Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Jan 26;89(6):1203–1211. doi: 10.1007/s10812-023-01487-w

Classification of Coronavirus Spike Proteins by Deep-Learning-Based Raman Spectroscopy and its Interpretative Analysis

Wenbo Mo 1,2, Jiaxing Wen 1,2, Jinglin Huang 1, Yue Yang 1, Minjie Zhou 1, Shuang Ni 1, Wei Le 1, Lai Wei 1, Daojian Qi 1, Shaoyi Wang 1, Jingqin Su 1, Yuchi Wu 1, Weimin Zhou 1, Kai Du 1, Xuewu Wang 2, Zongqing Zhao 1,
PMCID: PMC9876753  PMID: 36718373

Abstract

The outbreak of COVID-19 has spread worldwide, causing great damage to the global economy. Raman spectroscopy is expected to become a rapid and accurate method for the detection of coronavirus. A classification method of coronavirus spike proteins by Raman spectroscopy based on deep learning was implemented. A Raman spectra dataset of the spike proteins of five coronaviruses (including MERS-CoV, SARS-CoV, SARS-CoV-2, HCoVHKU1, and HCoV-OC43) was generated to establish the neural network model for classification. Even for rapidly acquired spectra with a low signal-to-noise ratio, the average accuracy exceeded 97%. An interpretive analysis of the classification results of the neural network was performed, which indicated that the differences in spectral characteristics captured by the neural network were consistent with the experimental analysis. The interpretative analysis method provided a valuable reference for identifying complex Raman spectra using deep-learning techniques. Our approach exhibited the potential to be applied in clinical practice to identify COVID-19 and other coronaviruses, and it can also be applied to other identification problems such as the identification of viruses or chemical agents, as well as in industrial areas such as oil and gas exploration.

Keywords: coronavirus, spike protein, Raman spectroscopy, deep learning, interpretative analysis

Footnotes

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 6, p. 903, November–December, 2022.

References

  • 1.F. Cui and H. S. Zhou, Biosens. Bioelectron., 165, Article ID 112349 (2020). [DOI] [PMC free article] [PubMed]
  • 2.Huang J, Wen J, Zhou M, Ni S, Le W, Chen G, Wei L, Zeng Y, Qi D, Pan M. Anal. Chem. 2021;93(26):9174–9182. doi: 10.1021/acs.analchem.1c01061. [DOI] [PubMed] [Google Scholar]
  • 3.Asif M, Ajmal M, Ashraf G, Muhammad N, Aziz A, Iftikhar T, Wang J, Liu H. Curr. Opin. Electrochem. 2020;23:174–184. doi: 10.1016/j.coelec.2020.08.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Shen M, Zhou Y, Ye J, Al-Maskri AAA, Kang Y, Zeng S, Cai S. J. Pharm. Anal. 2020;10:97–101. doi: 10.1016/j.jpha.2020.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. W. Chu, T. Bleicker, S. Brünink, J. Schneider, M. L. Schmidt, et al., Eurosurveillance, 25, No. 3, Article ID 2000045 (2020).
  • 6.Esbin MN, Whitney ON, Chong S, Maurer A, Darzacq X, Tjian R. RNA. 2020;26(7):771–783. doi: 10.1261/rna.076232.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Huggett J, Dheda K, Bustin S, Zumla A. Genes Immun. 2005;6:279–284. doi: 10.1038/sj.gene.6364190. [DOI] [PubMed] [Google Scholar]
  • 8.Wong ML, Medrano JF. Biotechniques. 2005;39:75–85. doi: 10.2144/05391RV01. [DOI] [PubMed] [Google Scholar]
  • 9.Jacofsky D, Jacofsky EM, Jacofsky M. J. Arthroplasty. 2020;35:S74–S81. doi: 10.1016/j.arth.2020.04.055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lin Q, Wen D, Wu J, Liu L, Wu W, Fang X, Kong J. Anal. Chem. 2020;92:9454–9458. doi: 10.1021/acs.analchem.0c01635. [DOI] [PubMed] [Google Scholar]
  • 11.Liu G, Rusling JF. ACS Sens. 2021;6:593–612. doi: 10.1021/acssensors.0c02621. [DOI] [PubMed] [Google Scholar]
  • 12.C.-S. Ho, N. Jean, C. A. Hogan, L. Blackmon, S. S. Jeff rey, M. Holodniy, N. Banaei, A. A. Saleh, S. Ermon, and J. Dionne, Nat. Commun, 10, 1–8 (2019). [DOI] [PMC free article] [PubMed]
  • 13.W. Lee, A. T. Lenferink, C. Otto, and H. L. Off erhaus, J. Raman Spectrosc., 51, 293–300 (2020).
  • 14.Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Z. Li, A. C. Tomlinson, A. H. Wong, D. Zhou, M. Desforges, P. J. Talbot, S. Benlekbir, J. L. Rubinstein, and J. M. Rini, eLife, 8, Article ID e51230 (2019). [DOI] [PMC free article] [PubMed]
  • 16.Abdul-Rasool S, Fielding BC. Open. Virol. J. 2010;4:76. doi: 10.2174/1874357901004010076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. J. Virol. 2004;78:8824–8834. doi: 10.1128/JVI.78.16.8824-8834.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Woo PC, Lau SK, Chu C-M, Chan K-H, Tsoi H-W, Huang Y, Wong BH, Poon RW, Cai JJ, Luk W-K. J. Virol. 2005;79:884–895. doi: 10.1128/JVI.79.2.884-895.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt H-R, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Engl N. J. Med. 2003;348:1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
  • 20.De Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbalenya AE, Memish ZA. J. Virol. 2013;87:7790–7792. doi: 10.1128/JVI.01244-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, Liu W, Bi Y, Gao GF. Trends Microbiol. 2016;24:490–502. doi: 10.1016/j.tim.2016.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.M. M. Kesheh, P. Hosseini, S. Soltani, and M. Zandi, Rev. Med. Virol., Article ID e2282 (2021). [DOI] [PubMed]
  • 23.Y. LeCun, L. Bottou, Y. Bengio, and P. Haff ner, Proc. IEEE, 86, 2278–2324 (1998).
  • 24.K. He, X. Zhang, S. Ren, and J. Sun, Proc. IEEE Conf. Comput. Vision Pattern Recognit., 770–778 (2016).
  • 25.D. X. Liu, J. Q. Liang, and T. S. Fung, Encycl. Virol., 428 (2021).
  • 26.Gussow AB, Auslander N, Faure G, Wolf YI, Zhang F, Koonin EV. Proc. Natl. Acad. Sci. USA. 2020;117:15193–15199. doi: 10.1073/pnas.2008176117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng, Z. Zhang, and Z. Wu, Cell, 183, 730–738, Article ID e713 (2020). [DOI] [PMC free article] [PubMed]
  • 28.C. Liu, Y. Yang, Y. Gao, C. Shen, B. Ju, C. Liu, X. Tang, J. Wei, X. Ma, and W. Liu, bioRxiv (2020).
  • 29.K. Simonyan, A. Vedaldi, and A. Zisserman, arXiv preprint arXiv, Article ID 1312.6034 (2013).
  • 30.Carlomagno C, Bertazioli D, Gualerzi A, Picciolini S, Banfi P, Lax A, Messina E, Navarro J, Bianchi L, Caronni A. Sci. Rep. 2021;11:1–13. doi: 10.1038/s41598-021-84565-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Jinglin H, Minjie Z, Wei L, Guo C, Shuang N, Gao N, Zeyu L, Zongqing Z, Zhibing H, Bo L. Qiangjiguang Yu Lizishu. 2020;32:069001–069002. [Google Scholar]
  • 32.Sanchez JE, Jaramillo SA, Settles E, Salazar JJV, Lehr A, Gonzalez J, Aranda CR, Navarro-Contreras HR, Raniere MO, Harvey M. RSC Adv. 2021;11:25788–25794. doi: 10.1039/D1RA03481B. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Yin G, Li L, Lu S, Yin Y, Su Y, Zeng Y, Luo M, Ma M, Zhou H, Orlandini L. J. Raman Spectrosc. 2021;52:949–958. doi: 10.1002/jrs.6080. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Applied Spectroscopy are provided here courtesy of Nature Publishing Group

RESOURCES