2943634) is increased by 4.007 times.

5. Conclusions

Thus, when associated with the genes of the biomarkers of inflammation and immune response, the risk of cardiovascular events increases rs1234313 of the TNFSF4 gene: codominant model (A/G, OR-4.57 (2.35–8.87), p ≤ 0.0001), dominant (A/G-A/ A, OR-3.14 (1.75–5.63), p ≤ 0.0001), and overdominant (A/G, OR = 4.01 (2.19–7.36), p ≤ 0.0001); rs3184504 of the SH2D3 gene, ATXN2: codominant model (C/T, OR-2.53 (1.28–5.01), T/T, OR-2.99 (1.13–7.92), p = 0.017)), dominant (C/T-T/T, OR-2.61 (1.35–5.07), p = 0.000), and log-additive (OR-1.89 (1.15–3.09), p = 0.009)); according to the lipid metabolism biomarker genes, rs2943634: heterozygous genotype overdominant model (A/C OR-2.57 (1.18–5.62), p = 0.013); according to the endothelial biomarker genes, rs2713604 (DNAJB8-AS1; GATA2): codominant model (C/T, OR-4.27 (2.35–7.76), p ≤ 0.0001), dominant (C/T-C/C, OR-4.13 (2.31–7.40), p ≤ 0.0001), overdominant (OR-4.05 (2.24–7.30), p ≤ 0.0001), and log-additive (C/T, OR-3.46 (1.99–6.00), p ≤ 0.0001).

As predictors of the development of new cardiovascular events in the long-term period after a percutaneous coronary intervention, the prognostic criterion for the development of cardiovascular complications was the heterozygous genotype AC rs2943634 (OR-4.007 times, 95% CI (1.502:10.692), p = 0.006)), belonging to the group of biomarkers of the lipid metabolism disorders.

Author Contributions

Conceptualization, D.T. and A.K.; methodology, D.T., A.K. and A.A.; software, D.T., A.K., I.K. and A.A; validation, D.T., A.K. and A.A.; formal analysis, D.T., A.K., R.B., A.T., R.T., Z.B., O.V. and Z.T.; investigation, D.T., A.K., I.K., S.K., Y.K. and O.V.A.; resources, D.T., A.K., D.B. and L.A.; data curation, D.T., A.K., R.B., A.T., R.T., Z.B., O.V. and Z.T.; writing—original draft preparation, D.T. and A.K.; writing—review and editing, D.T., A.K. and G.T.G.; visualization, D.T. and A.K.; supervision, D.T.; project administration, D.T. and A.K; funding acquisition, D.T., A.K., R.B., A.T., R.T., Z.B., O.V. and Z.T. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

The scientific study was approved by the ethical committee of NJSC “Medical University of Karaganda” (Protocol No. 32; dated 23 December 2019).

Informed Consent Statement

Written informed consent was obtained from all the participants of this study.

Conflicts of Interest

This research did not receive any specific grant or funding. The authors report no competing interests associated with the work presented in this manuscript.

Funding Statement

This study received no funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.World Health Organization Countries. [(accessed on 9 December 2020)]. Available online: www.who.int/countries.
  • 2.The State Health Development Program of the Republic of Kazakhstan for 2020–2025 Dated December 26, 2019 No. 982, Approved by the Decree of the Government of the Republic of Kazakhstan. CIS Legislation; Moscow, Russia: 2019. [Google Scholar]
  • 3.Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Brown B.D., Nsengimana J., Barrett J.H., Lawrence R.A., Steiner L., Cheng S., Bishop D.T., Samani N.J., Ball S.G., Balmforth A.J., et al. An evaluation of inflammatory gene polymorphisms in sibships discordant for premature coronary artery disease: The GRACE-IMMUNE study. BMC Med. 2010;8:5. doi: 10.1186/1741-7015-8-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Radovica I., Fridmanis D., Vaivade I., Nikitina-Zake L., Klovins J. The Association of Common SNPs and Haplotypes in CETP Gene with HDL Cholesterol Levels in Latvian Population. PLoS ONE. 2013;8:e64191. doi: 10.1371/journal.pone.0064191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chang M.-H., Ned-Sykes R., Hong Y., Yesupriya A., Yang Q., Liu T., Janssens A.C., Dowling N.F. Racial/Ethnic Variation in the Association of Lipid-Related Genetic Variants With Blood Lipids in the US Adult Population. Circ. Cardiovasc. Genet. 2011;4:523–533. doi: 10.1161/CIRCGENETICS.111.959577. [DOI] [PubMed] [Google Scholar]
  • 7.Karvanen J., Silander K., Kee F., Tiret L., Salomaa V., Kuulasmaa K., Wiklund P.G., Virtamo J., Saarela O., Perret C., et al. The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet. Epidemiol. Off. Publ. Int. Genet. Epidemiol. Soc. 2009;33:237–246. doi: 10.1002/gepi.20374. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Personalized Medicine are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES