Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Jan 27;76(3):131–182. doi: 10.1038/s41429-023-00594-2

Drug repurposing strategy II: from approved drugs to agri-fungicide leads

Jun-Xia An 1,2,#, Yue Ma 1,#, Wen-Bin Zhao 1, Yong-Mei Hu 1, Yi-Rong Wang 1, Zhi-Jun Zhang 1, Xiong-Fei Luo 1, Bao-Qi Zhang 1, Yan-Yan Ding 1, Ying-Qian Liu 1,2,3,
PMCID: PMC9880955  PMID: 36707717

Abstract

Epidemic diseases of crops caused by fungi deeply affected the course of human history and processed a major restriction on social and economic development. However, with the enormous misuse of existing antimicrobial drugs, an increasing number of fungi have developed serious resistance to them, making the diseases caused by pathogenic fungi even more challenging to control. Drug repurposing is an attractive alternative, it requires less time and investment in the drug development process than traditional R&D strategies. In this work, we screened 600 existing commercially available drugs, some of which had previously unknown activity against pathogenic fungi. From the primary screen at a fixed concentration of 100 μg/mL, 120, 162, 167, 85, 102, and 82 drugs were found to be effective against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum, respectively. They were divided into nine groups lead compounds, including quinoline alkaloids, benzimidazoles/carbamate esters, azoles, isothiazoles, pyrimidines, pyridines, piperidines/piperazines, ionic liquids and miscellaneous group, and simple structure-activity relationship analysis was carried out. Comparison with fungicides to identify the most promising drugs or lead structures for the development of new antifungal agents in agriculture.

Subject terms: High-throughput screening, Chemical biology

Introduction

Plant diseases and pests lead to reduced yields and quality of crops [13], which have a major impact on economic development and food security [4]. Research revealed that more than 19,000 species of fungi could cause plant diseases and some of them could be dormant in dead plants until opportunities were conducive to their proliferation [5]. It is estimated that the average annual economic loss caused by plant pathogenic fungi exceeds $200 billion [6]. Fusarium is one of the most important plant pathogenic fungi, for example, Fusarium graminearum and Fusarium oxysporum cause head blight and root rot. They can produce mycotoxins such as monothiocarbates and fumonisin [7, 8]. Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea and Phytophthora capsici host a wide range of more than 200 crops, including fruits and vegetables [9, 10]. Thus the loss of crops caused by fungi had become a severe issue that cannot be ignored.

Currently, there are several approaches to control plant diseases, such as breeding of resistant varieties, biological control and chemical control. However, the breeding also has many drawbacks, including lengthy breeding cycles, lack of varieties and geographical limitations of breeds [11]. Although biological control is advocated, the development process of biopesticides is slow and easy to deposit, so it is difficult to be widely applied in agricultural production at present [12, 13]. Thus, agrochemicals are still the primary form of control [14]. However, an expanding number of these weed, plant disease and pest insects are no longer effectively controlled by many of the existing agrochemical tools, a trend also observed in the medical community with the rise of antibiotic resistance [15, 16]. In particular, the development of resistance to critical fungicides against major crop fungal diseases, such as benzimidazoles and strobilurins, has had a significant impact on the fungicide market and the discovery of agrochemicals [17]. Therefore, it is necessary to develop novel, practical and resistant fungicidal agents to control plant diseases.

Drug development is an expensive, time-consuming and risky process [18]. In general, it can take up to 20 years for a drug from initial discovery to market. The development process can cost up to $2 billion, with only a 5% chance of successfully completing clinical trials and reaching the market [19, 20]. Likewise, an agrochemical takes 10–12 years from discovery to market and costs an estimated $286 million to develop [15, 21, 22]. Thus, it poses challenges to the development of novel pesticides. Drug repositioning or finding novel indications for known drugs is a way to reduce the time and cost of drug discovery as the toxicity, pharmacokinetic and biological activity of these drugs are well defined. In the medical field, many drugs have been successfully applied through repositioning [2326]. As such, it has proven to be a preferred and advantageous alternative strategy for the more rapid discovery of new applications for drugs [27].

On this basis, 600 approved drugs with different structures and functions against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, Phytophthora capsici, Fusarium graminearum and Fusarium oxysporum were screened in this study and served as a theoretical basis for pesticide development.

Materials and methods

Fungal strains

Six phytopathogenic fungi, named R. solani, S. sclerotiorum, B. cinerea, P. capsici, F. graminearum and F. oxysporum were isolated, purified and identified from susceptible plants cultivated at the Gansu Academy of Agricultural Sciences, China.

Approved drugs

The 600 approved drugs were purchased from commercial suppliers. Drugs were delivered in centrifugal tube (100 μg ml−1, dissolved in DMSO) and kept at −80 °C until use.

Screening Assay

In vitro, the antifungal activity of the drugs was initially evaluated using mycelial growth inhibition assay [6] with some modifications. The dissolved drug was added to the PDA medium so that the concentration of PDA containing the drug was 100 μg/mL. Zero point five percent DMSO (v/v) was added to the PDA medium as a blank control. The six plant pathogenic fungi were used to evaluate the antifungal activity of the samples. Take the disc (5.00 mm diameter) from the edge of the mycelia of the active colony with a hole punch, and then pick it to the center of the drug-containing plate with the inoculating needle. Lastly, the plates were incubated upside down in the dark at 26 °C. Three replicates per treatment. The diameter of the inhibition zone (mm) was measured by the cross method using digital calipers, and the growth inhibition rate of the samples on the fungal mycelium was calculated according to the following formula.

Mycelialgrowthinhibition(%)=CTC5×100

The C and T are the average diameter of fungal colonies in the control and treated groups, respectively.

On the basis of the initial screening for antifungal activity, the highly active drugs were selected for virulence effect determination. The PDA medium was diluted to different solution concentrations (50 μg ml−1, 25 μg ml−1, 10 μg ml−1, etc.), and the plates were incubated upside down in the dark at 26 °C. The inhibition rate as above, and the antifungal activity was indicated as EC50.

Statistical Analysis

The statistical analysis was conducted by SPSS 24.0. The EC50 values were derived from the parameters in the regression curves.

Results

The preliminary screening of 600 approved drugs against six phytopathogenic fungi at 100 μg ml−1 showed that 120, 162, 167, 85, 102 and 82 drugs against R. solani, S. sclerotiorum, B. cinerea, P. capsici, F. graminearum and F. oxysporum, respectively, inhibiting the growth of mycelium of by more than 70% (Fig. 1) . To further determine the antifungal activity of these drugs, they were evaluated using the EC50. We considered drugs with EC50 less than 25 μg ml−1 as candidates. Their original uses and toxicity are shown in Table 1 (https://pubchem.ncbi.nlm.nih.gov/, November 2022). As drug repurposing has gained tremendous popularity in the pharmaceutical field, we divided the candidate drugs into 9 lead series and conducted a brief discussion of structure and activity.

Fig. 1.

Fig. 1

A total of 600 drugs were tested against pathogenic fungi at 100 μg/mL

Table 1.

Active drugs“hits”identified from initial screening anti-plant pathogenic fungia

No. Compound name Chemical structure Main use Toxicity EC50 (μg/mL)
R. s S. s B. c F. g F. o P. c
1 Mefloquine hydrochloride graphic file with name 41429_2023_594_Taba_HTML.gif Anti-malarial Rat: LD50 = 880 mg/kg (oral) >25 >25 14.55 >25 >25 >25
2 Bedaquiline (fumarate) graphic file with name 41429_2023_594_Tabb_HTML.gif Antituberculotic Mouse and rat: single oral doses of 800 mg/kg >25 6.81 9.45 >25 >25 >25
3 Dequalinium chloride graphic file with name 41429_2023_594_Tabc_HTML.gif Antiseptic Mouse: LD50 = 70 mg/kg (subcutaneous) >25 9.52 >25 >25 >25 >25
4 Cabozantinib graphic file with name 41429_2023_594_Tabd_HTML.gif Antineoplastic - 0.032 >25 >25 >25 >25 >25
5 Quinoxyfen graphic file with name 41429_2023_594_Tabe_HTML.gif Fungicides (powdery mildew) Mouse: LD50 > 500 mg/kg (oral) 2.21 >25 >25 >25 >25 >25
6 Pitavastatin hemicalcium graphic file with name 41429_2023_594_Tabf_HTML.gif Lipid-lowering agents Rat: LDLo = 500 mg/kg (oral) >25 >25 0.75 6.92 0.78 0.32
7 Telmisartan graphic file with name 41429_2023_594_Tabg_HTML.gif Antihypertensive Mouse: LD50 = 200 mg/kg (intravenous) >25 5.81 2.19 >25 4.80 3.27
8 Parbendazole graphic file with name 41429_2023_594_Tabh_HTML.gif Anthelmintic Mouse: LD50 = 1700 mg/kg (oral) 0.051 0.16 >25 >25 >25 >25
9 Oxfendazole graphic file with name 41429_2023_594_Tabi_HTML.gif Anthelmintic Rat: LD50 > 6400 mg/kg; Mouse: LD50 > 6400 mg/kg 1.08 10.38 >25 >25 >25 >25
10 Fenbendazole graphic file with name 41429_2023_594_Tabj_HTML.gif Anthelmintic Rat: LD50 > 10 gm/kg (oral); Rat: LD50 > 2 gm/kg (subcutaneous) 0.007 0.097 >25 >25 >25 >25
11 Albendazole graphic file with name 41429_2023_594_Tabk_HTML.gif Anthelmintic Rat: LD50 = 2400 mg/kg (oral); Rat: LD50 = 256 mg/kg (intravenous) 0.12 0.11 >25 >25 2.84 >25
12 Mebendazole graphic file with name 41429_2023_594_Tabl_HTML.gif Anthelmintic Rat: LD50 = 714 mg/kg (oral); Mouse: LD50 = 620 mg/kg (oral) 0.011 0.52 >25 >25 >25 >25
13 Oxibendazole graphic file with name 41429_2023_594_Tabm_HTML.gif Anthelmintic Mouse: LDLo = 32 gm/kg (oral) 0.43 0.103 >25 >25 >25 >25
14 Flubendazole graphic file with name 41429_2023_594_Tabn_HTML.gif Anthelmintic Rat: LD50 = 2560 mg/kg (oral); Mouse: LD50 > 2560 mg/kg (oral) >25 0.36 >25 >25 >25 >25
15 Astemizole graphic file with name 41429_2023_594_Tabo_HTML.gif Antihistaminic Mouse: LD50 = 2052 mg/kg >25 >25 >25 22.05 >25 >25
16 Albendazole S-oxide graphic file with name 41429_2023_594_Tabp_HTML.gif Anthelmintic Mouse: LD50 > 800 mg/kg (oral) 11.78 9.35 >25 >25 >25 >25
17 Triclabendazole graphic file with name 41429_2023_594_Tabq_HTML.gif Anthelmintic Rat: LD50 > 8 gm/kg (oral); Rat: LD50 > 4 gm/kg (skin) 4.39 4.85 6.92 11.26 28.90 21.15
18 Econazole graphic file with name 41429_2023_594_Tabr_HTML.gif Antifungal drug Mice: LD50 = 462 mg/kg (oral); Rats: LD50 = 668 mg/kg (oral) 13.75 0.25 0.034 0.093 0.094 0.01
19 Itraconazole graphic file with name 41429_2023_594_Tabs_HTML.gif Antifungal drug Mouse: LD50 > 320 mg/kg (oral); Dog: LD50 > 200 mg/kg (oral) >25 0.024 0.025 >25 0.044 0.024
20 Posaconazole graphic file with name 41429_2023_594_Tabt_HTML.gif Antifungal drug Clinical trials: some patients received posaconazole up to 1600 mg/day with no adverse events noted >25 0.053 0.061 >25 0.165 0.11
21 Ketoconazole graphic file with name 41429_2023_594_Tabu_HTML.gif Antifungal drug Rat: LD50 = 227 mg/kg (oral) >25 0.15 0.34 2.34 0.26 0.12
22 Bifonazole graphic file with name 41429_2023_594_Tabv_HTML.gif Antifungal drug Rat: LD50 = 1463 mg/kg (oral); Mouse: LD50 = 2629 mg/kg (oral) 4.86 4.58 1.26 0.54 0.18 0.17
23 Efinaconazole graphic file with name 41429_2023_594_Tabw_HTML.gif Antifungal drug Rat: daily doses of up to 30 (males) and 40 (females) mg/kg (generally well tolerated) 1.51 0.095 0.058 0.15 0.035 0.026
24 Isoconazole nitrate graphic file with name 41429_2023_594_Tabx_HTML.gif Antifungal drug Rat: LD50 = 5600 mg/kg (oral); Rat: LD50 >10 gm/kg (subcutaneous) 7.42 0.066 0.101 1.17 0.28 0.021
25 Fenticonazole nitrate graphic file with name 41429_2023_594_Taby_HTML.gif Antifungal drug Rat: LD50 > 3 mg/kg (oral); Rat: LD50 >750 gm/kg (subcutaneous) 7.23 0.12 0.054 0.37 0.15 0.056
26 Isavuconazole graphic file with name 41429_2023_594_Tabz_HTML.gif Antifungal drug Rats:At doses up to 90 mg/kg/day (oral:not affect the fertility) >25 0.76 0.043 0.35 0.14 0.015
27 Deferasirox graphic file with name 41429_2023_594_Tabaa_HTML.gif Iron chelating agent - 17.94 >25 4.73 >25 >25 >25
28 Clotrimazole graphic file with name 41429_2023_594_Tabab_HTML.gif Antifungal drug Rat (male): LD50 = 708 mg/kg (oral); Mouse (male): LD50 = 923 mg/kg (oral) 0.61 0.17 0.32 0.48 0.08 0.061
29 Fluconazole graphic file with name 41429_2023_594_Tabac_HTML.gif Antifungal drug Rat: LD50 = 1271 mg/kg (oral); Rat: LD50 > 941 mg/kg (intraperitoneal) >25 >25 11.16 >25 >25 3.77
30 Voriconazole graphic file with name 41429_2023_594_Tabad_HTML.gif Antifungal drug Mouse: LD50 = 223.07 mg/kg (intravenous) 1.64 0.26 0.12 0.79 0.078 0.032
31 Sulconazle nitrate graphic file with name 41429_2023_594_Tabae_HTML.gif Antifungal drug Rat: LD50 = 1741 mg/kg (oral); Rat: LD50 = 735 mg/kg (intraperitoneal) 2.47 0.14 0.057 1.30 0.12 0.014
32 Vagistat graphic file with name 41429_2023_594_Tabaf_HTML.gif Antifungal drug Mouse: LD50 = 1870 mg/kg (oral); Mouse: LD50 = 508 mg/kg (intraperitoneal) 6.45 0.079 0.058 0.96 0.31 0.015
33 Butoconazole nitrate graphic file with name 41429_2023_594_Tabag_HTML.gif Antifungal drug Rat: LD50 = 1720 mg/kg (oral); Rat: LD50 = 940 mg/kg (intraperitoneal) 5.12 0.20 0.29 3.00 0.11 0.019
34 Terconazole graphic file with name 41429_2023_594_Tabah_HTML.gif Antifungal drug Rat (male): LD50 = 1741 mg/kg (oral); Rat (female): LD50 = 849 mg/kg (oral) >25 9.99 9.74 >25 20.35 0.37
35 Elubiol graphic file with name 41429_2023_594_Tabai_HTML.gif Antifungal drug - 19.61 0.051 0.11 2.82 0.11 0.025
36 Luliconazole graphic file with name 41429_2023_594_Tabaj_HTML.gif Antifungal drug In clinical trials, no serious toxicity was reported 8.83 0.003 0.001 0.003 0.005 0.001
37 Ruxolitinib graphic file with name 41429_2023_594_Tabak_HTML.gif Antineoplastic Rat: LD50 = 250 mg/kg (oral) >25 >25 10.79 >25 24.42 >25
38 4,5-Dichloro-2-octyl- isothiazolone graphic file with name 41429_2023_594_Tabal_HTML.gif Fungicide (mould) Toxicity of poisoning 0.58 0.80 0.63 0.27 2.45 2.64
39 Octyl-2H- isothiazol-3-one graphic file with name 41429_2023_594_Tabam_HTML.gif Fungicide (mould) Rat: LD50 = 550 mg/kg (oral); Rat: LC > 2 gm/m3 (inhalation) 1.29 0.17 0.13 0.28 0.55 1.10
40 Isothiazolinone chloride graphic file with name 41429_2023_594_Taban_HTML.gif Fungicide (mould) - 17.92 >25 >25 >25 >25 >25
41 1,2-Benzisothiazol- 3(2H)-one graphic file with name 41429_2023_594_Tabao_HTML.gif Fungicide (mould) Rat: LD50 = 1020 mg/kg (oral); Mouse: LD50 = 1150 mg/kg (oral) 3.51 2.12 3.40 2.96 >25 >25
42 Methyl-1,2- benzothiazol-3(2H)- one graphic file with name 41429_2023_594_Tabap_HTML.gif Fungicide (mould) Water flea: EC50 = 0.92 ppm; Freshwater green algae: EC50 = 0.92 ppm 5.84 13.53 20.22 16.86 19.00 >25
43 Fluoro-1,2- benzoisothiazol- 3(2H)-one graphic file with name 41429_2023_594_Tabaq_HTML.gif Fungicide (mould) - 8.94 7.70 10.71 10.58 24.39 >25
44 Isothiazol-3-one graphic file with name 41429_2023_594_Tabar_HTML.gif Pharmaceutical intermediates - 7.95 6.21 9.45 9.90 27.41 19.43
45 5-Chloro-3- hydroxyisothiazole graphic file with name 41429_2023_594_Tabas_HTML.gif Pharmaceutical intermediates - 0.98 1.98 3.80 4.06 3.29 3.70
46 5-Fluorouridine graphic file with name 41429_2023_594_Tabat_HTML.gif Pharmaceutical intermediates Rat: LD50 = 400 mg/kg (intraperitoneal); Mouse: LD50 = 160 mg/kg (intraperitoneal) >25 0.49 0.83 17.26 >25 >25
47 2'-Deoxyguanosine graphic file with name 41429_2023_594_Tabau_HTML.gif Pharmaceutical intermediates Rat: LD50 > 800 mg/kg (intraperitoneal) >25 15.13 >25 >25 >25 >25
48 Ganciclovir graphic file with name 41429_2023_594_Tabav_HTML.gif Antiviral Mouse: LD50: > 2 g/kg (oral): >25 7.56 >25 >25 >25 >25
49 Floxuridine graphic file with name 41429_2023_594_Tabaw_HTML.gif Antineoplastic Rat: LD50 = 215 mg/kg (oral) >25 2.43 1.12 >25 >25 >25
50 5-Fluorouracil graphic file with name 41429_2023_594_Tabax_HTML.gif Antineoplastic Mice: LD50=230 mg/kg (oral) >25 >25 6.33 9.46 >25 >25
51 Sulfatinib graphic file with name 41429_2023_594_Tabay_HTML.gif Antineoplastic - >25 >25 3.37 >25 >25 >25
52 Gefitinib graphic file with name 41429_2023_594_Tabaz_HTML.gif Antineoplastic Low toxicity >25 >25 13.52 >25 >25 >25
53 Dabrafenib graphic file with name 41429_2023_594_Tabba_HTML.gif Antineoplastic Rats: LD50 > 2000 mg/kg >25 2.31 0.63 >25 >25 >25
54 Afatinib graphic file with name 41429_2023_594_Tabbb_HTML.gif Antineoplastic - >25 >25 5.00 >25 >25 >25
55 Ibrutinib graphic file with name 41429_2023_594_Tabbc_HTML.gif Antineoplastic - >25 5.53 2.29 >25 14.02 9.11
56 Nilvadipine graphic file with name 41429_2023_594_Tabbd_HTML.gif The treatment of hypertension Rat: LD50 = 1560 mg/kg (oral); Rat: LD50 > 1 gm/kg (subcutaneous) >25 6.46 5.74 >25 20.44 >25
57 Amlodipine maleate graphic file with name 41429_2023_594_Tabbe_HTML.gif The treatment of hypertension - >25 >25 12.43 >25 >25 >25
58 Liranaftate graphic file with name 41429_2023_594_Tabbf_HTML.gif Antifungal drug Rat: LD50 > 2 gm/kg (oral); Rat: LD50 > 2 gm/kg (intraperitoneal) 0.048 0.168 0.004 0.19 0.031 0.27
59 Pyributicarb graphic file with name 41429_2023_594_Tabbg_HTML.gif Herbicides Rat: LD50 > 5 gm/kg (oral); Rat: LD50 > 5 gm/kg (intraperitoneal) 0.22 2.07 0.089 0.12 0.30 1.93
60 Amlodipine graphic file with name 41429_2023_594_Tabbh_HTML.gif The treatment of hypertension Women: LDLo = 1400 ug/kg (oral) >25 >25 10.53 >25 >25 >25
61 Nimodipine graphic file with name 41429_2023_594_Tabbi_HTML.gif Treatment of cerebrovascular Rat: LD50 = 2738 mg/kg (oral); Mouse: LD50 = 940 mg/kg (oral) >25 >25 10.27 >25 >25 >25
62 Sodium pyrithione graphic file with name 41429_2023_594_Tabbj_HTML.gif Antimicrobial agents Mouse: LD50 = 265 mg/kg (intraperitoneal); Rat: LD50 = 385 mg/kg (intraperitoneal) 5.45 1.42 2.26 4.72 10.72 2.83
63 Zinc pyrithione graphic file with name 41429_2023_594_Tabbk_HTML.gif Antimicrobial agents - 7.79 0.43 7.97 0.97 3.80 2.25
64 Copper pyrithione graphic file with name 41429_2023_594_Tabbl_HTML.gif Fungicides Fathead minnow: LC50 = 4.3 ppb; Crassostrea virginica: EC50 = 9.2 ppb 6.73 0.36 2.55 1.13 5.28 28.54
65 Bispyrithione graphic file with name 41429_2023_594_Tabbm_HTML.gif Pesticide intermediates - 3.31 3.17 2.03 0.37 25.55 1.39
66 Ciclopirox ethanolamine graphic file with name 41429_2023_594_Tabbn_HTML.gif Antifungal agent Rat: LD50 = 2350 mg/kg (oral); Rat: LD50 > 2500 mg/kg (subcutaneous); 14.68 1.95 5.37 10.93 14.08 18.66
67 Piroctone olamine graphic file with name 41429_2023_594_Tabbo_HTML.gif Anti-dandruff agent Mouse: LD50 = 5 gm/kg (oral) Rat: LD50 = 8100 mg/kg (oral) 18.77 7.29 >25 19.28 17.77 17.08
68 Caprylohydroxamic acid graphic file with name 41429_2023_594_Tabbp_HTML.gif Preservatives Rat: LD50 = 10700 mg/kg (oral); Mouse: LD50 = 8820 mg/kg (oral) 27.75 16.12 7.08 >25 >25 >25
69 Flavopiridol graphic file with name 41429_2023_594_Tabbq_HTML.gif Anti-cancer - 17.83 22.72 12.81 >25 >25 >25
70 Terfenadine graphic file with name 41429_2023_594_Tabbr_HTML.gif Antihistamines Rat: LD50 = 5 gm/kg (oral); Rat: LD50 >1250 mg/kg (subcutaneous) >25 14.52 12.38 23.03 >25 >25
71 Thioridazine hydrochloride graphic file with name 41429_2023_594_Tabbs_HTML.gif Antipsychotic Rat: LD50 = 1060 mg/kg (oral); Rat: LD50 = 71 mg/kg (intravenous) >25 21.62 >25 >25 18.49 15.90
72 Penfluridol graphic file with name 41429_2023_594_Tabbt_HTML.gif Antipsychotic Mouse: LD50 = 87 mg/kg (oral); Rat: LD50 = 160 mg/kg (oral) >25 6.95 13.53 17.32 >25 >25
73 Trifluoperazine graphic file with name 41429_2023_594_Tabbu_HTML.gif Antipsychotic Mouse: LD50 = 1350 mg/kg (oral); Mouse: LD50 = 120 mg/kg (intraperitoneal) 3.66 13.20 4.12 6.17 8.59 8.19
74 Ebastine graphic file with name 41429_2023_594_Tabbv_HTML.gif Antihistamines Rat: LD50 > 4 gm/kg (oral); Rat: LD50 = 496 mg/kg (intraperitoneal) 21.04 17.05 13.82 >25 19.64 >25
75 Prochlorperazine maleate graphic file with name 41429_2023_594_Tabbw_HTML.gif Antipsychotic Rat: LD50 = 750 mg/kg (oral) Rat: LD50 = 320 mg/kg (subcutaneous) 14.84 20.95 17.53 >25 >25 12.31
76 Perphenazine graphic file with name 41429_2023_594_Tabbx_HTML.gif Antipsychotic Rat: LD50 = 318 mg/kg (oral); Rat: LD50 = 146 mg/kg (intraperitoneal) 16.19 14.46 18.21 >25 13.70 15.60
77 Clozapine graphic file with name 41429_2023_594_Tabby_HTML.gif Antipsychotic Rat: LD50 = 251 mg/kg (oral); Rat: LD50 = 251 mg/kg (subcutaneous) >25 >25 23.13 >25 >25 >25
78 Aripiprazole graphic file with name 41429_2023_594_Tabbz_HTML.gif Antipsychotic - >25 20.25 17.55 24.71 17.91 24.92
79 Ziprasidone hydrochloride graphic file with name 41429_2023_594_Tabca_HTML.gif Antipsychotic - >25 22.96 >25 >25 >25 >25
80 Loratadine graphic file with name 41429_2023_594_Tabcb_HTML.gif Antihistamines Rat: LD50 > 5000 mg/kg (oral) 6.19 >25 24.53 >25 >25 12.18
81 Ponatinib graphic file with name 41429_2023_594_Tabcc_HTML.gif Antiangiogenic; antineoplastic Toxicity of poisoning 0.017 >25 11.47 >25 >25 >25
82 Bosutinib graphic file with name 41429_2023_594_Tabcd_HTML.gif Antineoplastic - >25 7.69 13.86 >25 >25 >25
83 Vandetanib graphic file with name 41429_2023_594_Tabce_HTML.gif Antineoplastic Low toxicity >25 >25 17.32 13.34 >25 >25
84 Avitinib graphic file with name 41429_2023_594_Tabcf_HTML.gif Antineoplastic - >25 11.21 11.80 49.36 >25 >25
85 Crizotinib graphic file with name 41429_2023_594_Tabcg_HTML.gif Antineoplastic - >25 11.85 10.59 >25 >25 >25
86 Ceritinib graphic file with name 41429_2023_594_Tabch_HTML.gif Antineoplastic - >25 >25 19.57 >25 >25 >25
87 Decyl-3- methylimidazolium chloride graphic file with name 41429_2023_594_Tabci_HTML.gif Chemical intermediates - >25 22.95 >25 >25 >25 >25
88 1-Dodecyl-3- methylimidazolium chloride graphic file with name 41429_2023_594_Tabcj_HTML.gif Chemical intermediates - >25 6.12 >25 >25 >25 >25
89 Dodecyl dimethyl benzyl ammonium bromide graphic file with name 41429_2023_594_Tabck_HTML.gif Disinfectant; preservative Rat: LD50 = 230 mg/kg (oral); Mouse: LD50 = 277 mg/kg >25 5.80 8.85 >25 >25 >25
90 Cetalkonium chloride graphic file with name 41429_2023_594_Tabcl_HTML.gif Preservatives Rat: LD50 > 500 mg/kg (oral) >25 8.63 >25 >25 >25 >25
91 Myristalkonium chloride graphic file with name 41429_2023_594_Tabcm_HTML.gif Germicide and algicide Mouse: LD50 = 919 mg/kg (oral); Mouse: LD50 = 18 mg/kg (intravenous) >25 14.28 9.06 >25 >25 >25
92 Benzododecinium chloride graphic file with name 41429_2023_594_Tabcn_HTML.gif Preservatives Rat: LD50 = 400 mg/kg (oral); Rat: LD50 = 100 mg/kg (intraperitoneal) >25 >25 11.40 >25 >25 >25
93 1-Dodecylpyridinium bromide graphic file with name 41429_2023_594_Tabco_HTML.gif Surfactant - >25 15.34 2.63 16.69 >25 >25
94 1,1'-Di-n-heptyl-4,4'- bipyridinium dibromide graphic file with name 41429_2023_594_Tabcp_HTML.gif Calcium release inhibitors - >25 >25 17.80 >25 >25 >25
95 1-Tetradecylpyridinium chloride graphic file with name 41429_2023_594_Tabcq_HTML.gif Surfactant - >25 23.77 11.35 >25 >25 >25
96 Octenidine dihydrochloride graphic file with name 41429_2023_594_Tabcr_HTML.gif Antibacterial agents - >25 17.57 5.36 >25 >25 >25
97 Chlorhexidine diacetate graphic file with name 41429_2023_594_Tabcs_HTML.gif Cationic broad-spectrum antimicrobial Mouse: LD50= 2 gm/kg (oral); Mouse: LD50= 38 mg/kg (intraperitoneal) 12.14 6.66 3.35 10.13 11.19 3.65
98 Domiphen bromide graphic file with name 41429_2023_594_Tabct_HTML.gif Disinfectants Guinea pig:lowest published lethal dose: 10 mg/kg 22.25 6.42 9.96 21.27 >25 >25
99 Diminazene aceturate graphic file with name 41429_2023_594_Tabcu_HTML.gif Antiparasitic agent; trypanocidal drug - >25 6.22 3.07 3.18 >25 >25
100 Pentamidine graphic file with name 41429_2023_594_Tabcv_HTML.gif Antiinfective agent Mouse: LD50= 50 mg/kg (intraperitoneal) >25 5.86 3.89 >25 >25 >25
101 Enebicyanog graphic file with name 41429_2023_594_Tabcw_HTML.gif Fungicides and preservatives - 2.89 0.91 0.62 20.94 >25 >25
102 Monensin sodium salt graphic file with name 41429_2023_594_Tabcx_HTML.gif Antiprotozoal agent - 8.80 0.076 0.11 >25 0.67 0.36
103 Rifamycin sodium graphic file with name 41429_2023_594_Tabcy_HTML.gif Antibiotics Rat: LD50= 2680 mg/kg (oral); Mouse: LD50= 2120 mg/kg (oral) 23.18 18.91 7.53 >25 >25 >25
104 (+)-Griseofulvin graphic file with name 41429_2023_594_Tabcz_HTML.gif Antibiotics Rat: LD50 >10 gm/kg (oral); Rat: LD50 = 400 mg/kg (intravenous) 2.77 13.20 0.31 6.17 2.26 3.88
105 Natamycin graphic file with name 41429_2023_594_Tabda_HTML.gif Antiseptic; antifungal Rat: LD50 = 2730 mg/kg (oral); Rat: LD50 = 190 mg/kg (subcutaneous) 0.51 1.18 0.84 2.18 2.32 0.63
106 Naftifine hydrochloride graphic file with name 41429_2023_594_Tabdb_HTML.gif Antifungal - >25 12.47 1.68 13.68 9.40 12.78
107 Terbinafine hydrochloride graphic file with name 41429_2023_594_Tabdc_HTML.gif Antifungal Rat: LD50 > 2 gm/kg (skin) 18.05 0.80 0.11 0.17 0.26 0.51
108 Butenafine hydrochloride graphic file with name 41429_2023_594_Tabdd_HTML.gif Antifungal Rat: LD50 > 4 gm/kg (oral) Rat: LD50 > 100 gm/kg (intravenous) 2.75 0.22 0.07 0.08 0.29 0.85
109 Tolnaftate graphic file with name 41429_2023_594_Tabde_HTML.gif Antifungal Mouse: LD50 = 4800 mg/kg (intravenous); Mouse: LD50 = 120 mg/kg (intraperitoneal) 0.36 7.90 0.07 >25 0.47 >25
110 Cinacalcet graphic file with name 41429_2023_594_Tabdf_HTML.gif A calcimimetic and a P450 inhibitor - 9.89 20.12 10.83 15.25 13.37 10.41
111 Salicylanilide graphic file with name 41429_2023_594_Tabdg_HTML.gif Fungicides (cosmetics) Mouse: LD50 = 2400 mg/kg (oral); Mouse: LD50 > 500 mg/kg (intraperitoneal) 24.43 >25 21.90 21.77 14.62 11.64
112 Oxyclozanide graphic file with name 41429_2023_594_Tabdh_HTML.gif Anthelmintic Rat: LD50 = 1 gm/kg (oral) 0.71 0.50 0.09 >25 >25 >25
113 Nitazoxanide graphic file with name 41429_2023_594_Tabdi_HTML.gif Anthelmintic Mouse: LD50 = 1350 mg/kg (oral); Rat: LD50 > 10 gm/kg (oral) >25 1.42 1.15 >25 >25 >25
114 Sulfaquinoxaline sodium graphic file with name 41429_2023_594_Tabdj_HTML.gif Anthelmintic - >25 >25 >25 14.47 >25 >25
115 Sulfisomezole sodium graphic file with name 41429_2023_594_Tabdk_HTML.gif Antibiotics - >25 >25 14.20 >25 14.71 >25
116 Bensulfuron-methyl graphic file with name 41429_2023_594_Tabdl_HTML.gif Herbicides Rat: LD50 > 5 gm/kg (oral); Rat: LD50 > 2 gm/kg (skin) >25 12.67 12.40 17.36 >25 >25
117 Chlorimuron-ethyl graphic file with name 41429_2023_594_Tabdm_HTML.gif Herbicides Rat: LD50 = 4102 mg/kg (oral) >25 13.09 11.68 >25 >25 >25
118 Vemurafenib graphic file with name 41429_2023_594_Tabdn_HTML.gif Antineoplastic Rat: up to 250 mg/kg/day (no evidence of teratogenicity) 0.42 >25 >25 >25 >25 >25
119 Bardoxolone methyl graphic file with name 41429_2023_594_Tabdo_HTML.gif Antineoplastic; anti-inflammatory - 0.56 >25 1.72 >25 >25 >25
120 4,4,4-Trifluoro-1- (4-fluorophenyl)butane-1,3-dione graphic file with name 41429_2023_594_Tabdp_HTML.gif Pharmaceutical intermediates - 6.45 13.12 4.76 6.43 31.06 31.75
121 Sodium dehydroacetate graphic file with name 41429_2023_594_Tabdq_HTML.gif Food additives; preservatives - 18.02 8.91 16.21 6.59 7.95 24.01
122 (4-Chloropheny)- 4,4,4-trifluoro-1,3- butanedione graphic file with name 41429_2023_594_Tabdr_HTML.gif Pharmaceutical intermediates - 2.64 3.28 1.69 1.90 9.51 10.36
123 Triclosan graphic file with name 41429_2023_594_Tabds_HTML.gif Preservatives; fungicides Rat: LD50 = 3700 mg/kg 7.88 10.03 2.24 3.15 4.39 4.96
124 Tamoxifen graphic file with name 41429_2023_594_Tabdt_HTML.gif Antineoplastic Rat: LD50 = 4100 mg/kg (oral); Rat: LD50 = 700 mg/kg (intraperitoneal) >25 11.04 7.37 >25 >25 >25
125 Dronedarone hydrochloride graphic file with name 41429_2023_594_Tabdu_HTML.gif Anti-arrhythmic - >25 4.74 10.21 >25 >25 20.85
126 Nimesulide graphic file with name 41429_2023_594_Tabdv_HTML.gif Non-steroidal anti-inflammatory Mouse: LD50 = 216 mg/kg (intraperitoneal); Mouse: LD50 = 392 mg/kg (oral) >25 >25 1.24 >25 >25 >25
127 Disulfiram graphic file with name 41429_2023_594_Tabdw_HTML.gif Antineoplastic Rats: LD50 = 8.6 g/kg (oral) 20.28 15.95 >25 >25 >25 >25
128 Bithionol graphic file with name 41429_2023_594_Tabdx_HTML.gif Anthelmintic Mouse: LD50 = 760 mg/kg (oral); Mouse: LD50 = 760 mg/kg (intraperitoneal) >25 >25 >25 >25 >25 10.35
129 JX06 graphic file with name 41429_2023_594_Tabdy_HTML.gif Selective covalent inhibitors Mouse: LD50 = 3250 mg/kg (oral) 21.28 >25 >25 >25 >25 >25
130 Iodopropynyl butylcarbamate graphic file with name 41429_2023_594_Tabdz_HTML.gif Fungicides (wood) Rat: LD50 = 1.5 g/kg (oral) 0.12 0.14 0.11 0.55 0.47 0.45
131 Leflunomide graphic file with name 41429_2023_594_Tabea_HTML.gif Non-steroidal anti-inflammatory Mouse: LD50 = 445 mg/kg (oral); Mouse: LD50 = 185 mg/kg (intraperitoneal) >25 >25 15.21 >25 >25 >25
132 Efavirenz graphic file with name 41429_2023_594_Tabeb_HTML.gif Antivirals Cynomolgus monkeys:dosages of 60 mg/kg daily (substantial malformations) 8.43 6.78 >25 27.13 16.77 16.93
133 Sunitinib graphic file with name 41429_2023_594_Tabec_HTML.gif Anti-tumour Rat, mouse, and dog: 500 mg/kg (The maximally tolerated dose for when given orally) >25 >25 21.87 >25 >25 >25
134 Indometacin graphic file with name 41429_2023_594_Tabed_HTML.gif Non-hormonal anti-inflammatory Rats: LD50 = 2.42 mg/kg (oral) 13.85 >25 4.46 >25 22.52 >25
135 Dichloro-1,2- dithiacyclopentenone graphic file with name 41429_2023_594_Tabee_HTML.gif Fungicides (multi-disciplinary) Mouse: LD50 = 13 mg/kg (intravenous) 3.69 6.32 6.66 5.27 5.76 6.26
136 3H-1,2-Benzodithiol-3-one graphic file with name 41429_2023_594_Tabef_HTML.gif Pharmaceutical intermediates - >25 22.43 18.95 >25 >25 >25
137 Sertraline hydrochloride graphic file with name 41429_2023_594_Tabeg_HTML.gif Antidepressants Mouse: LDLo = 336 mg/kg (oral); Women: TDLo = 7 mg/kg/2W-I (oral) 17.48 17.71 8.64 34.65 20.60 14.19
138 Simvastatin graphic file with name 41429_2023_594_Tabeh_HTML.gif Lipid-lowering drugs Mouse: LD50 = 798 mg/kg (intraperitoneal); Mouse: LD50 = 3 gm/kg (oral) 15.43 9.21 8.15 >25 7.16 >25
139 Benzbromarone graphic file with name 41429_2023_594_Tabei_HTML.gif Lowering uric acid Rat: LD50 = 1230 mg/kg (subcutaneous); Rat: LD50 = 248 mg/kg (oral); Mouse: LD50 = 618 mg/kg (oral) >25 10.75 1.95 12.48 9.18 >25
140 Fluvastatin sodium salt graphic file with name 41429_2023_594_Tabej_HTML.gif Lipid-lowering drugs - >25 0.52 0.21 >25 0.62 2.55
141 Dichlorophen graphic file with name 41429_2023_594_Tabek_HTML.gif Anti-microbial agents Rat:LD50 = 1683 mg/kg (oral) 4.52 7.88 7.55 5.24 7.55 7.04
142 Flufenamic acid graphic file with name 41429_2023_594_Tabel_HTML.gif Anti-inflammatory Mouse: LD50 = 490 mg/kg (oral); Mouse: LD50 = 620 mg/kg (subcutaneous) 8.37 15.28 4.56 45.27 24.54 14.25
143 Carbonyl cyanide 3-chloro- phenylhydrazone graphic file with name 41429_2023_594_Tabem_HTML.gif A geroprotector; an antibacterial agent and an ionophore Rat: LDLo = 50 mg/kg (subcutaneous); Mouse: LDLo = 8 mg/kg (intraperitoneal) 0.53 0.57 0.38 4.33 6.07 4.69
144 Bufexamac graphic file with name 41429_2023_594_Taben_HTML.gif Non-steroidal anti-inflammatory Rat: LD50 = 3370 mg/kg (oral); Mouse: LD50 = 1195 mg/kg (oral) >25 21.95 >25 >25 >25 >25
145 Diclofenac graphic file with name 41429_2023_594_Tabeo_HTML.gif Anti-inflammatory drugs Mouse: LD50 = 170 mg/kg (oral) 6.63 13.34 3.18 >25 >25 >25
146 Phenylpenta-2,4- dienoic acid graphic file with name 41429_2023_594_Tabep_HTML.gif Light sensitive compound - >25 17.94 >25 >25 >25 >25
147 Amylmetacresol graphic file with name 41429_2023_594_Tabeq_HTML.gif Antiseptic; antifungal Rat: LD50 = 1500 mg/kg (oral) 11.58 18.79 7.29 8.81 >25 >25
148 Tapinarof graphic file with name 41429_2023_594_Taber_HTML.gif Antifungal drug - 9.55 12.32 14.99 11.95 14.20 14.44
149 Febantel graphic file with name 41429_2023_594_Tabes_HTML.gif Anthelmintic Rat: LD50 = 10605 mg/kg (oral); Mouse: LD50 > 10 gm/kg (oral) 0.15 >25 >25 >25 >25 >25
150 Abafungin graphic file with name 41429_2023_594_Tabet_HTML.gif Antifungal drug - 3.05 0.39 18.66 3.37 0.47 1.80

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fungicides against plant pathogenic fungi

Plant pathogens can cause crop yield reduction and quality deterioration, and control of plant diseases is still dominated by chemical fungicides. We evaluated the in vitro activity of the fungicide in Fig. 2. Carbendazim and thiophanate-methyl were broad-spectrum fungicides belonging to the benzimidazole and substituted benzene fungicides respectively, with EC50 values in the range of 0.14–22.12 μg ml−1 for pathogenic fungi. They had excellent activity against S. sclerotiorum, with EC50 was 0.68 and 0.53 μg ml−1, respectively. Difenoconazole is a sterol demethylation inhibitor with systemic, prophylactic and therapeutic effects. It had relatively potent activity against five pathogens except for R. solani, especially F. oxysporum, with an EC50 of 0.04 μg ml−1. Boscalid was a novel nicotinamide fungicide with positive action against R. solani, S. sclerotiorum, B. cinerea and F. graminearum, with EC50 < 2 μg ml−1. Azoxystrobin and kresoxim-methyl were strobilurin fungicides with good activity against S. sclerotiorum with EC50 of 4.9 and 4.66 μg ml−1, respectively. Pyrimethanil and thirluzamide belong to the genus of methyl pyrimidine and benzamides, respectively. They were potent pesticides against B. cinerea and R. solani with EC50 was 3.89 and 0.054 μg ml−1, respectively. We evaluated the different classes of fungicides against plant pathogens to provide a basis for the activity level of the drugs screened for this study.

Fig. 2.

Fig. 2

The EC50 of fungicides against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Quinoline alkaloids

Alkaloids are a class of alkaline nitrogen-containing organic compounds in plants, marine organisms, microorganisms and insects. They have a wide range of biological activities such as lowering blood pressure, anti-tumor, central nervous system, lowering blood glucose, lowering blood lipids, insect repellent and anti-microbial [2832]. Therefore they show potential for application in medical treatment and agricultural insecticide. In previous studies, our team designed and synthesized a variety of quinoline alkaloid derivatives based on different structures of natural product alkaloids, and tested their activity against plant pathogenic fungi [3340] (Table 2), which provided a theoretical basis and laid a solid foundation for the development and application of alkaloids. To further obtain a broader spectrum of effective anti-phytopathogenic fungal alkaloids, the 28 drugs with different biological functions were repositioned (Table 3), and 6 compounds with better anti-phytopathogenic fungal activities were obtained, as shown in Table 1 and Fig. 3. Among them, pitavastatin calcium had a relatively broad spectrum of activity against pathogenic fungi, particularly against B. cinerea, P. capsici and F. oxysporum, with EC50 of less than 1 μg ml−1. However, cabozantinib showed more excellent activity against R. solani, with EC50 of 0.032 μg ml−1, which may be the introduction of 1-methoxy-4-methylbenzene into the quinoline structure to enhance the antifungal activity. In addition, dequalinium chloride, mefloquine hydrochloride and bedaquiline showed potential against B. cinerea or S. sclerotiorum. Therefore, the quinoline alkaloids designed and synthesized in our laboratory, as well as the repositioning of other functional alkaloids, we found that alkaloids have great potential in the field of agricultural disease control.

Table 2.

The EC50 of quinoline alkaloids designed and synthesized in our laboratory against plant pathogenic fungia

No. Chemical structures EC50(μg/mL) References
R. s S. s B. c F. g M. o P. c M. m
1 graphic file with name 41429_2023_594_Tabeu_HTML.gif 11.79 5.03 0.08 0.94 - - 0.98 [33]
2 graphic file with name 41429_2023_594_Tabev_HTML.gif 14.04 1.07 0.09 2.80 - - 0.83 [33]
3 graphic file with name 41429_2023_594_Tabew_HTML.gif 4.93 2.80 0.07 1.92 - - - [33]
4 graphic file with name 41429_2023_594_Tabex_HTML.gif 5.29 1.93 0.16 1.63 - - - [33]
5 graphic file with name 41429_2023_594_Tabey_HTML.gif 5.36 2.68 0.14 1.48 - - - [33]
6 graphic file with name 41429_2023_594_Tabez_HTML.gif 0.75 2.77 0.10 6.51 - - - [33]
7 graphic file with name 41429_2023_594_Tabfa_HTML.gif å 30 8.44 0.09 19.50 - - - [33]
8 graphic file with name 41429_2023_594_Tabfb_HTML.gif - - 0.050 - - - [34]
9 graphic file with name 41429_2023_594_Tabfc_HTML.gif - - 0.037 - - - [34]
10 graphic file with name 41429_2023_594_Tabfd_HTML.gif - - 0.027 - - - [34]
11 graphic file with name 41429_2023_594_Tabfe_HTML.gif - - 0.034 - - - [34]
12 graphic file with name 41429_2023_594_Tabff_HTML.gif - - 0.040 - - - [34]
13 graphic file with name 41429_2023_594_Tabfg_HTML.gif - - 0.061 - - - [34]
14 graphic file with name 41429_2023_594_Tabfh_HTML.gif - - 0.055 - - - [34]
15 graphic file with name 41429_2023_594_Tabfi_HTML.gif - - 0.086 - - - [34]
16 graphic file with name 41429_2023_594_Tabfj_HTML.gif - - 0.037 - - - [34]
17 graphic file with name 41429_2023_594_Tabfk_HTML.gif - - 0.032 - - - [34]
18 graphic file with name 41429_2023_594_Tabfl_HTML.gif - - 0.035 - - - [34]
19 graphic file with name 41429_2023_594_Tabfm_HTML.gif - - 0.047 - - - [34]
20 graphic file with name 41429_2023_594_Tabfn_HTML.gif - - 0.068 - - - [34]
21 graphic file with name 41429_2023_594_Tabfo_HTML.gif - - 0.071 - - - [34]
22 graphic file with name 41429_2023_594_Tabfp_HTML.gif - - 1.32 - - - [34]
23 graphic file with name 41429_2023_594_Tabfq_HTML.gif 1.52 1.79 1.33 8.37 - - - [35]
24 graphic file with name 41429_2023_594_Tabfr_HTML.gif 2.59 1.98 7.91 2.60 - - - [35]
25 graphic file with name 41429_2023_594_Tabfs_HTML.gif 2.64 1.20 0.76 3.55 - - - [35]
26 graphic file with name 41429_2023_594_Tabft_HTML.gif 5.41 1.16 1.88 15.72 - - - [35]
27 graphic file with name 41429_2023_594_Tabfu_HTML.gif 3.58 1.16 0.73 5.90 - - - [35]
28 graphic file with name 41429_2023_594_Tabfv_HTML.gif 1.84 0.52 0.50 21.37 - - - [35]
29 graphic file with name 41429_2023_594_Tabfw_HTML.gif >40 0.83 1.99 32.06 - - - [35]
30 graphic file with name 41429_2023_594_Tabfx_HTML.gif - - 8.42 27.79 - - - [36]
31 graphic file with name 41429_2023_594_Tabfy_HTML.gif 9.45 13.29 6.03 15.38 - - - [36]
32 graphic file with name 41429_2023_594_Tabfz_HTML.gif - - 6.01 15.93 - - - [36]
33 graphic file with name 41429_2023_594_Tabga_HTML.gif - - 4.53 14.76 - - - [36]
34 graphic file with name 41429_2023_594_Tabgb_HTML.gif - - 6.93 17.37 - - - [36]
35 graphic file with name 41429_2023_594_Tabgc_HTML.gif - - 7.24 19.60 - - - [36]
36 graphic file with name 41429_2023_594_Tabgd_HTML.gif - - 9.16 34.92 - - - [36]
37 graphic file with name 41429_2023_594_Tabge_HTML.gif 8.95 10.31 - - - [36]
38 graphic file with name 41429_2023_594_Tabgf_HTML.gif 2.28 2.74 9.61 2.21 - - - [37]
39 graphic file with name 41429_2023_594_Tabgg_HTML.gif 2.85 0.78 3.62 1.59 - - - [37]
40 graphic file with name 41429_2023_594_Tabgh_HTML.gif 2.71 - 4.37 5.11 - - - [37]
41 graphic file with name 41429_2023_594_Tabgi_HTML.gif - - 1.32 - - - - [37]
42 graphic file with name 41429_2023_594_Tabgj_HTML.gif 1.97 2.87 5.97 - 12.72 - - [38]
43 graphic file with name 41429_2023_594_Tabgk_HTML.gif 1.770 - - 5.959 - - - [39]
44 graphic file with name 41429_2023_594_Tabgl_HTML.gif 0.098 - - - - - - [39]
45 graphic file with name 41429_2023_594_Tabgm_HTML.gif 0.065 - - - - - - [39]
46 graphic file with name 41429_2023_594_Tabgn_HTML.gif 0.073 - - - - - - [39]
47 graphic file with name 41429_2023_594_Tabgo_HTML.gif 5.550 30.920 24.049 12.282 11.076 9.281 - [39]
48 graphic file with name 41429_2023_594_Tabgp_HTML.gif 5.708 20.971 21.871 27.733 19.796 12.512 - [39]
49 graphic file with name 41429_2023_594_Tabgq_HTML.gif 3.915 1.569 4.999 0.249 0.246 0.505 - [39]
50 graphic file with name 41429_2023_594_Tabgr_HTML.gif - - 0.103 - - - - [40]
51 graphic file with name 41429_2023_594_Tabgs_HTML.gif - - 0.146 - - - - [40]
52 graphic file with name 41429_2023_594_Tabgt_HTML.gif - - 0.321 - - - - [40]
53 graphic file with name 41429_2023_594_Tabgu_HTML.gif - - 0.069 - - - - [40]
54 graphic file with name 41429_2023_594_Tabgv_HTML.gif - - 0.036 - - - - [40]
55 graphic file with name 41429_2023_594_Tabgw_HTML.gif - - 0.050 - - - - [40]
56 graphic file with name 41429_2023_594_Tabgx_HTML.gif - - 0.066 - - - - [40]
57 graphic file with name 41429_2023_594_Tabgy_HTML.gif - - 0.093 - - - - [40]
58 graphic file with name 41429_2023_594_Tabgz_HTML.gif - - 0.191 - - - - [40]
59 graphic file with name 41429_2023_594_Tabha_HTML.gif - - 0.042 - - - - [40]
60 graphic file with name 41429_2023_594_Tabhb_HTML.gif - - 0.229 - - - - [40]
61 graphic file with name 41429_2023_594_Tabhc_HTML.gif - - 0.047 - - - - [40]
62 graphic file with name 41429_2023_594_Tabhd_HTML.gif - - 0.133 - - - - [40]
63 graphic file with name 41429_2023_594_Tabhe_HTML.gif - - 0.108 - - - - [40]
64 graphic file with name 41429_2023_594_Tabhf_HTML.gif - - 0.245 - - - - [40]
65 graphic file with name 41429_2023_594_Tabhg_HTML.gif - - 0.397 - - - - [40]

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici; M.o, Magnaporthe oryzae; M.m, Mycosphaerella melonis

Table 3.

In vitro antifungal activities (inhibition rate/%) of the quinoline alkaloids against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 Quinine sulfate dihydrate 100 12.85 ± 1.52 2.54 ± 1.47 20.62 ± 1.48 8.99 ± 0.94 12.65 ± 0.62 10.38 ± 1.66
2 Hydroquinidine 100 59.34 ± 1.66 14.43 ± 1.39 24.9 ± 1.37 22.31 ± 0.46 18.48 ± 0.52 16.97 ± 0.11
3 Hydroquinidine 4-chlorobenzoate 100 68.33 ± 0.43 81.23 ± 1.88 88.05 ± 1.74 28.96 ± 1.98 75.01 ± 0.4 70.48 ± 0.82
4 Hydroquinine 100 4.11 ± 1.30 7.55 ± 0.10 18.14 ± 1.85 12.60 ± 1.41 20.11 ± 2.05 16.88 ± 0.99
5 Quinine hydrochloride dihydrate 100 0 ± 0 0 ± 0 36.25 ± 1.69 6.19 ± 0.55 21.35 ± 0.51 17.87 ± 1.52
6 Synephrine 100 6.04 ± 0.32 0 ± 0 0 ± 0 0 ± 0 20.33 ± 1.39 8.95 ± 0.56
7 N-Benzylcinchoninium chloride 100 11.11 ± 2.39 0 ± 0 10.52 ± 0.67 0 ± 0 18.63 ± 1.04 24.22 ± 1.89
8 N-Benzylquininum chloride 100 17.96 ± 0.42 0 ± 0 11.84 ± 1.57 13.68 ± 1.98 31.34 ± 1.05 0 ± 0
9 N-Benzylcinchonidinium chloride 100 13.45 ± 2.54 0 ± 0 5.48 ± 2.51 0 ± 0 28.23 ± 2.15 11.99 ± 1.34
10 Cinchonine hydrochloride 100 15.79 ± 2.26 0 ± 0 8.8 ± 0.45 0 ± 0 32.26 ± 0.48 18.13 ± 0.67
11 Quinine dihydrochloride 100 17.36 ± 0.79 0 ± 0 9.83 ± 0.63 0 ± 0 18.15 ± 1.97 17.45 ± 0.52
12 Hydroquinidine hydrochloride 100 17.47 ± 0.52 15.09 ± 1.9 15.03 ± 1.19 9.23 ± 1.65 24.29 ± 1.25 22.44 ± 0.93
13 Cinchonine 100 0 ± 0 8.77 ± 0.79 6.45 ± 0.82 10.84 ± 1.01 22.83 ± 0.31 21.69 ± 0.18
14 Cinchonidine 100 5.25 ± 1.39 0 ± 0 10.93 ± 1.82 0 ± 0 21.5 ± 0.33 0 ± 0
15 Quinidine 100 0 ± 0 30.52 ± 0.94 25.7 ± 1.18 20.59 ± 1.08 36.44 ± 1.85 20.12 ± 0.19
16 Quinine 100 47.17 ± 0.04 22.98 ± 1.37 17.18 ± 1.52 0 ± 0 17.81 ± 1.59 18.46 ± 0.34
17 Quininne hydrochloride 100 0 ± 0 14.32 ± 2.69 21.95 ± 1.82 8.75 ± 2.29 11.19 ± 0.31 13.03 ± 0.01
18 (9 S) − 10,11-Dihydro-cinchonan-6',9-diol 100 16.57 ± 1.03 0 ± 0 48.42 ± 0.92 30.04 ± 0.01 7.36 ± 0.78 16.26 ± 1.46
19 Plaquenil 100 0 ± 0 0 ± 0 23.73 ± 0.85 38.83 ± 0.17 12.78 ± 2.26 20.79 ± 1.08
20 Mefloquine hydrochloride 100 73.2 ± 2.53 0 ± 0 100 ± 0 60.71 ± 1.47 66.92 ± 0.30 71.23 ± 1.43
21 Bedaquiline (fumarate) 100 38.76 ± 1.73 86.4 ± 0.9 89.72 ± 0.7 30.38 ± 1.26 49.23 ± 0.05 55.99 ± 1.05
22 Dequalinium chloride 100 47.29 ± 0.44 100 ± 0 100 ± 0 37.83 ± 0.29 68.18 ± 0.82 97.11 ± 0.01
23 Lenvatinib 100 66.06 ± 0.39 37.28 ± 1.56 11.86 ± 0.11 21.69 ± 1.02 22 ± 0.76 0 ± 0
24 Cabozantinib 100 100 ± 0 14.81 ± 1.01 58.71 ± 2.27 18.32 ± 0.14 18.28 ± 1.23 23.91 ± 1.95
25 Primaquine diphosphate 100 8.91 ± 0.44 48.57 ± 1.02 35.52 ± 2.75 0 ± 0 15.75 ± 0.51 0 ± 0
26 Quinoxyfen 100 92.45 ± 0.09 59.4 ± 1.16 29.25 ± 1.51 61.41 ± 1.22 34.02 ± 0.02 43.08 ± 0.13
27 Pitavastatin calcium 100 55.22 ± 1.2 68.0 ± 1.24 100 ± 0 74.07 ± 0.87 95.94 ± 0.28 97.4 ± 0.08
28 Decoquinate 100 16.51 ± 0.24 0 ± 0 25.69 ± 0.17 0 ± 0 0 ± 0 0 ± 0

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fig. 3.

Fig. 3

The EC50 of quinoline alkaloids against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Benzoimidazole/carbamate drugs

Benzimidazoles and their derivatives are an essential group of active agents in pesticides and pharmaceuticals with broad-spectrum biological activities, such as anticancer [41], antibacterial [42], antiviral [43] and antiparasitic [44]. Likewise, carbamates are a group of insecticides with outstanding bioactivity, which have properties such as rapid decomposition, short residual period and low bioaccumulation [45, 46]. On this basis, we screened 26 drugs against pathogenic fungi, as shown in Table 4, and screened out 11 drugs with excellent action, as shown in Table 1 and Fig. 4, which laid the foundation for searching for lead compounds with good activity.

Table 4.

In vitro antifungal activities (inhibition rate/%) of the benzimidazole/carbamate drugs against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 Omeprazole 100 0 ± 0 7.07 ± 1.45 30.42 ± 1.88 11.72 ± 0.07 20.91 ± 0.63 28.2 ± 0.19
2 Esomeprazole magnesium 100 7.53 ± 1.11 0 ± 0 21.85 ± 1.25 14.72 ± 2.61 22.89 ± 0.36 24.33 ± 1.42
3 Ufiprazole 100 51.42 ± 1.75 27.93 ± 0.7 27.72 ± 0.25 36.05 ± 1.75 52.05 ± 0.5 63.33 ± 0.52
4 Lansoprazole 100 36.07 ± 1.36 32.07 ± 1.59 24.4 ± 2.55 23.01 ± 2.23 36.26 ± 1.07 49.72 ± 0.73
5 Lansoprazole sulphide 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 10.23 ± 1.83
6 R-(+)-lansoprazole 100 40.35 ± 0.72 0 ± 0 22.89 ± 0.9 5.69 ± 0.49 39.58 ± 1.56 51.81 ± 1.09
7 Ilaprazole (IY 81149) 100 43.74 ± 1.99 22.9 ± 1.09 59.26 ± 0.78 12.95 ± 0.83 43 ± 0.32 49.98 ± 0.91
8 Pantoprazole sodium 100 7.46 ± 1.34 5.90 ± 1.11 18.55 ± 1.81 0 ± 0 24.34 ± 0.44 27.55 ± 1.53
9 Pantoprazole thioether 100 67.27 ± 0.31 11.75 ± 1.86 35.38 ± 0.25 32.94 ± 1.03 53.25 ± 0.68 60.46 ± 1.38
10 Rabeprazole sulphide 100 33.15 ± 1.16 0 ± 0 23.75 ± 1.1 63.97 ± 1.39 54.88 ± 1.81 56.38 ± 1.41
11 Azilsartan 100 0 ± 0 31.25 ± 1.32 19.15 ± 1.58 13.50 ± 2.16 5.33 ± 1.40 35.35 ± 1.16
12 Telmisartan 100 70.28 ± 0.97 82.22 ± 1.08 86.19 ± 0.81 51.44 ± 0.45 80.08 ± 1.94 80.95 ± 1.41
13 Candesartan cilexetil 100 0 ± 0 9.73 ± 0.21 0 ± 0 22.37 ± 0.8 8.77 ± 1.55 6.1 ± 1.14
14 Dabigatran etexilate 100 26.37 ± 1.92 72.09 ± 0.16 76.94 ± 1.16 0 ± 0 13.68 ± 0.7 36.76 ± 1.2
15 Pimobendan 100 0 ± 0 19.52 ± 2.91 0 ± 0 0 ± 0 0 ± 0 11.42 ± 1.41
16 Parbendazole 100 97.34 ± 0.58 97.98 ± 0.38 0 ± 0 31.76 ± 0.7 35.58 ± 0.28 28.5 ± 0.14
17 Oxfendazole 100 100 ± 0 99.02 ± 0.29 54.09 ± 1.77 49.68 ± 1.72 40.01 ± 0.41 42.43 ± 5.07
18 Fenbendazole 100 100 ± 0 98.08 ± 0.33 0 ± 0 0 ± 0 38.82 ± 1.07 17.15 ± 1.13
19 Albendazole 100 100 ± 0 100 ± 0 0 ± 0 54.52 ± 0.06 80.64 ± 0.61 75.77 ± 0.69
20 Mebendazole 100 100 ± 0 100 ± 0 0 ± 0 47.42 ± 0.23 68.64 ± 1.8 55.36 ± 0.27
21 Oxibendazole 100 91.69 ± 0.8 100 ± 0 16.97 ± 2.54 33.15 ± 1.36 68.78 ± 0.57 57.89 ± 0.52
22 Flubendazole 100 30.49 ± 0.34 92.34 ± 1.09 8.35 ± 0.66 26.69 ± 1.43 39.62 ± 0.45 21.51 ± 0.87
23 Albendazole S-oxide 100 96.03 ± 0.47 100 ± 0 14.9 ± 1.51 47.13 ± 1.55 18.35 ± 0.72 19.11 ± 1.45
24 Triclabendazole 100 79.69 ± 0.03 74.19 ± 0.48 92.65 ± 1.17 72.23 ± 0.53 67.35 ± 0.58 67.48 ± 1.91
25 Bilastin 100 0 ± 0 0 ± 0 7.95 ± 0.61 11.95 ± 0.33 0 ± 0 8.15 ± 1.63
26 Selumetinib 100 6.49 ± 0.46 23.33 ± 1.96 39.24 ± 0.67 29.58 ± 0.60 7.38 ± 0.16 10.98 ± 0.47

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fig. 4.

Fig. 4

The EC50 of benzoimidazole/carbamate drugs against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

The structure-activity relationship showed that drugs attached to the benzene ring to n-butyl had positive activity against R. solani and S. sclerotiorum with EC50 of 0.051 μg ml−1 and 0.16 μg ml−1, respectively, while replacing the C atom in n-butyl with an S atom (fenbendazole) or O atom (oxibendazole) had an insignificant effect on activity. However, the S-atom in n-butyl was replaced by sulfur monoxide (albendazole S-oxide), significantly less active against both pathogens. The acetophenone structure (mebendazole) exhibited positive inhibition activity against R. solani and S. sclerotiorum. But the introduction of an F-atom into the acetophenone structure (flubendazole) significantly reduced the inhibition activity against R. solani (EC50 > 25 μg ml−1). Surprisingly, the substitution of the acetophenone with the phenyl sulfane moiety (fenbendazole) showed significant inhibitory activity against R. solani and S. sclerotiorum with EC50 of 0.007 μg ml−1 and 0.097 μg ml−1 respectively. However, the replacement of the S atom by the sulfoxide resulted in significantly reduced activity against both pathogens. By comparing the activity of benzimidazole/carbamate against plant pathogens, we found that iodopropynyl butylcarbamate was effective in expanding the antifungal spectrum and had promising activity against pathogenic fungi. Thus the repositioning of benzoimidazoles/carbamates can be an effective way to expand their application areas.

Azole drugs

Azoles drugs have a wide range of applications in agriculture and medicine, such as low cost, availability and bioavailability, making azoles drugs of choice treating of fungal infections in most HIV/AIDS patients [47]. In agricultural production, triazole fungicides are mainly used to control plant fungal diseases caused by rust and mulberry powdery mildew pathogens due to their high efficiency and low toxicity [48]. The results indicate that azoles have broad antifungal activity as an essential backbone, which offers the possibility of developing new drugs. We screened 46 azole drugs (Table 5) against plant pathogens and obtained 16 drugs with optimal activity, as shown in Table 1 and Fig. 5.

Table 5.

In vitro antifungal activities (inhibition rate/%) of the azole drugs against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 Ronidazole 100 8.24 ± 1.98 12.57 ± 2.29 0 ± 0 14.20 ± 2.25 12.55 ± 1.30 9.98 ± 0.39
2 Benzoylmetronildazole 100 43.63 ± 0.32 21.18 ± 0.45 36.45 ± 1.33 27.64 ± 3.77 0 ± 0 13.05 ± 1.21
3 Daclatasvir 100 0 ± 0 33.05 ± 2.09 26.45 ± 0.25 0 ± 0 0 ± 0 6.01 ± 0.72
4 Econazole 100 89.76 ± 0.81 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
5 Itraconazole 100 25.09 ± 2.31 92.16 ± 0.79 96.0 ± 0.64 17.29 ± 3.32 87.4 ± 0.86 75.9 ± 1.17
6 Posaconazol 100 11.99 ± 0.35 100 ± 0 100 ± 0 66.44 ± 1.41 95.98 ± 0.32 100 ± 0
7 Letrozole 100 14.94 ± 1.23 0 ± 0 0 ± 0 0 ± 0 13.15 ± 0.01 0 ± 0
8 Anastrozole 100 7.62 ± 0.5 47.48 ± 1.96 0 ± 0 0 ± 0 10.03 ± 0.78 0 ± 0
9 Ketoconazole 100 66.19 ± 2.1 100 ± 0 100 ± 0 94.01 ± 0.29 100 ± 0 100 ± 0
10 Bifonazole 100 89.17 ± 0.25 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
11 KP 103 100 88.68 ± 0.93 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
12 Isoconazole nitrate 100 100 ± 0 100 ± 0 100 ± 0 97.83 ± 0.26 96 ± 0.75 100 ± 0
13 Fenticonazole nitrate 100 89.38 ± 0.04 97.18 ± 2.01 96.71 ± 0.46 76.8 ± 0.28 88.36 ± 0.41 94.72 ± 0.21
14 Isavuconazole 100 68.78 ± 0.49 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
15 Atipamezole hydrochloride 100 0 ± 0 22.85 ± 0.25 0 ± 0 13.28 ± 0.16 7.84 ± 1.13 35.77 ± 0.75
16 Valsartan 100 0.91 ± 0.21 0.70 ± 0.1 1.30 ± 0.3 3.09 ± 0.72 1.01 ± 0.02 0.98 ± 0.2
17 Deferasirox 100 94.51 ± 0 72.91 ± 0.62 89.16 ± 0.93 38.23 ± 0.44 80.91 ± 0.33 81.06 ± 0.67
18 Topiroxostat 100 10.82 ± 1.87 36.38 ± 1.65 0 ± 0 0 ± 0 0 ± 0 0 ± 0
19 Ribavirin 100 40.83 ± 0.48 20.75 ± 1.49 0 ± 0 0 ± 0 7.23 ± 0.24 10.86 ± 1.54
20 Levamisole hydrochloride 100 13.37 ± 1.48 - 0 ± 0 0 ± 0 0 ± 0 0 ± 0
21 Temozolomideacid 100 0 ± 0 0 ± 0 0 ± 0 5.05 ± 0.71 0 ± 0 0 ± 0
22 Imiquimod 100 16.28 ± 0.81 13.87 ± 1.43 52.68 ± 0.77 30.09 ± 3 17.03 ± 2.04 23.49 ± 1.41
23 Miconazole 100 23.60 ± 1.48 13.03 ± 1.52 8.60 ± 0.71 25.13 ± 1.49 17.79 ± 1.96 11.85 ± 1.02
24 Atipamezole hydrochloride 100 0 ± 0 22.85 ± 0.25 0 ± 0 13.28 ± 0.16 7.84 ± 1.13 35.77 ± 0.75
25 Levamisole hydrochloride 100 13.37 ± 1.48 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
26 Temozolomide 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 8.21 ± 1.86 0 ± 0
27 (+)-Pilocarpine hydrochloride 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 3.03 ± 1.05
28 Metronidazole 100 4.66 ± 1.79 12.02 ± 2.01 0 ± 0 13.67 ± 1.97 7.90 ± 0.59 11.08 ± 0.91
29 Ornidazole 100 2.87 ± 0.38 5.37 ± 1.47 0 ± 0 7.14 ± 3.41 0.00 ± 0.00 11.87 ± 0.6
30 Tinidazole 100 7.04 ± 0.98 28.46 ± 1.86 0 ± 0 17.15 ± 2.81 19.13 ± 0.89 0 ± 0
31 Clotrimazole 100 91.15 ± 1.05 100 ± 0 100 ± 0 99.65 ± 0.09 100 ± 0 100 ± 0
32 Fluconazole 100 59.15 ± 0.13 92.03 ± 0.01 94.14 ± 0.29 0 ± 0 67.88 ± 0 100 ± 0
33 Voriconazole 100 87.55 ± 0.84 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
34 Sulconazle nitrate 100 85.21 ± 2.1 100 ± 0 100 ± 0 85.69 ± 0.73 93.27 ± 0.53 100 ± 0
35 Vagistat 100 88.03 ± 1.71 100 ± 0 100 ± 0 97.06 ± 0.54 100 ± 0 100 ± 0
36 Butoconazole nitrate 100 95.27 ± 0.02 100 ± 0 100 ± 0 82.53 ± 0.1 87.75 ± 0.17 100 ± 0
37 Terconazole 100 51.4 ± 1.55 98.69 ± 0.01 82.17 ± 1.29 39.07 ± 0.08 72.57 ± 0 96.08 ± 0.29
38 Elubiol 100 74.86 ± 1.21 100 ± 0 100 ± 0 75.93 ± 0.75 100 ± 0 100 ± 0
39 Luliconazole 100 95.48 ± 0.27 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
40 Deracoxib 100 39.23 ± 1.39 48.42 ± 1.72 60.7 ± 1.71 55.03 ± 1.32 20.31 ± 1.27 48.38 ± 0.23
41 Cilostazol 100 17.94 ± 0.54 0 ± 0 0 ± 0 0 ± 0 27.18 ± 2.23 16.35 ± 1.76
42 Ruxolitinib 100 79.21 ± 1.87 42.33 ± 0.47 79.79 ± 0.01 53.7 ± 0.69 70.78 ± 0.97 72.32 ± 0.45
43 Baricitinib 100 18.12 ± 2.51 24.48 ± 1.49 14.74 ± 2.84 54.43 ± 0.99 48.29 ± 1.21 33 ± 0.61
44 Cimetidine 100 11.20 ± 0.92 8.73 ± 2.54 10.76 ± 1.73 3.70 ± 0.33 7.47 ± 0.79 6.24 ± 0.68
45 Pemirolast potassium 100 8.78 ± 0.63 15.20 ± 1.22 25.73 ± 1.46 18.05 ± 2.53 14.51 ± 0.32 9.01 ± 0.17
46 Aprepitant 100 60.09 ± 3.08 26.51 ± 1.65 62.67 ± 1.75 30.45 ± 1.11 0 ± 0 6.16 ± 1.27

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fig. 5.

Fig. 5

The EC50 of azole drugs against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

The activity of bifonazole and clotrimazole showed that clotrimazole was more active than bifonazole against R. solani and S. sclerotiorum, which may be related to 1-benzyl-1H-imidazole. Econazole, vagistat, isoconazole nitrate and fenticonazole nitrate shared the basic structure (1-(2-(2,4-dichlorophenyl)-methoxy-2-ethyl)−1H-imidazole) and had comparable activity against all pathogens. All the compounds showed excellent activity against P. capsici with EC50 < 0.06 μg ml−1, indicating that this basic structure played a vital role in anti-pathogenic fungi. Replacing the O atom in the basic structure above with an S atom (sulconazle nitrate) had little effect on the activity against the plant pathogens, suggesting that the basic structure was still the key to activity. Voriconazole, efinaconazole and isavuconazole had similar basic structures, but efinaconazole showed better activity than the other two drugs with EC50 of 0.095 μg ml−1 and 0.035 μg ml−1 against S. sclerotiorum and F. oxysporum, respectively. The activity of ketoconazole against plant pathogens was significantly higher than that of terconazole, and the EC50 was in the range of 0.12–2.34 μg ml−1, which showed that 1-methyl-1H-imidazole was more effective than 1-methyl-1H − 1,2,4-triazole in this type of drug. However, not all drugs containing 1-methyl-1H − 1,2,4-triazole structures were less active against pathogens than 1-methyl-1H-imidazole. Itraconazole and posaconazole showed the strongest inhibitory activity against pathogens with EC50 < 0.17 μg ml−1. In summary, the azole backbone is the main active group against plant pathogenic fungi with a view to repositioning old drugs for plant disease control.

Isothiazolinone drugs

Isothiazolinone is a major industrial bactericide, antiseptic and anti-enzyme agent, with outstanding inhibition of mold, algae and other microorganisms [49]. Recently, a series of derivatives with anti-tuberculosis and lipase inhibitors have been designed and synthesized [50, 51]. We selected 26 isothiazolinones (Table 6) for screening against phytopathogenic fungi and obtained 8 drugs with good activity, which were briefly analysed in Table 1 and Fig. 6.

Table 6.

In vitro antifungal activities (inhibition rate/%) of the isothiazolinone drugs against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 Methazolamide 100 69.21 ± 0.02 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2 Acetazolamide 100 0 ± 0 0 ± 0 63.74 ± 2.25 0 ± 0 0 ± 0 4.45 ± 0.34
3 Nizatidine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
4 Famotidine 100 0 ± 0 0.45 ± 0.64 0 ± 0 0 ± 0 0 ± 0 0 ± 0
5 2-Mercaptobenzothiazolyl 100 65.82 ± 0.96 83.59 ± 1.46 65.24 ± 1.22 62.11 ± 0.01 69.98 ± 0.31 74.35 ± 0.08
6 Ethyl 2-(2-aminothiazol-4-yl)glyoxylate 100 16.99 ± 2.38 0 ± 0 16.1 ± 1.63 6.67 ± 2.95 0 ± 0 0 ± 0
7 Ceftazidime intermediate 100 7.08 ± 0.34 0 ± 0 41.25 ± 0.11 0 ± 0 0 ± 0 0 ± 0
8 6-Aminopenicillanic acid 100 0 ± 0 11.02 ± 2.58 0 ± 0 0 ± 0 0 ± 0 11.12 ± 0.13
9 Aztreonam 100 0 ± 0 16.04 ± 1.4 0 ± 0 0 ± 0 0 ± 0 11.11 ± 0.15
10 4,5-Dichloro-2-octyl-isothiazolone 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
11 2-Octyl-2H-isothiazol-3-one 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
12 Isothiazolinone chloride 100 79.46 ± 1.97 93.27 ± 0.27 38.58 ± 1.98 41.23 ± 1.33 51.44 ± 1.12 -
13 2-Methyl-4-isothiazolin-3-one 100 72.09 ± 1.30 72.63 ± 1.77 54.44 ± 1.20 44.23 ± 1.92 42.64 ± 2.00 -
14 1,2-Benzisothiazol-3(2H)-one 100 83.43 ± 0.73 90.98 ± 0.55 84.89 ± 2.28 86.18 ± 1.50 75.43 ± 0.40 100 ± 0
15 2-Methyl-1,2-benzothiazol-3(2H)-one 100 92.23 ± 0.28 98.84 ± 0.11 66.18 ± 0.18 58.19 ± 0.86 75.3 ± 0.08 54.07 ± 0.53
16 6-Fluoro-1,2-benzoisothiazol-3(2H)-one 100 85.62 ± 0.66 99.33 ± 0.26 85.92 ± 2.97 66.57 ± 1.78 60.23 ± 0.93 42.70 ± 0.22
17 Benzo[D]isoxazol-3-ol 100 23.85 ± 1.65 87.8 ± 0.47 48.81 ± 0.32 53.79 ± 1.68 87.5 ± 0.24 -
18 6-Chlorobenzo[D]isoxazol-3-ol 100 42.85 ± 1.56 37.05 ± 1.08 22.18 ± 1.18 37.61 ± 0.23 43.75 ± 0.47 -
19 3-Indazolinone 100 17.2 ± 1.1 0 ± 0 3.60 ± 0.57 0 ± 0 15.27 ± 1.12 -
20 6-Bromo-1H-indazol-3-ol 100 24.83 ± 1.41 26.94 ± 1.12 8.63 ± 1.21 0 ± 0 11.06 ± 0.43 -
21 Saccharin 100 6.45 ± 1.19 19.07 ± 1.80 0 ± 0 0 ± 0 0 ± 0 -
22 6-Nitro-1,2-benzisothiazolin-3-one 1,1-dioxide 100 9.43 ± 1.17 27.63 ± 1.90 0 ± 0 0 ± 0 0 ± 0 -
23 3-(1-Piperazinyl)-1,2-benzisothiazole 100 12.18 ± 1.49 39.65 ± 1.57 7.89 ± 0.77 18.18 ± 1.92 13.91 ± 1.33 31.8 ± 0.2
24 Isothiazol-3-one 100 95.80 ± 0.05 100 ± 0 100 ± 0 100 ± 0 85.07 ± 0.64 100 ± 0
25 5-Chloro-3-hydroxyisothiazole 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
26 Febuxostat 100 79.65 ± 1.17 75.35 ± 0.05 63.28 ± 1.73 44.01 ± 1.5 73.85 ± 0.22 60.55 ± 1.12

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fig. 6.

Fig. 6

The EC50 of isothiazolinone drugs against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

The 5-chloro-3-hydroxyisothiazole was the introduction of a Cl atom to the isothiazol-3-one structure, which significantly increased the activity against plant fungi with an EC50 in the range of 0.98–4.06 μg ml−1, but the introduction of a methyl group to 5-chloro-3-hydroxyisothiazole decreased the antifungal activity. The introduction of a Cl atom and octane on the 5-chloro-3-hydroxyisothiazole structure resulted in increasing activity against phytopathogenic fungi with an EC50 in the range of 0.27–2.64 μg ml−1. However, 2-octyl-2H-isothiazol-3-one showed comparable activity against plant pathogens compared to 4,5-dichloro-2-octyl-isothiazolone. Therefore, the introduction of octane in this structure may enhance the activity of phytopathogenic fungi, compared to 1,2-benzisothiazol-3(2H)-one, 2-methyl-1,2-benzothiazol-3(2H)-one and 6-fluoro-1,2-benzoisothiazol-3(2H)-one showed reduced antifungal activity, indicating that the introduction of substituents in this structure (benzoisothiazole) reduced the antifungal activity. Overall, the isothiazolinone structure is a potential lead compound against phytopathogenic fungi.

Pyrimidine drugs

Pyrimidine derivatives play an important role in insecticide, fungicide, weed control, antiviral, anticancer, etc. [52, 53], and have been the focus of attention of major pesticide companies in the world. In this study, we screened 65 drugs (Table 7) against agropathogenic fungi and obtained 10 highly active drugs, as shown in Table 1 and Fig. 7.

Table 7.

In vitro antifungal activities (inhibition rate/%) of the pyrimidine drugs against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 5-Fluorouridine 100 93.47 ± 0.92 100 ± 0 100 ± 0 81.11 ± 1.22 88.73 ± 0.23 89.6 ± 0.18
2 Doxifluridine 100 92.06 ± 0.44 91.33 ± 0.41 100 ± 0 77.2 ± 1.56 79.73 ± 0.39 74.97 ± 0.5
3 Avanafil 100 29.26 ± 0.52 18.75 ± 1.42 36.75 ± 1.65 56.86 ± 0.47 15.27 ± 1.6 22.08 ± 0.85
4 Uridine 100 83.38 ± 0.81 92.21 ± 1.97 89.26 ± 1.19 51.65 ± 1.02 58.24 ± 1.48 57.18 ± 0.08
5 2'-Fluoro-2'-deoxyuridine 100 0 ± 0 13.48 ± 2.85 0.94 ± 0.05 25.39 ± 1.21 0.73 ± 0.26 3.8 ± 2.69
6 1-(2-Deoxy-2-fluoro-beta-D-arabinofuranosyl)uracil 100 15.47 ± 0.58 70.6 ± 0.39 6.4 ± 0.44 30.52 ± 2 5.9 ± 0.83 6.2 ± 0.41
7 1-Beta-D-Arabinofuranosyluracil 100 17.04 ± 0.14 100 ± 0 100 ± 0 38.05 ± 1.65 79.19 ± 0.01 88.56 ± 0.01
8 Trifluorothymine 100 66.42 ± 0.95 100 ± 0 100 ± 0 62.18 ± 0.57 90.12 ± 0.68 90.62 ± 0.74
9 Broxuridine 100 69.6 ± 0.57 91.57 ± 0.84 90.95 ± 0.23 62.53 ± 0.8 72.06 ± 0.17 63.3 ± 0.83
10 5-Bromouridine 100 19.95 ± 0.62 8.89 ± 1.23 9.49 ± 2.54 2.09 ± 0.3 0.19 ± 0.03 4.81 ± 1.02
11 5-Iodouridine 100 9.38 ± 0.99 17.47 ± 0.01 6.46 ± 2.59 6.35 ± 0.48 2.3 ± 0.17 6.53 ± 0.66
12 Carmofur 100 2.48 ± 0.11 9.85 ± 1.38 9.95 ± 0.57 2.04 ± 0.23 1.03 ± 0.04 3.16 ± 2.23
13 Tegafur 100 1.93 ± 0.73 14.48 ± 0.98 9.22 ± 1.58 1.73 ± 0.15 3.91 ± 0.02 6.04 ± 0.83
14 Cytidine 100 1.94 ± 0.71 1.03 ± 1.01 2.00 ± 0.06 6.96 ± 1.26 2.08 ± 0.02 1.03 ± 0.05
15 5-Fluorocytidine 100 1.94 ± 0.38 2.40 ± 0.03 35.9 ± 1.12 3.47 ± 0.17 1.04 ± 0.04 1.06 ± 0.02
16 5-Azacytidine 100 1.97 ± 0.82 51.98 ± 1.21 1.79 ± 0.29 5.74 ± 0.49 2.73 ± 0.22 1.55 ± 0.36
17 Lamivudine 100 74.77 ± 0.31 69.04 ± 0.21 69.78 ± 0 88.88 ± 2.4 84.74 ± 0 39.57 ± 2.3
18 Trifluridine 100 44.17 ± 1.98 25.52 ± 0.78 33.36 ± 0.21 18.62 ± 1.79 19.55 ± 0 8.09 ± 0.69
19 Guanosine 100 2.08 ± 0.02 2.71 ± 0.02 2.01 ± 0.10 14.12 ± 1.44 1.39 ± 0.03 5.77 ± 0.42
20 2'-Deoxyguanosine 100 64.42 ± 0.14 72.56 ± 0.12 100 ± 0 95.08 ± 0.00 94.05 ± 0.89 75.7 ± 0.02
21 Dideoxyinosine 100 1.80 ± 0 9.53 ± 0.79 1.92 ± 0.01 10.19 ± 0.75 1.35 ± 0.63 6.16 ± 1.11
22 Stavudine 100 0.83 ± 0.09 2.74 ± 0.03 7.95 ± 0.85 1.03 ± 0.04 3.71 ± 0.7 4.09 ± 0.16
23 Abacavir 100 1.88 ± 0.63 2.47 ± 0.92 0.03 ± 0.01 0.21 ± 0.01 0.21 ± 0.04 7.04 ± 1.12
24 Acyclovir 100 2.81 ± 0.17 2.93 ± 0.06 0.30 ± 0.01 2.30 ± 2.1 3.89 ± 0.1 1.00 ± 0.4
25 Famciclovir 100 0 ± 0 18.31 ± 2.66 4.01 ± 0.01 2.71 ± 0.03 5.01 ± 0.71 2.5 ± 1.84
26 Penciclovir 100 1.92 ± 0.81 4.90 ± 0.01 2.28 ± 0.02 4.08 ± 0.92 2.01 ± 0.08 3.51 ± 0.73
27 Ganciclovir 100 97.92 ± 0.11 96.2 ± 0.52 97.48 ± 0 75.04 ± 0.81 87.89 ± 1.33 91.68 ± 0.25
28 Brivudine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
29 Cytarabine 100 3.81 ± 0.47 0 ± 0 11.74 ± 0.41 14.15 ± 1.46 7.10 ± 1.02 5.59 ± 0.49
30 Vidarabine monophosphate 100 21.73 ± 0.98 15.67 ± 1.03 0 ± 0 0 ± 0 0 ± 0 0 ± 0
31 Idoxuridine 100 7.95 ± 0.66 11.8 ± 0.04 14.95 ± 1.39 15.71 ± 0.24 20.73 ± 0.15 15.60 ± 0.98
32 Thymidine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
33 Floxuridine 100 51.75 ± 2.84 83.70 ± 2.28 96.42 ± 0.38 81.14 ± 0.78 38.48 ± 0.01 31.11 ± 2.37
34 5-Fluorouracil 100 74.98 ± 1.98 48.82 ± 1.16 82.15 ± 0 81.39 ± 1.49 54.46 ± 0.92 34.62 ± 0.12
35 Fluorocytosine 100 0 ± 0 56.34 ± 1.69 75.94 ± 0.73 7.78 ± 0.95 3.55 ± 0.66 0 ± 0
36 Emtricitabine 100 0 ± 0 13.02 ± 1.05 0 ± 0 0 ± 0 0 ± 0 0 ± 0
37 6-Thioguanine 100 5.09 ± 2.48 0 ± 0 8.77 ± 1.51 0 ± 0 5.48 ± 0.19 5.54 ± 0.04
38 Zidovudine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 9.16 ± 1.74 5.76 ± 1.02
39 Capecitabine 100 12.26 ± 1.51 24.62 ± 1.09 0 ± 0 0 ± 0 0 ± 0 0 ± 0
40 Dasatinib 100 38.91 ± 0.29 74.83 ± 1.62 89.72 ± 0.3 63.88 ± 1.94 76.26 ± 0.28 55.91 ± 0.22
41 Lapatinib 100 28.91 ± 1.96 69.92 ± 1.2 80.1 ± 0.69 48.92 ± 0.49 45.96 ± 0.22 42.33 ± 0.69
42 Nilotinib 100 0 ± 0 0 ± 0 10.93 ± 1.78 7.78 ± 0.78 0 ± 0 8.74 ± 0.7
43 Pazopanib hydrochloride 100 12.43 ± 0.79 28.21 ± 0.65 43.95 ± 1.46 34.76 ± 1.97 30.28 ± 0.05 20.39 ± 0.46
44 Sulfatinib 100 66.17 ± 7.04 77.12 ± 0.29 76.75 ± 1.92 62.24 ± 1.62 49.76 ± 0.13 32.5 ± 0.99
45 CAL-101 100 48.6 ± 2.85 0 ± 0 47.66 ± 0.09 32.02 ± 0.07 20.3 ± 0.58 16.82 ± 1.29
46 Gefitinib 100 23.29 ± 0.31 75.68 ± 2.59 92.22 ± 1 72.28 ± 0.63 67.35 ± 0.54 57.22 ± 0.24
47 Erlotinib 100 11.69 ± 1.62 0 ± 0 42.3 ± 0.41 12.17 ± 0.61 9.68 ± 0.96 15.94 ± 0.98
48 Dabrafenib 100 64.51 ± 0.9 83.7 ± 0.84 89.72 ± 1.23 64.2 ± 0.36 62.51 ± 0.47 65.69 ± 0.74
49 Nilotinib hydrochloride monohydrate 100 0 ± 0 47.15 ± 1.28 16.78 ± 0.46 10.76 ± 1.58 0 ± 0 9.46 ± 0.22
50 Tofacitinib 100 9.85 ± 1.96 0 ± 0 5.54 ± 0.36 11.9 ± 0.13 3.14 ± 0.13 2.62 ± 0.77
51 Afatinib 100 44.53 ± 0.76 78.99 ± 0.03 88.16 ± 0.24 52.59 ± 0.36 70.81 ± 0.21 45.23 ± 0.08
52 Ibrutinib 100 75.18 ± 2.12 93.23 ± 0.15 87.82 ± 0.01 67 ± 0.25 73.96 ± 1.33 79.25 ± 0.6
53 Mereletinib 100 56.8 ± 2.61 83.79 ± 0.91 55.15 ± 3.53 65.29 ± 1.14 81.29 ± 0.77 59.2 ± 0.85
54 Gemcitabine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
55 Pyrimethamine 100 32.89 ± 0.59 36.34 ± 3.86 47.49 ± 0.16 43.67 ± 2.67 27.08 ± 0.02 32.67 ± 0.93
56 Thiamine chloride 100 0 ± 0 13.82 ± 1.32 0 ± 0 0 ± 0 0 ± 0 2.88 ± 0.96
57 Thiamine nitrate 100 0 ± 0 29.26 ± 1.32 0 ± 0 0 ± 0 0 ± 0 0 ± 0
58 Trimethoprim 100 13.36 ± 0.90 58.24 ± 2.37 13.00 ± 0.82 7.12 ± 3.05 17.35 ± 2.67 12.73 ± 2.25
59 Methotrexate 100 0 ± 0 29.19 ± 3.11 0 ± 0 0 ± 0 0 ± 0 0 ± 0
60 Triamterene 100 0 ± 0 0 ± 0 0 ± 0 19.77 ± 1.85 0 ± 0 0 ± 0
61 Revaprazan hydrochloride 100 10.18 ± 3.65 0 ± 0 6.63 ± 0.35 16.63 ± 2.06 0 ± 0 4.93 ± 0.63
62 Thiamine hydrochloride 100 6.24 ± 2.19 11.51 ± 1.01 0 ± 0 0 ± 0 0 ± 0 0 ± 0
63 Etravirine 100 7.45 ± 1.99 14.73 ± 2.98 0 ± 0 0 ± 0 0 ± 0 0 ± 0
64 Arprinocide 100 82.28 ± 2.14 29.35 ± 1.6 23.81 ± 0.47 13.37 ± 1.71 0 ± 0 0 ± 0
65 Amprolium 100 6.01 ± 0.81 0 ± 0 19.1 ± 0.62 5.3 ± 1.8 0 ± 0 0 ± 0

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fig. 7.

Fig. 7

The EC50 of pyrimidine drugs against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Taking 5-fluorouracil as a backbone, a molecule ((2R,3S,4R,5S)−2-(hydroxymethyl)-tetrahydrofuran-3,4-diol) was introduced to become 5-fluorouridine, which significantly enhanced its activity against plant pathogenic fungi. Compared with 5-fluorouridine, the structure of floxuridine was one less OH group, but it was slightly less active against S. sclerotiorum and B. cinerea. It showed that the introduction of this moiety directly affected the anti-pathogenic fungal activity of the compound. Compared to ganciclovir, 2'-deoxyguanosine was less active against S. sclerotiorum. The pyrimidine-4-amine-based compounds showed inhibitory activity against B. cinerea with an EC50 range of 2.29–13.52 μg ml−1. Both dabrafenib and sulfatinib contain N-methylmethanesulfonamide, which were active against S. sclerotiorum and B. cinerea, and had superior antifungal activity to sulfamitinib. Thus, the activity of pyrimidine analogues against phytopathogenic fungi are based on the pyrimidine structure with other moieties, which are beneficial to improve the activity and can be used as candidate lead compounds against plant pathogenic fungi.

Pyridine drugs

In agriculture, pyridines are used as insecticides, herbicides and plant growth regulators. In particular, in herbicides, a number of highly effective and low-toxicity varieties have been developed, such as pyrimethanesulfuron, pirimicarb and acetamiprid [54]. In this study, 31 drugs that have not yet been applied against plant pathogenic fungi were screened, as shown in Table 8, and 12 drugs with application potential were finally screened out, as shown in Table 1. We aim to obtain lead structures or drugs with triple action of insecticide, herbicide, and disease control.

Table 8.

In vitro antifungal activities (inhibition rate/%) of the pyridines drugs against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 Nilvadipine 100 47.94 ± 1.46 89.46 ± 0.01 87.47 ± 0.01 59.50 ± 1.98 77.12 ± 0.42 57.97 ± 0.16
2 Roflumilast 100 6.9 ± 1.92 19.74 ± 0.9 0 ± 0 0 ± 0 0 ± 0 0 ± 0
3 Acalabrutinib 100 0 ± 0 41.65 ± 0.9 11.8 ± 2.02 29.67 ± 2.46 0 ± 0 0 ± 0
4 Nvp-lde225 100 71.65 ± 0.64 44.78 ± 1.29 33.58 ± 0.85 28.33 ± 0.21 0 ± 0 8.5 ± 1.08
5 Sorafenib tosylate 100 14.85 ± 0.95 25.01 ± 0.8 56.98 ± 0.36 22.5 ± 0.45 12.12 ± 0.47 22.05 ± 0.37
6 Abemaciclib 100 0 ± 0 54.13 ± 1.44 79.46 ± 0.73 14.97 ± 1.24 16.32 ± 1.71 13.87 ± 1.68
7 Axitinib 100 37.77 ± 0.14 0 ± 0 4.36 ± 0.82 11.76 ± 0.25 0 ± 0 5.02 ± 0.5
8 Regorafenib hydrate 100 27.25 ± 1.11 12.65 ± 0.44 53.24 ± 0.17 5.23 ± 0.07 5.12 ± 0.7 31.69 ± 0.51
9 Pheniramine maleate 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
10 Chlorpheniramine maleate 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 16.65 ± 1.63
11 Amlodipine maleate 100 42.06 ± 0.97 90.1 ± 0.33 93.27 ± 0.21 60.98 ± 1.05 66.89 ± 0.61 69.91 ± 1.11
12 Clopidol 100 9.94 ± 2.26 0 ± 0 15.9 ± 1.99 6.25 ± 2.75 0 ± 0 0 ± 0
13 Liranaftate 100 97.07 ± 0.34 100 ± 0 95.94 ± 0.27 81.72 ± 0.43 88.1 ± 0.10 81.48 ± 1.00
14 Rosiglitazone 100 23.44 ± 2.32 0 ± 0 16.17 ± 2.03 45.43 ± 1.26 61.95 ± 0.07 45.06 ± 0.23
15 Pioglitazone hydrochloride 100 0 ± 0 3.54 ± 0.06 5.72 ± 0.08 16.85 ± 0.12 9.75 ± 0.09 3.43 ± 3.41
16 Pyributicarb 100 92.93 ± 0.49 98.27 ± 0.11 92.06 ± 0.76 77.56 ± 0.01 81.45 ± 0.12 87.06 ± 0.09
17 Acrivastine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
18 Milrinone 100 14.34 ± 1.36 0 ± 0 0 ± 0 0 ± 0 10.23 ± 1.19 0 ± 0
19 Tropicamide 100 9.13 ± 0.69 11.71 ± 0.88 21.34 ± 0.36 8.92 ± 2.01 0 ± 0 0 ± 0
20 Protionamide 100 17.5 ± 1.27 0 ± 0 34.9 ± 3.34 10.86 ± 0.44 5.21 ± 1.26 14.43 ± 1.16
21 Ethionamide 100 36.73 ± 0.92 0 ± 0 49.06 ± 0.96 24.68 ± 3.44 0 ± 0 9.06 ± 0.44
22 Amlodipine 100 62.82 ± 0.83 92 ± 0.37 96.1 ± 0.07 53.2 ± 1.29 76.95 ± 1.55 70.47 ± 2.13
23 Nimodipine 100 53.05 ± 2.65 61.5 ± 0.04 74.06 ± 1.61 31.96 ± 1.26 75.39 ± 0.81 67.49 ± 0.92
24 Isoniazid 100 8.18 ± 2.55 0 ± 0 11.98 ± 0.63 7.4 ± 1.93 0 ± 0 9.45 ± 0.28
25 Sodium pyrithione 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
26 Zinc pyrithione 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
27 Copper pyrithione 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 63.52 ± 1.33
28 Bispyrithione 100 100 ± 0 100 ± 0 82.36 ± 1.01 100 ± 0 59.39 ± 0.84 88.41 ± 1.99
29 Ciclopirox ethanolamine 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
30 Piroctone olamine 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
31 Caprylohydroxmic acid 100 91.58 ± 0.93 98.02 ± 0.57 100 ± 0 37.50 ± 1.31 58.76 ± 2.70 47.39 ± 1.19

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

As shown in Fig. 8, nilvadipine, nimodipine, amlodipine and amlodipine maleate belonged to the dihydropyridine group and showed activity against B. cinerea, among which nilvadipine had the strongest activity with an EC50 of 5.74 μg ml−1. This may be related to the electron-absorbing groups attached to the pyridine ring. Amlodipine maleate was a salt form of amlodipine with a slightly increased activity against B. cinerea. Liranaftate and pyributicarb had broad-spectrum and excellent activity against plant phytopathogens. Compared with liranaftate and pyributicarb, the activity of benzene ring-linked the cyclohexane ring with benzene ring-linked tert-butyl ring was one order of magnitude higher against five pathogenic fungi except F. oxysporum, among which the activity against B. cinerea was the best, with EC50 of 0.004 μg ml−1. The results suggest that pyridines, especially liranaftate and pyributicarb are promising for repositioning as fungicides for the control of plant pathogens.

Fig. 8.

Fig. 8

The EC50 of pyridine drugs compounds against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Piperidine/Piperazine drugs

Piperidine ring and piperazine group are often introduced into many drug molecules to improve the pharmacokinetic properties by effectively adjusting the ratio of lipid-water distribution and acid-base balance of drugs, which improves the bioavailability of drug molecules and drug efficacy [5558]. In this study, mainly 65 antipsychotics were used to screen agricultural fungi, as shown in Table 9, and 18 drugs with relatively good activity were obtained as shown in Table 1.

Table 9.

In vitro antifungal activities (inhibition rate/%) of the piperidine/piperazine drugs against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 Piperazine 100 10.13 ± 1.09 0 ± 0 0 ± 0 0 ± 0 8.07 ± 0.4 0 ± 0
2 N-Aminoethylpiperazine 100 7.23 ± 0.89 26.08 ± 1.92 0 ± 0 0 ± 0 12.98 ± 0.87 0 ± 0
3 4-Methyl-1-piperazineethanamine 100 9.38 ± 1.28 0 ± 0 0 ± 0 0 ± 0 10.4 ± 1.09 0 ± 0
4 Buclizine dihydrochloride 100 33.46 ± 1.33 59.92 ± 0.15 66.63 ± 1.18 29.69 ± 2.47 23.08 ± 0.44 17.17 ± 1.25
5 Flavopiridol 100 89.93 ± 0.21 91.42 ± 0.81 89.23 ± 1.08 44.95 ± 2.38 56.25 ± 1.29 62.24 ± 1.14
6 Terfenadine 100 65.52 ± 0.22 100 ± 0 93.81 ± 0.8 75.97 ± 2.41 80.95 ± 0.9 69.96 ± 0.26
7 Thioridazine hydrochloride 100 91.41 ± 0.12 95.3 ± 0.04 81.65 ± 1.32 77.6 ± 1.14 87.61 ± 0.46 86.22 ± 0.82
8 Pimozide 100 52.60 ± 1.99 80.59 ± 0.77 87.66 ± 0.9 26.66 ± 2.29 74.42 ± 0.24 76.53 ± 1.29
9 Penfluridol 100 85.13 ± 0.01 91.7 ± 1.32 90.53 ± 0.58 87.27 ± 0.29 64.9 ± 0.82 49.98 ± 3.41
10 Loperamide hydrochloride 100 20.07 ± 2.39 50.38 ± 1.76 61.69 ± 2.72 54.23 ± 0.33 28.53 ± 0.05 41.3 ± 0.42
11 Benzhexol hydrochloride 100 28.46 ± 0.81 14.3 ± 4.44 33.66 ± 0.53 27.88 ± 1.3 0 ± 0 16.35 ± 0.77
12 Trifluoperazine 100 86.9 ± 0.43 94.95 ± 0.49 95.93 ± 0.26 82.95 ± 2.51 77.85 ± 1.61 84.87 ± 1.02
13 Paroxetine hydrochloride 100 66.8 ± 1.53 76.83 ± 0.28 88.59 ± 0.49 62.77 ± 1.72 64.5 ± 0.33 67.08 ± 1.15
14 Ebastine 100 88.1 ± 0.24 89.73 ± 0.12 90.82 ± 0.22 47.57 ± 2.44 87.09 ± 0.42 74.72 ± 0.56
15 Haloperidol 100 44.75 ± 1.84 64.38 ± 0.42 84.53 ± 0 56.68 ± 2.24 42.75 ± 1.23 42.42 ± 0.17
16 Mizolastine 100 6.85 ± 0.35 58.66 ± 0.77 86.42 ± 1.92 50.32 ± 2.94 45.1 ± 0.7 48.11 ± 2.81
17 Vortioxetine 100 1.50 ± 0.01 0.70 ± 0.20 3.0 ± 0.12 2.45 ± 0.19 1.82 ± 0.71 6.25 ± 0.54
18 Sildenafil 100 0 ± 0 16.68 ± 1.1 34.92 ± 0.01 22.88 ± 0 15.85 ± 0.04 25.12 ± 1.12
19 Prochlorperazine maleate 100 90.84 ± 0.07 85.45 ± 0.75 84.67 ± 1.33 62.29 ± 1.61 70.01 ± 0.34 84.52 ± 0.24
20 Perphenazine 100 100 ± 0 94.53 ± 0.9 85.08 ± 1.33 84.54 ± 2.13 77.46 ± 0.44 86.13 ± 1.34
21 Clozapine 100 44.03 ± 2.74 44.32 ± 0.07 74 ± 0.58 67.7 ± 1.11 56.56 ± 0.5 50.4 ± 2.67
22 Olanzapine 100 0 ± 0 22.77 ± 1.16 33.84 ± 1.37 33.69 ± 1.15 16.16 ± 1.36 44.43 ± 0.46
23 Ranolazine 100 9.64 ± 1.43 42.17 ± 0.68 14.1 ± 0.12 0 ± 0 7.15 ± 1.33 18.79 ± 0.05
24 Amoxapine 100 46.5 ± 0.34 78.43 ± 0.14 59.03 ± 0.01 59.22 ± 1.16 60.67 ± 0.01 60.26 ± 0.28
25 Mirtazapine 100 0 ± 0 47.18 ± 0.11 7.87 ± 0.27 0 ± 0 11.43 ± 0.44 26.08 ± 0.45
26 Sitagliptin 100 0 ± 0 43.52 ± 2.16 9.92 ± 0.04 0 ± 0 1.01 ± 0.06 9.55 ± 0.1
27 Brexpiprazole 100 23.77 ± 0.18 59.61 ± 1.75 43.04 ± 2.47 52.28 ± 1.98 65.19 ± 0.27 29.94 ± 0.98
28 Aripiprazole 100 84.8 ± 2.57 97.46 ± 0.57 96.66 ± 0.32 86.81 ± 0.74 82.19 ± 0.46 74.18 ± 0.17
29 Ziprasidone hydrochloride 100 27.61 ± 0.91 86.92 ± 1.14 22.6 ± 1.05 21.25 ± 2.1 37.33 ± 1 31.94 ± 0.33
30 Cinnarizine 100 5.28 ± 0.36 34.77 ± 1.43 32.62 ± 0.38 16.65 ± 1.34 10.8 ± 0.79 20.15 ± 1.89
31 Cetirizine 100 0 ± 0 0 ± 0 11.88 ± 1.63 0 ± 0 0 ± 0 12.93 ± 0.15
32 Domperidone 100 0 ± 0 0 ± 0 53.03 ± 0.43 16.05 ± 1.27 32.58 ± 0.62 33.23 ± 2.01
33 Bilastin 100 0 ± 0 0 ± 0 7.95 ± 0.61 11.95 ± 0.33 0 ± 0 8.15 ± 1.63
34 Risperidone 100 0 ± 0 0 ± 0 17.48 ± 1.01 21.52 ± 1.87 14.93 ± 2.33 16.71 ± 1.8
35 Terazosin hydrochloride 100 9.93 ± 1.09 0 ± 0 46.52 ± 1.49 22.21 ± 2.14 21.79 ± 1.37 21.64 ± 1.13
36 Donepezil 100 15.4 ± 0.43 43.31 ± 2.81 48.97 ± 2.58 31.26 ± 1.11 7.94 ± 2.31 19.61 ± 1.56
37 Droperidol 100 0 ± 0 0 ± 0 7.88 ± 1.62 5.53 ± 0.50 22.79 ± 1.34 25.66 ± 1.47
38 Flibaserin 100 39.16 ± 0.42 51.1 ± 0.82 38.81 ± 0.56 58.49 ± 1.53 61.42 ± 0.01 49.12 ± 1.83
39 Piperaquinoline 100 0 ± 0 0 ± 0 12.59 ± 0.85 34.6 ± 0.07 34.55 ± 0.01 34.86 ± 0.01
40 Desloratadine 100 25.73 ± 1.98 75.43 ± 0.08 87.24 ± 0.14 36.5 ± 0.64 67.43 ± 2.63 62.52 ± 0.41
41 Loratadine 100 91.93 ± 0.01 80.7 ± 1.62 86.37 ± 1.3 62.28 ± 1.28 74.13 ± 0.66 79.88 ± 1.34
42 Fexofenadine 100 0 ± 0 7.72 ± 1.26 0 ± 0 0 ± 0 0.6 ± 0.89 2.65 ± 1.61
43 Vardenafil hydrochloride 100 0 ± 0 69.92 ± 1.2 28.12 ± 2.91 14.7 ± 0.36 18.83 ± 0.71 21.06 ± 1.17
44 Quetiapine fumarate 100 0 ± 0 0 ± 0 0 ± 0 10.78 ± 1.1 35.58 ± 2.3 24.12 ± 0.35
45 Imatinib 100 21.94 ± 2.34 37.25 ± 1.04 55.81 ± 0.26 40.84 ± 0.26 23.07 ± 1.14 24.15 ± 0.72
46 Alectinib 100 19.82 ± 1.35 11.63 ± 0.29 50.06 ± 0.67 17.83 ± 1 8.67 ± 1.14 8.07 ± 0.21
47 Venclexta 100 13.15 ± 1.06 0 ± 0 22.31 ± 0.32 0 ± 0 0 ± 0 0 ± 0
48 Ponatinib 100 100 ± 0 69.58 ± 0.4 85.41 ± 0.3 67.65 ± 2.46 51.95 ± 0.4 35.42 ± 0.27
49 Bosutinib 100 35.3 ± 1.3 86.18 ± 0.01 83.58 ± 0.68 67.06 ± 0.22 56.99 ± 0.31 42.85 ± 0.62
50 Vandetanib 100 78.56 ± 0.44 84.25 ± 2.61 91.72 ± 0.09 90.26 ± 0.22 79.7 ± 1.49 67.36 ± 0.72
51 Avitinib 100 37.78 ± 1.3 92 ± 0.42 75.26 ± 1.09 73.36 ± 0.49 66.97 ± 0.14 35.2 ± 1.02
52 Tandutinib 100 16.89 ± 0.19 53.1 ± 0.95 60.7 ± 0.45 47.66 ± 0.37 44.74 ± 0.16 34.73 ± 0.82
53 Palbociclib 100 0 ± 0 78.56 ± 0.67 78.39 ± 1.01 35.62 ± 2.13 63.32 ± 0.97 29.8 ± 1.09
54 Ribociclib 100 11.36 ± 2.6 76.33 ± 0.24 56.63 ± 1.19 38.34 ± 2.14 54.85 ± 0.11 28.86 ± 0.97
55 Brigatinib 100 24.11 ± 1.03 68.01 ± 0.95 42.23 ± 2.91 68.85 ± 1.18 37.45 ± 0.38 27.48 ± 0.62
56 Olaparib 100 0 ± 0 26.69 ± 1.16 54.44 ± 0.96 10.87 ± 1.9 7.7 ± 0.79 13.04 ± 2.02
57 Crizotinib 100 48.83 ± 1.08 100 ± 0 96.02 ± 0.02 85.98 ± 0.21 86.35 ± 0.54 63.94 ± 0.59
58 Niraparib 100 11.13 ± 0.11 84.17 ± 0.63 81.11 ± 0.48 40.9 ± 2.55 53.85 ± 0.75 31.13 ± 0.8
59 Nintedanib 100 7.51 ± 0.89 47.64 ± 0.62 45.98 ± 0.93 13.23 ± 0.18 9.94 ± 0.56 17.71 ± 1.78
60 Ceritinib 100 83.03 ± 0.22 52.37 ± 0.19 82.9 ± 1.21 33.97 ± 0.03 41.12 ± 1.53 31.26 ± 0.93
61 Cetirizine hydrochloride 100 0 ± 0 0 ± 0 14.1 ± 1.99 8.6 ± 0.04 2.88 ± 0.4 6.03 ± 1.4
62 Trazodone hydrochloride 100 20.46 ± 1.71 43.6 ± 0.62 17.85 ± 1.56 14.73 ± 0.01 26.78 ± 0.02 37.01 ± 1.7
63 Alogliptin 100 5.61 ± 2.05 31.87 ± 3.26 0 ± 0 0 ± 0 0 ± 0 0 ± 0
64 Ticlopidine 100 24.3 ± 2.74 44.33 ± 2.2 0 ± 0 56.11 ± 3.26 20.28 ± 1.53 16.77 ± 3.05
65 Celecoxib 100 31.09 ± 1.44 0 ± 0 39.62 ± 1.54 21.03 ± 0.01 23.32 ± 0.54 33.99 ± 0.89

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

As shown in Fig. 9, the drugs with piperazine and piperidine structures include two forms of N-methyl group on the outside and inside, and the two forms of piperazine drugs have little difference against antifungal activity. But loratadine and penfluridol had excellent activity with EC50 of 6.19 μg ml−1 and 6.59 μg ml−1 against R. solani and S. sclerotiorum, respectively. Compared with the piperazine structure with the N-methyl position on the outside, the piperidine structure had better anti-phytopathogenic activity. Among them, trifluoperazine not only had significant antifungal activity but also expanded the antifungal spectrum. In addition, ponatinib had the best activity against R. solani. The EC50 was 0.017 μg ml−1. Therefore, piperazine and piperidine compounds have the potential to develop drugs against agricultural pathogenic fungi.

Fig. 9.

Fig. 9

The EC50 of piperidine/piperazine drugs against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Ionic liquids

Ionic liquids are considered a friendly solvent and commonly used in the extraction of natural products. They are mainly classified as quaternary ammonium ionic liquids, pyridine ionic liquids, quaternary phosphate ionic liquids and imidazole ionic liquids [59, 60]. This study used 37 ionic liquids to inhibit plant pathogens as shown in Table 10. According to Table 1 and Fig. 10, 15 potential drugs were briefly analyzed in order to apply them to agriculture.

Table 10.

In vitro antifungal activities (inhibition rate/%) of the ionic liquids against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 3-Methyl-1-octylimidazolium chloride 100 8.69 ± 2.59 69.77 ± 1.81 32.53 ± 2.77 51.93 ± 1.64 9.88 ± 0.39 19.73 ± 0.21
2 1-Hexyl-3-methylimidazolium chloride 100 0 ± 0 24.87 ± 2.52 11.14 ± 1.41 21.89 ± 1.42 0 ± 0 13.17 ± 0.37
3 1-Decyl-3-methylimidazolium chloride 100 21.81 ± 1.06 72.67 ± 1.16 55.45 ± 1.28 88.51 ± 0.49 46.57 ± 0.71 55.45 ± 0.04
4 1-Dodecyl-3-methylimidazolium chloride 100 47.13 ± 0.72 100 ± 0 97.77 ± 0.02 77.56 ± 0.68 63.94 ± 2.95 45.16 ± 1.33
5 1-Hexyl-3-methylimidazolium chloride 100 69.61 ± 0.95 55.87 ± 2.85 95.05 ± 0.02 54.85 ± 1.87 36.67 ± 0.96 21.65 ± 0.02
6 1-Decyl-3-methylimidazolium bromide 100 15.73 ± 0.87 58.88 ± 0.72 61.76 ± 0.13 85.96 ± 1.82 50.68 ± 1.86 42.96 ± 1.24
7 Dodecyl dimethyl benzyl ammonium bromide 100 73.33 ± 0.43 100 ± 0 95.11 ± 0.01 60.63 ± 0.39 55.92 ± 1.14 61.1 ± 0.55
8 Benzyldimethylhexadecylammonium chloride 100 58.29 ± 1.08 100 ± 0 92.78 ± 0.76 44.26 ± 2.12 29.23 ± 2.75 39.2 ± 1.61
9 Myristalkonium chloride 100 68.55 ± 0.76 100 ± 0 95.23 ± 0.01 62.15 ± 1.21 33.25 ± 0.52 38.36 ± 2.01
10 Benzyldimethylstearylammonium Chloride 100 31.81 ± 2.36 84.1 ± 1.35 92.45 ± 0.01 27.37 ± 0.94 28.19 ± 0.35 15.53 ± 1.22
11 Benzododecinium chloride 100 80.22 ± 0.65 6.1 ± 0.55 95.2 ± 0.22 60.48 ± 0.39 50.79 ± 2.96 34.15 ± 1.15
12 1-Butylpyridinium bromide 100 0 ± 0 0 ± 0 5.38 ± 0.62 5.64 ± 0.35 0 ± 0 0 ± 0
13 N-butyl-4-methylpyridinium chloride 100 0 ± 0 5.13 ± 0.47 0 ± 0 10.65 ± 0.55 7.4 ± 0.62 0 ± 0
14 1-Hexadecylpyridinium bromide 100 79.49 ± 1.56 76.72 ± 1.19 91.56 ± 0.21 56.61 ± 1.49 27.58 ± 2.46 11.43 ± 0.53
15 1-Dodecylpyridinium bromide 100 76.02 ± 0.42 100 ± 0 100 ± 0 78.72 ± 1.21 79.39 ± 0.29 41.32 ± 0.84
16 3-Methyl-1-octylimidazolium chloride 100 4.77 ± 0.84 19.9 ± 2.25 4.14 ± 0.61 24.56 ± 1.21 14.11 ± 3.02 13.49 ± 0.83
17 1,1'-Di-n-heptyl-4,4'-bipyridinium dibromide 100 25.87 ± 0.88 97.12 ± 0.42 86.62 ± 0.35 85.75 ± 0.27 81.14 ± 1.29 52.12 ± 0.59
18 1-Tetradecylpyridinium chloride 100 74.55 ± 0.59 96.45 ± 0.87 96.88 ± 0.72 73.76 ± 0.54 56.25 ± 1.16 21.25 ± 2.06
19 1-Hexadecyl-3-methylimidazolium chloride monohydrate 100 4.13 ± 0.67 4.64 ± 0.18 0 ± 0 23.73 ± 3.16 0 ± 0 0 ± 0
20 1-Butyl-3-methylimidazolium chloride 100 0 ± 0 0 ± 0 0 ± 0 8.21 ± 0.74 0 ± 0 0 ± 0
21 1-Propyl-3-methyl imidazolium 100 0 ± 0 0 ± 0 0 ± 0 6.68 ± 0.02 7.55 ± 0.82 3.55 ± 0.74
22 Octenidine dihydrochloride 100 87.13 ± 0.62 89.21 ± 1.56 93.45 ± 0.06 86.47 ± 0.64 81.53 ± 0.48 79.33 ± 0.61
23 Miltefosine 100 75.63 ± 1.35 52.49 ± 0.85 92.30 ± 0.12 25.08 ± 5.06 22.27 ± 1.87 35.73 ± 1.94
24 Chlorhexidine diacetate 100 94.33 ± 0.18 100 ± 0 93.72 ± 0.46 97.84 ± 0.17 76.48 ± 1.18 71.91 ± 0.31
25 Hexadecyl trimethyl ammonium bromide 100 74.22 ± 2.27 67.42 ± 0.66 93.73 ± 1.62 54.38 ± 1.27 46.29 ± 0.35 15.02 ± 1.14
26 Cetalkonium chloride 100 70.43 ± 1.91 80.75 ± 1.56 94.66 ± 0.55 56.15 ± 1.12 39.23 ± 0.85 12.8 ± 1.31
27 Domiphen bromide 100 86.76 ± 0.49 100 ± 0 94.47 ± 0.7 83.74 ± 0.86 71.25 ± 0.04 46.21 ± 0.82
28 Cetylpyridinium chloride 100 70.53 ± 0.25 81.05 ± 0.9 91.4 ± 0.82 47.44 ± 1.05 32.82 ± 1.26 12.63 ± 0.37
29 Diminazene aceturate 100 8.23 ± 0.21 100 ± 0 96.23 ± 0.39 100 ± 0 59.38 ± 1.65 24.99 ± 0.25
30 Pentamidine 100 10.48 ± 1.00 100 ± 0 100 ± 0 - 57.11 ± 2.45 28.65 ± 0.37
31 N-Octadecyl-4-stilbazole bromide 100 0 ± 0 12.4 ± 1.85 20.02 ± 1.31 0 ± 0 0 ± 0 7.59 ± 1.16
32 Enebicyanog 100 80.68 ± 1.90 98.06 ± 0.36 100 ± 0 87.43 ± 1.86 46.73 ± 0.39 39.45 ± 1.93
33 Perifosine 100 51.28 ± 1.23 60.74 ± 1.92 93.29 ± 0.32 14.42 ± 2.95 32.64 ± 0.69 22.24 ± 2.74
34 Pralidoxime chloride 100 6.95 ± 1.65 29.13 ± 1.98 0 ± 0 34.52 ± 1.29 0 ± 0 0 ± 0
35 Bephenium hydroxynaphthoate 100 24.28 ± 1.36 67.72 ± 0.09 53.65 ± 1.35 5.88 ± 2.12 0 ± 0 7.74 ± 1.11
36 Benzethonium chloride 100 1.00 ± 0.02 2.09 ± 0.20 1.20 ± 0.65 2.91 ± 0.56 1.92 ± 0.07 10.33 ± 0.64
37 Potassium sorbate 100 16.4 ± 0.19 26.29 ± 1.55 0 ± 0 0 ± 0 8.23 ± 0.57 -

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fig. 10.

Fig. 10

The EC50 of ionic liquids against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

In all ionic liquids, we found that the longer the carbon chain of the drug, the better the activity against S. sclerotiorum. 1-Dodecyl-3-methylimidazolium chloride products better active with EC50 of 6.12 μg ml−1 against S. sclerotiorum. Compared to 1-dodecylpyridinium bromide, 1-tetradecylpyridinium chloride was less active against phytopathogenic fungi despite the carbon-chain length, so the effect on antifungal activity may be ion-related. 1-Dodecylpyridinium with the bromine ion increased the activity against S. sclerotiorum, B. cinerea and F. oxysporum. Compared to myristalkonium chloride, the carbon chain increased and the activity was enhanced against S. sclerotiorum with cetalkonium chloride EC50 of 8.36 μg ml−1, but significantly decreased activity against B. cinerea. Compared with benzyldodecyldimethylammonium bromide, chloride ion replaced by bromine ion dodecyl dimethyl benzyl ammonium bromide increased the activity of S. sclerotiorum and B. cinerea. The EC50 values were 5.80 μg ml−1 and 8.85 μg ml−1, respectively. In summary, the carbon chain length of the ionic liquid drugs had a significant effect on the resistance to phytopathogenic fungi. Compared to chlorohexidine diacetate, enebicyanog had a narrower spectrum of activity against phytopathogenic fungi, but it had better activity against S. sclerotiorum and B. cinerea, with EC50 of 0.91 μg ml−1 and 0.62 μg ml−1 respectively. Therefore, ionic liquids are expected to be used in the control of plant resistant pathogenic fungi.

Miscellaneous group drugs

Miscellaneous group drugs against plant pathogenic fungi are shown in Table 11 and Table 1. Some drugs with relatively broad anti-pathogenic activity were selected for a brief analysis as shown in Fig. 11.

Table 11.

In vitro antifungal activities (inhibition rate/%) of the miscellaneous group against phytopathogenic fungia

No. Compounds Concentration(μg/mL) Inhibition rate/%
R. s S. s B. c F. g F. o P. c
1 Chloramphenicol 100 12.82 ± 2.10 34.51 ± 0.63 11.54 ± 0.57 10.69 ± 1.73 16.80 ± 1.63 9.15 ± 1.03
2 Thiamphenicol 100 15.15 ± 0.43 40.83 ± 1.71 13.35 ± 2.69 3.09 ± 0.12 14.31 ± 1.26 5.12 ± 0.88
3 Monensin sodium salt 100 73.63 ± 2.79 92.9 ± 1.24 100 ± 0 47.12 ± 1.5 88.0 ± 0.42 91.3 ± 1.03
4 Novobicin sodium salt 100 40.85 ± 0.43 58.64 ± 3.27 83.95 ± 1.81 29.3 ± 2.92 17.05 ± 0.91 45.99 ± 2.39
5 Rifapentine 100 25.83 ± 2.61 0 ± 0 53.84 ± 0.65 20.36 ± 2.19 20.77 ± 1.95 46.25 ± 1.82
6 Rifaximin 100 9.78 ± 0.65 0 ± 0 65.32 ± 1.46 14.03 ± 0.67 0 ± 0 21.41 ± 1.24
7 Rifamycin sodium 100 78.25 ± 1.61 79 ± 2.85 83.72 ± 0.27 52.35 ± 2.81 40 ± 4.66 43.76 ± 1.27
8 Rifampicin 100 9.23 ± 0.28 0 ± 0 49.54 ± 0.03 29.38 ± 0.82 0 ± 0 31.73 ± 1.29
9 (+)-Griseofulvin 100 89.85 ± 0.82 84.15 ± 1.19 100 ± 0 87.69 ± 0.81 80.26 ± 0.86 85.98 ± 0.79
10 Natamycin 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
11 Tiamulin 100 4.77 ± 0.69 65.13 ± 0.2 36.58 ± 0.67 37.56 ± 0.17 12.3 ± 0.14 79.63 ± 0.23
12 Retapamulin 100 17.21 ± 0.83 72.23 ± 0.42 58.09 ± 0.74 25.97 ± 0.39 41.9 ± 0.27 48.57 ± 1.51
13 Naftifine hydrochloride 100 56.59 ± 1.34 100 ± 0 100 ± 0 100 ± 0 96.30 ± 0.08 100 ± 0
14 Terbinafine hydrochloride 100 68.44 ± 2.20 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
15 Butenafine hydrochloride 100 91.83 ± 0.65 100 ± 0 100 ± 0 98.27 ± 0.20 100 ± 0 100 ± 0
16 N-(2-Hydroxynaphthoyl)-2,4-dimethoxy-5-chloroanilide 100 53.35 ± 0.84 28.33 ± 1.01 42.56 ± 0.44 32.48 ± 1.75 17.19 ± 1.31 36.23 ± 2.45
17 Tolnaftate 100 84.8 ± 0.12 98.27 ± 0.32 91.63 ± 0.54 64.33 ± 1.02 79.2 ± 0.41 66.81 ± 0.33
18 Pyrantel pamoate 100 16.05 ± 1.72 50.15 ± 2.7 62.71 ± 1.24 25.75 ± 1.1 0 ± 0 13.6 ± 1.42
19 Propranolol hydrochloride 100 0 ± 0 8.18 ± 1.5 48.94 ± 2.03 23.36 ± 0.24 17.44 ± 1.45 25.23 ± 1.36
20 Cinacalcet 100 100 ± 0 100 ± 0 100 ± 0 89.51 ± 1.09 93.07 ± 0.92 95.54 ± 1.12
21 1,7-Dlaminoheptane 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 11.92 ± 1.28 14.85 ± 0.66
22 Tris(2-aminoethyl)amine 100 0 ± 0 0 ± 0 16.88 ± 0.69 2.04 ± 1.57 0 ± 0 4.49 ± 0.36
23 N,N'-bis(3-aminopropyl)ethylenediamine 100 0 ± 0 0 ± 0 47.34 ± 1.69 0 ± 0 0 ± 0 6.53 ± 0.54
24 Tetraethyenepentamine 100 0 ± 0 0 ± 0 12.92 ± 1.84 0 ± 0 0 ± 0 8.25 ± 0.51
25 Diethylenetriamine 100 0 ± 0 0 ± 0 13.12 ± 1.48 3.21 ± 0.97 0 ± 0 3.27 ± 0.38
26 N1,N1'-(butane-1,4-diyl)bis(ethane-1,2-diamine) 100 0 ± 0 12.27 ± 2.69 98.53 ± 0.45 27.21 ± 2.51 3.97 ± 0.55 3.56 ± 2.23
27 N- (3-Dimethylaminopropyl)-1,3-propanediamine 100 0 ± 0 0 ± 0 11.05 ± 1.19 12.87 ± 3.58 0 ± 0 4.98 ± 1.09
28 Cyclen 100 26.59 ± 1.61 18.36 ± 1.15 0 ± 0 0 ± 0 12.93 ± 0.18 0 ± 0
29 1,4,7,10,13,16-hexazacyclooctadecane 100 12.98 ± 3.11 12.94 ± 0.37 0 ± 0 0 ± 0 8.34 ± 0.39 0 ± 0
30 Triethylenetetramine 100 4.94 ± 0.66 16.65 ± 1.53 0 ± 0 0 ± 0 12.17 ± 0.94 6.41 ± 0.84
31 Ethylenediamine 100 9.07 ± 0.01 0 ± 0 0 ± 0 0 ± 0 6.37 ± 0.78 0 ± 0
32 2-Aminoethyl(ethyl)amine 100 6.53 ± 0.15 18.35 ± 1.92 14.56 ± 2.77 11.04 ± 0.98 0 ± 0 0 ± 0
33 1,3-Diaminopropane 100 6.01 ± 0.65 13.88 ± 1.21 18.3 ± 0.87 9.53 ± 2.16 0 ± 0 0 ± 0
34 1,4-Butylenediamine 100 10.73 ± 0.63 12.73 ± 0.53 22.97 ± 2.95 0 ± 0 0 ± 0 0 ± 0
35 1,6-Diaminohexane 100 11.16 ± 0.24 19.06 ± 0.43 18.05 ± 2.41 0 ± 0 0 ± 0 0 ± 0
36 1,5-Diaminopentane 100 7.85 ± 0.11 17.55 ± 4.31 17.09 ± 1.72 0 ± 0 0 ± 0 0 ± 0
37 N-octyl-N'-[2-(octylamino)ethyl]ethylenediamine 100 63.46 ± 0.96 86.94 ± 0.67 87.71 ± 0.38 55.59 ± 1.31 68.6 ± 0.47 38.35 ± 0.98
38 Ethambutol 100 17.45 ± 1.19 11.25 ± 1.80 6.37 ± 0.24 15.67 ± 0.56 5.43 ± 1.76 9.27 ± 0.29
39 Diethylenetriaminepentaacetic acid 100 1.92 ± 0.01 6.25 ± 1.25 1.03 ± 0.04 5.66 ± 0.81 1.91 ± 0.18 8.24 ± 1.92
40 Eflornithine hydrochloride hydrate 100 0 ± 0 37 ± 0.23 28.45 ± 1.5 0 ± 0 81.45 ± 2.72 0 ± 0
41 N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine 100 62.30 ± 0.56 30.58 ± 1.39 86.93 ± 0.96 64.83 ± 0.39 62.70 ± 0.49 48.66 ± 0.31
42 Rimantadine hydrochloride 100 0 ± 0 19.9 ± 1.83 0 ± 0 14.44 ± 0.07 0 ± 0 20.45 ± 0.54
43 Amantadine 100 0 ± 0 20.42 ± 2.1 0 ± 0 0 ± 0 0 ± 0 0 ± 0
44 Vildagliptin 100 0 ± 0 13.51 ± 0.27 11.64 ± 2.8 0 ± 0 0 ± 0 0 ± 0
45 Strontium ranelate 100 0 ± 0 23.47 ± 1.01 7.96 ± 1.07 0 ± 0 0 ± 0 0 ± 0
46 1-Adamantanamine hydrochloride 100 0 ± 0 8.66 ± 1.49 0 ± 0 0 ± 0 0 ± 0 5.87 ± 0.88
47 Taurolidine 100 18.3 ± 0.96 14.65 ± 0.82 34.09 ± 3.32 16.69 ± 1.54 0 ± 0 0 ± 0
48 (5R)-3-(4-Bromo-3-fluorophenyl)-5-hydroxy methyloxazolidin-2-one 100 57.19 ± 0.05 0 ± 0 22.9 ± 0.03 68.54 ± 0.04 36.49 ± 2.42 23.43 ± 0.21
49 Intermediate of linezolid 100 0 ± 0 0 ± 0 6.98 ± 0.06 0 ± 0 0 ± 0 0 ± 0
50 Linezolid related compound 100 0 ± 0 0 ± 0 0 ± 0 14.74 ± 1.73 19.97 ± 0.97 16.68 ± 0.79
51 Rivaroxaban intermediate 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
52 Rivaroxaban 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 7.65 ± 1.14 6.41 ± 2.67
53 Linezolid 100 24.9 ± 1.41 35.76 ± 2.54 0 ± 0 61.78 ± 0.91 31.44 ± 0.37 29.94 ± 0.77
54 Furaltadone hydrochloride 100 37.07 ± 3.77 18.53 ± 1.23 36.08 ± 1.17 17.28 ± 2.55 24.66 ± 0.01 36.83 ± 1.97
55 Furazolidone 100 63.35 ± 0.67 73.99 ± 1.6 54.45 ± 2.2 61.51 ± 1.51 43.28 ± 1.08 39.72 ± 0.92
56 Nifuratel 100 9.96 ± 2.01 50.16 ± 0.01 13.9 ± 1.03 48.52 ± 0.94 63.98 ± 1.18 55.51 ± 0.45
57 L-Cycloserine 100 16.64 ± 0.97 0 ± 0 51.98 ± 0.61 26.34 ± 2.06 0 ± 0 0 ± 0
58 Acetylsalicylic acid 100 4.17 ± 0.92 18.14 ± 0.16 7.68 ± 1.09 0 ± 0 8.35 ± 0.03 23.98 ± 1.32
59 2-Hydroxy-N-(4-hydroxyphenyl)-benzamide 100 62.28 ± 0.56 23.18 ± 0.91 30.14 ± 0.59 41.74 ± 0.97 34.35 ± 1.04 46.4 ± 0.26
60 2,4-Dihydroxybenzoic acid 100 0 ± 0 9.48 ± 0.13 12.68 ± 0.59 0 ± 0 8.25 ± 0.01 29.26 ± 1.29
61 4-Methoxysalicylic acid 100 48.36 ± 0.72 34.95 ± 0.48 39.6 ± 1.69 12.81 ± 1.01 29.36 ± 0.31 38.01 ± 1.82
62 Salicylanilide 100 100 ± 0 66.6 ± 1.14 100 ± 0 100 ± 0 95.21 ± 0.58 100 ± 0
63 4-Aminosalicylic acid 100 0 ± 0 14.92 ± 0.01 9.45 ± 0.88 8.7 ± 0.06 14.03 ± 0.03 32.08 ± 1.77
64 4-Fluoro-2-hydrxybenzoic acid 100 5.35 ± 0.81 21.45 ± 0.93 15.89 ± 0.27 15.99 ± 0.69 23.85 ± 0.05 30.04 ± 0.12
65 Ethyl 2-hydroxybenzoate 100 0 ± 0 11.1 ± 1.13 0 ± 0 6.11 ± 0.2 5.86 ± 1.46 7.47 ± 0.89
66 Sasapyrine 100 28.57 ± 1.5 51.14 ± 0.77 53.73 ± 1.66 5.98 ± 0.51 14.88 ± 1.72 26.91 ± 2.02
67 Benorilate 100 20.38 ± 0.03 50.08 ± 0.67 11.13 ± 0.99 22.93 ± 2.54 9.6 ± 0.14 8.39 ± 1.02
68 Thiazolidine 100 0 ± 0 24.43 ± 0.29 33.64 ± 2.24 8.03 ± 0.53 1.48 ± 0.01 10.96 ± 0.44
69 Salicylhydroxamic acid 100 5.91 ± 0.18 42.9 ± 0.01 7.25 ± 0.44 34.34 ± 0.93 32.18 ± 0.4 25.48 ± 0.01
70 Labetalol hydrochloride 100 0 ± 0 15.73 ± 1.24 10.6 ± 0.27 10.43 ± 0.21 9.52 ± 0.48 18.26 ± 0.88
71 Mosapride 100 18.56 ± 1.34 34.73 ± 0.16 9.61 ± 0.15 49.02 ± 1.14 40.9 ± 0.56 39.17 ± 0.72
72 Xipamide 100 69.76 ± 1.08 52.3 ± 1.79 39.06 ± 0.55 14.88 ± 3.04 0.59 ± 0.06 0.87 ± 0.09
73 Salicylamide 100 27.33 ± 0.71 10.73 ± 1.26 0 ± 0 20.75 ± 0.54 22.76 ± 1.03 26.25 ± 1.74
74 Niclosamide 100 35.9 ± 0.82 49.39 ± 0.42 - 19.26 ± 0.8 8.95 ± 1.5 30.62 ± 0.07
75 Salicylic acid 100 15.05 ± 2.25 57.11 ± 2.27 31.44 ± 0.98 0 ± 0 10.49 ± 0.78 30.08 ± 0.04
76 Oxyclozanide 100 92.41 ± 1.06 99.21 ± 0.53 83.85 ± 0.4 55.87 ± 0.74 62.78 ± 1.03 64.47 ± 1.97
77 Closantel 100 8.75 ± 0.65 10.71 ± 1.16 0 ± 0 19.77 ± 0.65 5.23 ± 1.87 0 ± 0
78 Closantel sodium 100 17.2 ± 0.6 10.46 ± 2.37 26.32 ± 0.97 42.18 ± 3.89 0 ± 0 0 ± 0
79 Rafoxanide 100 8.75 ± 0.65 10.71 ± 1.16 0 ± 0 19.77 ± 0.65 5.23 ± 1.87 0 ± 0
80 Nitazoxanide 100 73.03 ± 1.51 100 ± 0 100 ± 0 34.04 ± 0.16 18.41 ± 0.08 38.06 ± 0.26
81 Otilonium bromide 100 2.82 ± 0.37 0.23 ± 0.04 2.94 ± 0.27 7.23 ± 2.79 2.28 ± 0.31 7.69 ± 0.02
82 Diflunisal 100 1.57 ± 0.32 3.0 ± 0.18 2.21.±0.03 7.59 ± 1.38 5.35 ± 3.97 6.73 ± 1.54
83 Sulfasalazine 100 0 ± 0 5.13 ± 0.35 0 ± 0 15.58 ± 1.47 9.55 ± 0.01 24.04 ± 3.33
84 Enzalutamide 100 58.87 ± 0.98 52.21 ± 0.83 54.04 ± 1.95 11.39 ± 1.82 25.17 ± 0.95 29.94 ± 1.28
85 Olsalazine sodium 100 11.38 ± 0.4 25.42 ± 0.13 15.17 ± 0.71 - - -
86 Tranilast 100 13.82 ± 1.5 63.23 ± 1.41 66.9 ± 1.81 0 ± 0 19.58 ± 0.58 43.75 ± 1.03
87 Metoclopramide hydrochloride 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
88 Sulfasalazine 100 0 ± 0 5.13 ± 0.35 0 ± 0 15.58 ± 1.47 9.55 ± 0.01 24.04 ± 3.33
89 Sulfaquinoxaline sodium 100 50.37 ± 0.89 39.96 ± 2.97 69.26 ± 1.06 89.19 ± 0.84 86.95 ± 0.31 83.33 ± 1.59
90 Sodium N-(6-chloropyrazinyl)sulphanilamidate 100 21.53 ± 0.89 13.04 ± 1.27 64.72 ± 1.17 38.93 ± 0.74 76.13 ± 0.57 11.4 ± 1.07
91 Sulfamethazine 100 7.78 ± 1.08 0 ± 0 44.55 ± 0.64 6.05 ± 1.35 0 ± 0 0 ± 0
92 Sulfamonomethoxine 100 26.8 ± 4.44 0 ± 0 55.82 ± 1.52 52.15 ± 1.51 68.05 ± 1.65 10.19 ± 3.72
93 Sulfachloropyridazine 100 11.93 ± 0.92 0 ± 0 59.16 ± 0.5 28.5 ± 2.09 7.23 ± 0.61 0 ± 0
94 Sodium N-(5-methylisoxazol-3-yl)sulphanilamidate 100 30.78 ± 1.37 25.33 ± 0.65 90.8 ± 1.05 84.63 ± 0.09 86.75 ± 0.01 62.85 ± 0.02
95 Sulfamethoxypyridazine 100 5.98 ± 1.61 0 ± 0 5.13 ± 0.98 13.44 ± 0.44 11.16 ± 2.24 2.39 ± 0.41
96 Sulfisoxazole 100 0 ± 0 54.52 ± 1.29 59.39 ± 3.07 51.54 ± 3.01 0 ± 0 76.85 ± 0.66
97 Bensulfuron-methyl 100 50.42 ± 1.71 96.7 ± 0.78 89.04 ± 0.64 75.41 ± 1.32 44.46 ± 0.37 47.11 ± 0.55
98 Chlorimuron-ethyl 100 73.12 ± 1.23 91.36 ± 0.51 92.16 ± 0.17 76.78 ± 0.62 64.46 ± 2.29 61.42 ± 1.2
99 Fasudil hydrochloride 100 0 ± 0 23.79 ± 3.65 8.44 ± 3.47 38.43 ± 1.29 5.79 ± 1.90 5.18 ± 0.92
100 Vemurafenib 100 93.29 ± 0 15.48 ± 2.71 3.82 ± 0.08 10.74 ± 0.14 0 ± 0 4.58 ± 0.47
101 Brinzolamide 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 9.18 ± 2.75 0 ± 0
102 Dexamethasone 100 1.73 ± 0.07 69.93 ± 1.36 14.13 ± 0.72 8.15 ± 0.63 3.92 ± 0.99 6.77 ± 1.11
103 Spironolactone 100 33.88 ± 1.58 48.54 ± 0.37 52.52 ± 1.23 42.73 ± 1.89 24.83 ± 1.41 38.08 ± 0.66
104 Triamcinolone acetonide 100 0 ± 0 0 ± 0 5.8 ± 2.03 0 ± 0 0 ± 0 0 ± 0
105 Betamethasone 100 0 ± 0 7.65 ± 0.94 0 ± 0 0 ± 0 35.41 ± 1.12 0 ± 0
106 Hydrocortisone 100 0 ± 0 0 ± 0 0 ± 0 10.42 ± 2.34 0 ± 0 0 ± 0
107 Prednisolone 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
108 Fluticasone propionate 100 0 ± 0 0 ± 0 31.48 ± 1.52 0 ± 0 0.79 ± 0.56 1.95 ± 1.54
109 Bardoxolone methyl 100 75.15 ± 1.32 36.5 ± 2.81 88.74 ± 0.82 61.27 ± 0.54 57.32 ± 0.39 26.27 ± 1.17
110 Megestrol 100 0 ± 0 16 ± 2.63 0 ± 0 10.4 ± 1.73 6.98 ± 0.13 13.07 ± 0.89
111 Trilostane 100 7.98 ± 1.23 36.02 ± 1.96 22.35 ± 2.87 0 ± 0 0 ± 0 0 ± 0
112 Stanozolol 100 2.92 ± 1.03 19.45 ± 2.16 20.18 ± 0.36 33.94 ± 1.22 48.6 ± 0.35 45.57 ± 1.96
113 Megestrol acetate 100 1.94 ± 0.5 2.1 ± 0.1 1.28 ± 0.29 5.98 ± 0.76 3.00 ± 0.1 1.81 ± 0.04
114 Thiacetazone 100 9.13 ± 0.55 0 ± 0 21.38 ± 0.23 13.33 ± 1.25 12.33 ± 0.36 18.86 ± 0.47
115 Imidurea 100 17.07 ± 0.74 18.11 ± 2.84 18.56 ± 1.04 6.63 ± 2.15 0 ± 0 0 ± 0
116 Imidocarb dipropionate 100 19.28 ± 0.94 41.27 ± 1.37 63.31 ± 1.08 73.21 ± 1.01 55.28 ± 2.53 22.58 ± 0.93
117 Glimepiride 100 15.73 ± 0.2 32.37 ± 2.33 43.39 ± 1.11 0 ± 0 16.34 ± 0.98 0 ± 0
118 Triclocarban 100 31.08 ± 1.2 39.37 ± 0.83 0 ± 0 7.22 ± 0.75 9.79 ± 0.54 27.36 ± 0.62
119 Ripretinib 100 0 ± 0 27.57 ± 1.15 13.33 ± 0.72 17.56 ± 1.24 16.8 ± 1.43 0 ± 0
120 Allantoin 100 0 ± 0 63.06 ± 0.03 0 ± 0 22.05 ± 0.31 11.7 ± 1.76 30.96 ± 0.42
121 Dichloroisocyanyric acid 100 0 ± 0 31.03 ± 1.27 7.31 ± 2.97 17.73 ± 0.32 10.65 ± 0.03 25.63 ± 0.59
122 1,3-Dichloro-5,5-dimethylhydantoin 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 -
123 Thalidomide 100 12.18 ± 3.2 5.74 ± 0.33 0 ± 0 0 ± 0 0 ± 0 23.83 ± 1.43
124 Apremilast 100 0 ± 0 59.24 ± 1.36 16.61 ± 1.79 0 ± 0 16.81 ± 0.44 0 ± 0
125 Primidone 100 0 ± 0 21.07 ± 1.99 0 ± 0 0 ± 0 0 ± 0 0 ± 0
126 4,4,4-Trifluoro-1-(4-fluorophenyl)butane-1,3-dione 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 85.48 ± 0.31 94.74 ± 0.71
127 Sodium dehydroacetate 500 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
128 1-(4-Chlorophenyl)-4,4,4-trifluoro-1,3-butanedione 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 97.11 ± 0.66 100 ± 0
129 2H-1,3-Benzoxazine-2,4(3H)-dione 100 33.45 ± 1.7 0 ± 0 3.63 ± 0.93 24.83 ± 1.28 29.28 ± 0.55 21.69 ± 0.29
130 Diclazuril 100 25.02 ± 0.39 0 ± 0 68.33 ± 0.98 7.78 ± 1.78 30.48 ± 2.34 50.68 ± 1.09
131 Avobenzone 100 24.84 ± 0.09 0 ± 0 10.03 ± 0.62 12.19 ± 2.2 0 ± 0 0 ± 0
132 N,N-methylenebis N'-1-(hydroxymethyl)-2,5-dioxo-4-imidazolidinyl urea 100 17.07 ± 0.74 18.11 ± 2.84 18.56 ± 1.04 6.63 ± 2.15 0 ± 0 0 ± 0
133 Theophylline 100 15.4 ± 1.68 0 ± 0 22.36 ± 0.99 4.87 ± 0.39 0 ± 0 18.21 ± 1.55
134 Bumetanide 100 0 ± 0 33.73 ± 0.56 5.51 ± 0.28 23.32 ± 0.57 8.78 ± 0.97 76.71 ± 2.02
135 Triclosan 100 88.87 ± 0.57 92.01 ± 0.17 100 ± 0 100 ± 0 93.26 ± 0.17 89.18 ± 0.46
136 Tamoxifen 100 53.7 ± 2.67 100 ± 0 100 ± 0 41.21 ± 0.97 69.21 ± 0.33 62.77 ± 0.01
137 Fluoxetine hydrochloride 100 49.9 ± 1.4 67.16 ± 3.81 80.15 ± 0.53 65.05 ± 1.54 56.21 ± 1.27 60.84 ± 0.06
138 Benztropine mesylate 100 28.64 ± 1.36 48.56 ± 2.36 80.4 ± 0.3 33.24 ± 1.44 23.88 ± 0.75 41.18 ± 0.67
139 Dronedarone hydrochloride 100 86.92 ± 0.01 78.44 ± 0.53 98.97 ± 0.22 68.88 ± 0.01 79.75 ± 0.42 76.4 ± 0.78
140 Bazedoxifene acetate 100 0 ± 0 64.9 ± 1.86 60.5 ± 2.82 17.93 ± 2.12 29.53 ± 3.07 36.82 ± 0.43
141 Rolipram 100 17.01 ± 0.25 21.2 ± 1.04 0 ± 0 0 ± 0 17.75 ± 0.56 13.61 ± 0.65
142 Ranitidine hydrochloride 100 17.86 ± 2.59 10.71 ± 2.08 16.61 ± 1.09 0 ± 0 14.67 ± 0.36 7.65 ± 0.19
143 Nimesulide 100 67.47 ± 0.55 66.11 ± 0.73 97.2 ± 0.87 55.85 ± 2.09 34.62 ± 2.45 40.55 ± 0.92
144 Orphenadrine citrate 100 28.84 ± 2.05 12.99 ± 2.93 45.9 ± 1.41 23.88 ± 1.29 0 ± 0 13.14 ± 1.59
145 Diphenhydramine hydrochloride 100 27.53 ± 0.3 11.56 ± 1.05 31.72 ± 0.56 21.66 ± 2.1 0 ± 0 12.29 ± 0.95
146 Diphenhydramine 100 0 ± 0 0 ± 0 12.22 ± 3.82 22.11 ± 3.99 0 ± 0 10.46 ± 1.16
147 5,5′-Dithiobis(2-nitrobenzoic acid) 100 17.1 ± 7.15 12.02 ± 0.65 28.88 ± 2.52 6.63 ± 1.22 0 ± 0 6.14 ± 0.28
148 Toltrazuril 100 20.55 ± 0.6 0 ± 0 44.98 ± 1.48 9.36 ± 0.8 0 ± 0 14.5 ± 0.74
149 Arbidol hydrochloride 100 66.22 ± 0.13 84.81 ± 0.34 65.49 ± 0.53 57.95 ± 1.44 66.27 ± 0.49 59.6 ± 0.5
150 Disulfiram 100 91.86 ± 0.79 100 ± 0 58.48 ± 1.12 71.27 ± 1.45 71.51 ± 0.88 66.57 ± 0.01
151 Probucol 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
152 Benzydamine hydrochloride 100 40.63 ± 2.31 33.35 ± 0.71 64.5 ± 0.91 35.25 ± 1.39 17.95 ± 1.12 31.62 ± 1.49
153 Bithionol 100 71.66 ± 2.32 70.57 ± 0.41 57.32 ± 0.76 60.02 ± 0.78 65.85 ± 0.7 75.17 ± 0.51
154 Fluoxetine 100 48.91 ± 1.22 63.73 ± 0.15 80.02 ± 3.45 63.55 ± 2.95 37.25 ± 1.93 -
155 Carvedilol 100 22.17 ± 1.27 65.81 ± 2.18 79.24 ± 0.96 63.44 ± 1.94 28.83 ± 1.10 -
156 JX06 100 89.95 ± 0.73 12.35 ± 0.26 39.71 ± 0.84 59.5 ± 0.65 52.79 ± 0.14 56.32 ± 0.06
157 Iodopropynyl butylcarbamate 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 92.05 ± 0.14 100 ± 0
158 2- Cyano-3-hydroxy-N-(4'-trifluoromethylphenyl)-crotone amide 100 35.29 ± 1.18 79.74 ± 1.91 83.26 ± 1.46 6.87 ± 1.24 8.86 ± 1.31 21.17 ± 0.6
159 Vorinostat 100 0 ± 0 0 ± 0 43.4 ± 1.34 10.04 ± 0.38 8.23 ± 1.84 19.21 ± 0.4
160 Florfenicol 100 14.31 ± 1.95 16.61 ± 0.96 11.95 ± 0.63 22.82 ± 0.68 6.37 ± 0.78
161 Bicalutamide 100 37.05 ± 0.7 53.43 ± 0.43 64.66 ± 1.02 32.35 ± 2.56 30.94 ± 1.68 28.01 ± 2.13
162 Leflunomide 100 96.77 ± 0.25 90.45 ± 0.46 86.69 ± 0.34 50.27 ± 2.01 78.5 ± 0.28 70.53 ± 1.6
163 Itopride hydrochloride 100 0 ± 0 0 ± 0 2.39 ± 0.99 0 ± 0 0 ± 0 5 ± 1.8
164 Entacapone 100 9.8 ± 1.5 69.31 ± 2.32 7.98 ± 0.05 0 ± 0 21.8 ± 1.28 0 ± 0
165 Favipiravir 100 12.44 ± 1.83 68.29 ± 0.27 61.55 ± 1.07 0 ± 0 9.43 ± 1.63 -
166 1,2,4-Triazolo[4,3-a]pyridin-3(2H)-one 100 0 ± 0 49.48 ± 1.81 0 ± 0 0 ± 0 7.72 ± 0.73 11.88 ± 0.57
167 Tadalafil 100 23.09 ± 1.73 0 ± 0 9.15 ± 0.77 0 ± 0 12.71 ± 0.87 12.46 ± 1.17
168 Efavirenz 100 94.85 ± 0.01 96.37 ± 0.04 62.6 ± 2.31 73.4 ± 1.52 78.25 ± 0.41 82.11 ± 1.37
169 Levosimendan 100 27.63 ± 1.15 58.5 ± 0.68 58.59 ± 0.62 16.13 ± 1.38 13.98 ± 0.34 13.91 ± 0.59
170 Azelastine hydrochloride 100 43.78 ± 1.45 75.59 ± 1.13 78 ± 0.93 45.1 ± 1.29 58.94 ± 0.39 51.33 ± 0.6
171 Sunitinib 100 59.79 ± 0.86 75.71 ± 0.81 87.45 ± 0.5 55.94 ± 2.6 64.79 ± 0.87 46.12 ± 0.36
172 Upadacitinib 100 0 ± 0 26.86 ± 1.92 12.32 ± 2.05 28.42 ± 3.65 17.41 ± 0.49 0 ± 0
173 PF01367338 phosphate 100 86.26 ± 0.73 90.65 ± 0.37 73.85 ± 1.23 38.88 ± 1.45 53.65 ± 1.66 43.16 ± 0.37
174 Trametinib 100 18.3 ± 2.6 0 ± 0 9.95 ± 0.49 10.79 ± 0.27 3.34 ± 0.61 0 ± 0
175 Valnemulin hydrochloride 100 0 ± 0 63.1 ± 0.45 70.73 ± 2.11 12.03 ± 0.31 25.23 ± 1.03 57.88 ± 1.74
176 Nifuroxazide 100 14.82 ± 1.61 14.05 ± 1.28 15.81 ± 0.55 16.29 ± 0.64 0 ± 0 0 ± 0
177 Iproniazid 100 0 ± 0 4.44 ± 0.75 8.06 ± 1.4 0 ± 0 0 ± 0 5.27 ± 0.06
178 Cyanoacetohydrazide 100 12.49 ± 1.81 24.16 ± 3.75 17.81 ± 0.84 0 ± 0 0 ± 0 0 ± 0
179 Praziquantel 100 61.69 ± 1.82 22.65 ± 1.10 38.58 ± 2.56 31.59 ± 0.37 28.65 ± 1.06 24.92 ± 0.64
180 Pyrazinamide 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
181 Ebselen 100 75.99 ± 0.93 24.38 ± 0.92 65.36 ± 0.91 - 30.09 ± 0.80 49.65 ± 0.18
182 Temozolomideacid 100 4.82 ± 0.78 0 ± 0 16.2 ± 1.03 11.03 ± 1.79 0 ± 0 12.02 ± 2.68
183 Atorvastatin 100 7.1 ± 1.11 16.44 ± 0.68 1.67 ± 0.38 28.2 ± 0.03 10.14 ± 2.01 8.06 ± 0.42
184 Indometacin 100 90.33 ± 0.45 65.23 ± 0.83 81.24 ± 1.09 57.2 ± 0.61 78.02 ± 0.41 59.86 ± 2.63
185 Trimethobenzamide hydrochloride 100 11.39 ± 2.65 27.93 ± 1.18 20.55 ± 1.55 18.71 ± 1.94 0 ± 0 0 ± 0
186 Levetiracetam 100 10.95 ± 1 0 ± 0 11.9 ± 1.01 18.2 ± 1.85 0 ± 0 0 ± 0
187 7-Aminodesacetoxycephalosporanic acid 100 5.55 ± 0.58 17.58 ± 1.13 0 ± 0 0 ± 0 0 ± 0 9.94 ± 0.64
188 (2S-trans)-3-Amino-2-methyl-4-oxoazetidine-1-sulphonic acid 100 3.77 ± 0.42 17.93 ± 2.42 0 ± 0 0 ± 0 0 ± 0 11.82 ± 0.25
189 Dichloro-1,2-dithiacyclopentenone 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
190 Anethole trithione 100 41.44 ± 0.74 49.75 ± 1.18 0 ± 0 10.92 ± 0.44 7.34 ± 0.74 13.82 ± 0.2
191 3H-1,2-Benzodithiol-3-one 100 100 ± 0 100 ± 0 100 ± 0 62.89 ± 1.13 19.59 ± 1.51 62.44 ± 1.47
192 2,3-Dimercapto-1-propanol 100 10.9 ± 0.89 5.93 ± 0.14 0 ± 0 15.44 ± 0.46 0 ± 0 23.24 ± 0.92
193 Oltipraz 100 33.89 ± 0.43 41.34 ± 1.50 46.53 ± 2.43 4.49 ± 1.16 4.51 ± 0.69 12.98 ± 2.2
194 Sertraline hydrochloride 100 100 ± 0 100 ± 0 94.11 ± 0.79 77.6 ± 0.45 88.74 ± 0.66 88.23 ± 0.71
195 Ethyl bromopyruvate 100 18.87 ± 1.3 9.17 ± 0.56 0 ± 0 20.65 ± 0.43 16.84 ± 0.44 20.51 ± 0.29
196 Atovaquone 100 0 ± 0 10.5 ± 1.33 15.98 ± 0.68 36.04 ± 1.85 14.46 ± 0.92 29.8 ± 0.04
197 Clorprenaline hydrochloride 100 0 ± 0 0 ± 0 4.72 ± 1.73 0 ± 0 0 ± 0 5.78 ± 0.23
198 Simvastatin 100 83.39 ± 0.04 74.06 ± 0.23 86.2 ± 0.68 56.73 ± 0.01 73.68 ± 2.4 68.46 ± 0.25
199 Clomipramine hydrochloride 100 62.01 ± 1.98 82.57 ± 1.33 88.14 ± 0.83 63.92 ± 0.31 75.11 ± 1.97 69.94 ± 0.71
200 Benzbromarone 100 57.66 ± 0.01 82.36 ± 1.45 98.63 ± 0.15 82.28 ± 2.17 92.04 ± 0.08 51.79 ± 0.04
201 Nortaiptyline hydrochloride 100 0 ± 0 2.01 ± 0.96 3.1 ± 0.05 0.19 ± 0.93 2.98 ± 0.01 2.60 ± 0.1
202 Fluvastatin sodium salt 100 86.78 ± 1.28 100 ± 0 100 ± 0 54.06 ± 0.74 100 ± 0 100 ± 0
203 Tulobuterol hydrochloride 100 12.47 ± 2.49 0 ± 0 17.18 ± 0.92 0 ± 0 0 ± 0 0 ± 0
204 Tilorone dihydrochloride 100 10.3 ± 0.64 0 ± 0 61.23 ± 2.09 28.14 ± 1.93 19.48 ± 1.07 16.02 ± 0.26
205 Dichlorophen 100 96.01 ± 1.31 100 ± 0 87.6 ± 0.49 84.2 ± 0.45 87.62 ± 0.49 83.1 ± 0.99
206 Clofazimine 100 41.89 ± 1.84 18.72 ± 0.89 55.46 ± 2.2 30.52 ± 0.88 34.86 ± 0.02 32.45 ± 1.97
207 Ethopabate 100 19.63 ± 1.42 0 ± 0 31.73 ± 1.15 6.81 ± 1.92 9.45 ± 1.39 9.24 ± 1.75
208 (E,E)-Farnesol 100 76.7 ± 0.33 59.79 ± 1.57 72.95 ± 0.32 52.13 ± 1.03 16.28 ± 0.91 29.52 ± 0.9
209 Chlorphenesin 100 25.04 ± 1.93 54.53 ± 0.06 29.76 ± 0.7 34.94 ± 2.77 0 ± 0 36.21 ± 1.34
210 2-Benzoxazolinone 100 20.15 ± 2.33 9.08 ± 0.62 26.61 ± 3.17 37.21 ± 1.24 0 ± 0 8.93 ± 0.67
211 Triacetin 100 8.4 ± 1.03 15.82 ± 3.67 18 ± 2.33 5.69 ± 0.81 0 ± 0 0 ± 0
212 Bronopol 100 71.19 ± 1.64 50 ± 1.53 58.31 ± 0.96 82.6 ± 1.08 53.32 ± 2.05 39.32 ± 0.68
213 Flufenamic acid 100 94.95 ± 0.12 97.95 ± 0.26 91.7 ± 0.19 77.13 ± 1.49 84.31 ± 0.54 82.43 ± 0.24
214 Pyrantel tartrate salt 100 5.08 ± 0.67 0 ± 0 5.18 ± 0.2 21.76 ± 1.58 1.89 ± 0.34 6.26 ± 1.3
215 Carbonyl cyanide 3-chloro-phenylhydrazone 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
216 Atropine sulfate monohydrate 100 5.52 ± 1.64 0 ± 0 7.76 ± 0.82 2.31 ± 0.93 0 ± 0 5.17 ± 0.26
217 Monomyristitin 100 0 ± 0 0 ± 0 5.31 ± 1.58 3.79 ± 0.76 0 ± 0 0.87 ± 0.5
218 Lumefantrine 100 0 ± 0 22.51 ± 0.38 24.36 ± 2.37 0 ± 0 0 ± 0 0 ± 0
219 4-(2-Aminoethyl)benzenesulfonylfluoride hydrochloride 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 15.96 ± 0.86
220 Bufexamac 100 19.1 ± 1.94 92.13 ± 0.21 57.14 ± 0.4 34.26 ± 0.81 0 ± 0 42.07 ± 0.68
221 1-(2,6-Dichlorophenyl)-2-indolinone 100 83.65 ± 0.41 91.79 ± 0.86 78.64 ± 0.04 39.33 ± 0.22 74.43 ± 0.79 80.63 ± 1.16
222 5-Phenylpenta-2,4-dienoic acid 100 68.76 ± 0.35 100 ± 0 93.72 ± 0.46 47.14 ± 0.21 33.08 ± 1.56 47.11 ± 2.43
223 Hydroxyurea 100 50.19 ± 0.55 23.08 ± 1.13 0 ± 0 0 ± 0 0 ± 0 0 ± 0
224 Acetylcysteine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 12.22 ± 1.17
225 Escitalopram oxalate 100 0 ± 0 11.52 ± 1.51 0 ± 0 17.36 ± 1.29 0 ± 0 11.25 ± 1.5
226 Ezetimibe 100 62.77 ± 1.32 68.85 ± 0.73 63.88 ± 0.52 48.58 ± 0.66 44.76 ± 0.43 60.89 ± 0.51
227 Venlafaxine hydrochloride 100 0 ± 0 12.48 ± 0.65 0 ± 0 0 ± 0 0 ± 0 25.47 ± 1.76
228 (+/-)-Verapamil hydrochloride 100 0 ± 0 2.82 ± 0.65 31.6 ± 2.72 27.8 ± 2.09 5.03 ± 0.84 9.41 ± 2.1
229 Mecarbinate 100 0 ± 0 0 ± 0 0 ± 0 5.86 ± 2.28 7.78 ± 1.61 11.26 ± 1.24
230 Ipratropium bromide 100 0 ± 0 0 ± 0 4.03 ± 0 4.45 ± 0.62 0 ± 0 4.82 ± 1.62
231 Ketotifen fumarate 100 24.23 ± 3.25 21.97 ± 0.4 36.68 ± 1.72 44.51 ± 1.46 0 ± 0 11.93 ± 1.04
232 Verapamil 100 4.9 ± 2.23 45.33 ± 0.97 17.69 ± 1.7 18.51 ± 1.85 6.73 ± 0.38 0 ± 0
233 RU-58841 (72) 100 4 ± 0.38 43.44 ± 1.04 0 ± 0 12.31 ± 1.77 10.25 ± 1.38 0 ± 0
234 Amylmetacresol 100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 70.15 ± 1.79 54.78 ± 0.6
235 Nisin 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 7.53 ± 0.16
236 Silver 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
237 Combretastatin A-4 100 69.75 ± 0.04 42.08 ± 0.27 19.06 ± 2.17 11.96 ± 0.11 29.35 ± 0.3 64.04 ± 0.48
238 Procaine 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 14.13 ± 0.28 13.34 ± 0.87
239 Phenformin hydrochloride 100 9.35 ± 1.75 36.91 ± 0.71 28.82 ± 0.54 10.65 ± 1.83 6.75 ± 0.34 20.3 ± 1.02
240 Moroxydine hydrochloride 100 13.39 ± 1.09 0 ± 0 22.41 ± 0.04 0 ± 0 0 ± 0 0 ± 0
241 Febantel 100 100 ± 0 38.88 ± 1.59 68.78 ± 0.37 36.27 ± 1.81 6.36 ± 0.12 13.28 ± 0.43
242 3,4-dihydroquinolin-2(1H)-one 100 21.01 ± 2.51 52.19 ± 1.99 0 ± 0 16.05 ± 0.52 13.9 ± 1 24.9 ± 1.4
243 6-Bromo--3,4-dihydro-1H-Quinolin-2-one 100 84.91 ± 1.44 62.48 ± 0.39 61.03 ± 1.12 49.67 ± 2.81 64.05 ± 0.39 46.4 ± 0.01
244 7-Hydroxy-3,4-dihydro-2(1H)-quinolinone 100 12.75 ± 0.01 45.63 ± 0.34 23.65 ± 3 0 ± 0 9.58 ± 0.02 21.5 ± 0.45
245 6-Hydroxy-1,2,3,4-Tetrahydro--2-Quinolinone 100 8.89 ± 0.46 45.68 ± 0.57 5.6 ± 1.32 0 ± 0 7.95 ± 1.43 13.99 ± 1.28
246 5-Hydroxy-3,4-dihydro-2(1H)-quinolinone 100 12.4 ± 1.16 45.85 ± 0.02 0 ± 0 0 ± 0 8.75 ± 0.39 15.05 ± 0.41
247 Oxolinc acid impurity B 100 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 5.37 ± 0.47
248 Levofloxacin hydrochloride 100 0 ± 0 0 ± 0 61.22 ± 1.05 24.08 ± 0.50 0 ± 0 25.68 ± 0.35
249 Norfloxacin 100 0 ± 0 0 ± 0 25.55 ± 0.17 39.69 ± 0.28 0 ± 0 10.73 ± 0.51
250 Gatifloxacin 100 26.47 ± 0.59 0 ± 0 46.60 ± 0.36 10.95 ± 0.70 6.95 ± 0.32 20.50 ± 0.53
251 Fleroxacin 100 0 ± 0 42.88 ± 0.44 42.03 ± 0.57 22.37 ± 0.17 00 ± 0 13.50 ± 0.83
252 Ciprofloxacin 100 0 ± 0 4.30 ± 0.26 48.90 ± 0.40 42.93 ± 0.24 4.42 ± 0.34 16.58 ± 0.30
253 Enrofloxacin 100 0 ± 0 0 ± 0 59.99 ± 0.45 8.50 ± 0.31 33.35 ± 0.30 59.60 ± 0.43
254 Moxifloxacin 100 0 ± 0 17.78 ± 0.44 45.00 ± 0.63 8.25 ± 0.44 18.42 ± 0.13 25.91 ± 0.24
255 Enoxacin 100 0 ± 0 0 ± 0 6.90 ± 0.57 4.43 ± 0.50 4.45 ± 0.29 10.50 ± 0.26
256 Nalidixic acid 100 9.87 ± 0.53 71.98 ± 0.60 5.88 ± 0.46 15.68 ± 0.26 69.57 ± 0.22 69.95 ± 0.54
257 Ofloxacin 100 0 ± 0 48.03 ± 0.55 58.39 ± 0.53 20.78 ± 0.23 0 ± 0 17.07 ± 0.63
258 Marbofloxacin 100 0 ± 0 30.02 ± 0.34 50.31 ± 0.46 11.5 ± 0.20 0 ± 0 18.94 ± 0.52
259 2-Hydroxyacetophenone 100 42.43 ± 2.66 75.59 ± 0.79 26.67 ± 1.69 10.18 ± 0.44 8.51 ± 0.18 18.88 ± 0.96
260 4'-Hydroxyacetophenone 100 36.62 ± 2.69 18.76 ± 0.43 27.33 ± 1.56 8.93 ± 0.68 12.22 ± 2.17 0 ± 0
261 3'-Hydroxyacetophenone 100 10.08 ± 0.93 27.95 ± 2.21 41.13 ± 1.93 0 ± 0 6.58 ± 0.68 13.38 ± 0.54
262 3,4-Dihydroxyacetophenone 100 0 ± 0 19.83 ± 0.34 0 ± 0 0 ± 0 0 ± 0 0 ± 0
263 3,4-Dimethoxyacetophenone 100 14 ± 2.59 0 ± 0 45.41 ± 0.68 7.67 ± 0.16 21.64 ± 1.53 17.23 ± 0.1
264 Acetovanillone 100 26.54 ± 0.69 21.08 ± 1.63 12.05 ± 0.41 0 ± 0 16.78 ± 0.12 9.42 ± 0.01
265 2',6'-Dihydroxyacetophenone 100 80.59 ± 0.01 31.46 ± 1.81 78.41 ± 1.25 65.73 ± 0.36 58.92 ± 0.01 61.48 ± 0.02
266 2,4-Dihydroxyacetophenone 100 62.94 ± 2.1 23.2 ± 1.27 58.31 ± 0.5 23.23 ± 1.93 41.25 ± 0.32 34 ± 0.28
267 2,4-Dihydroxyacetophenone 100 25.95 ± 2.93 34.27 ± 0.46 38.9 ± 0.85 35.35 ± 1.47 25.16 ± 1.14 25.4 ± 0.57
268 2',3',4'-Trihydroxyacetophenone 100 27.04 ± 1.19 43.18 ± 0.70 0 ± 0 15.02 ± 0.78 14.58 ± 0.4 15.16 ± 1.57
269 2',4',6'-Trihydroxyacetophenone monohydrate 100 7.81 ± 0.49 13.53 ± 0.8 0 ± 0 14.24 ± 1.41 10.79 ± 0.19 15.32 ± 1.91
270 4,6-Diacetylresorcinol 100 79.69 ± 1.15 96.55 ± 0.87 50.85 ± 1.58 71.88 ± 3.12 72.74 ± 0.46 63.2 ± 1.03
271 Flopropione 100 45.45 ± 0.6 45.25 ± 4.05 33.04 ± 1.03 24.38 ± 3.29 25.52 ± 0.67 46.37 ± 0.25
272 2',3',4'-Trimethoxyacetophenone 100 6.91 ± 1.46 12.44 ± 0.38 19.16 ± 3.27 8.91 ± 1.98 9.81 ± 0.06 14.19 ± 2.51
273 Acetosyringone 100 4.4 ± 0.93 13.4 ± 2.03 0 ± 0 0 ± 0 9.42 ± 0.84 17.29 ± 0.64
274 2'-Hydroxy-4',5'-dimethoxyacetophenone 100 77.92 ± 1.28 18.52 ± 1.61 60.32 ± 1.61 24.19 ± 2.44 24.11 ± 1.51 34.6 ± 1.63
275 2',4'-Dihydroxypropiophenone 100 87.09 ± 0.49 55.05 ± 2.65 76.33 ± 0.63 62.05 ± 0.42 71.54 ± 0.69 68.29 ± 2.32
276 Abafungin 100 95.31 ± 0.38 100 ± 0 93.63 ± 0.42 76.34 ± 1.38 92.71 ± 0.04 88.33 ± 0.92

aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Fig. 11.

Fig. 11

The EC50 of miscellaneous drugs against phytopathogenic fungia. aR.s, Rhizoctonia solani; S.s, Sclerotinia sclerotiorum; B.c, Botrytis cinerea; F.g, Fusarium graminearum; F.o, Fusarium oxysporum; P.c, Phytophthora capsici

Monensin, natamycin and griseofulvin are antibiotics, but they have different effects, which monensin inhibits the growth of coccidia, gram-positive bacteria, algae and protozoa [61]. Natamycin is commonly used as a preservative to prevent mould contamination in food [62, 63]. Griseofulvin is widely used in clinical medicine to treat skin and stratum corneum fungal infections, and also in the prevention and treatment of fungal diseases in agriculture [64]. Monensin sodium salt, natamycin and griseofulvin had broad-spectrum activity against plant pathogenic fungi, with EC50 ranging from 0.076 to 13.20 μg ml−1. Butenafine hydrochloride, terbinafine hydrochloride and tolnaftate are a group of antifungal drugs, which are applied to the treatment of tinea capitis and other tinea diseases [65, 66]. In this screening, butenafine hydrochloride, terbinafine hydrochloride and tolnaftate were also found to have excellent activity against pathogenic fungi, with EC50 in the range of 0.07–18.05 μg ml−1. It was worth noting that they had significant activity in B. cinerea, with EC50 of 0.07, 0.11 and 0.07 μg ml−1, respectively. Oxyclozanide is the drug of choice for clinical anti-helminth infections, which has the characteristics of broad spectrum, low toxicity and low residue [67]. Through drug repositioning strategy, we found that oxyclozanide also had excellent activity against phytopathogenic fungi with EC50 in the range of 0.09–0.71 μg ml−1. Carbonyl cyanide 3-chloro-phenylhydrazone (CCCP) is an inhibitor of oxidative phosphorylation that disrupts the mitochondrial membrane potential [68]. The evaluation of the in vitro activity of CCCP against pathogenic fungi revealed a broad antifungal spectrum and potent activity with EC50 in the range of 0.38–6.07 μg ml−1. Although this group of drugs was not analyzed by activity and structure, these results provided a structure-based screening approach to repurpose commercially available drugs with the expectation of discovering broad-spectrum, effective drugs against plant pathogens.

Discussion and conclusion

In an era of emerging drug resistance, there is an increasing need to optimise old drugs or develop new ones to alleviate the problem. In this worrying situation, drug repurposing is a promising approach as a way to obtain effective drugs or lead structures to solve the problem. In the field of medicine, studies have been carried out with drug repurposing strategies to re-screen approved library for potential anti-tumour, anti-inflammatory, antituberculous, antimicrobial drugs [23, 6974]. Similarly, in the agricultural field, the potential of halofuginone, kaempferol, honokiol and tavaborole against agricultural pathogens has also been identified [7578]. In addition, novel lead structures can also be found through drug repurposing. Antibacterial conversion of neamine aminoglycosides through alkyl modification could turn old drugs into agricultural fungicides [79]. In this paper, we can obtain some potential drugs or lead structures against agricultural pathogenic fungi by screening. However, studies have found that for some repurposed drugs, the original mechanism of action may become a negative side effect of the new indication. Thus, maintaining the positive effects of the new indication while eliminating the original mechanism of the drug is a more attractive study. Conversely, the study show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of C. albicans AHAS [80]. This provides two different directions for our subsequent research.

We have obtained 150 drug candidates through activity screening and many of the compounds had low acute toxicity. Surprisingly, we found that benzoimidazole/carbamate drugs (parbendazole, fenbendazole, mebendazole) (Fig. 4) and azole drugs (econazole, isoconazole nitrate, clotrimazole) (Fig. 5) showed excellent activity against plant pathogenic fungi and low toxicity. In this article benzoimidazole/carbamate drugs (parbendazole, fenbendazole, mebendazole) are mainly used as anthelmintics. The original use of halofuginone was found to be an anticoccidial. Through a drug repurposing strategy, it was found to have excellent activity against Phytophthora [78]. Therefore, we hope to obtain potential drugs or lead structures against plant pathogenic fungi through this strategy, which will provide the possibility for the development of agricultural fungicides.

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (22177043, 21877056) and The Natural Science Foundation of Gansu Province (20JR5RA311); Support was also supplied by the Key Program for international S&T cooperation projects of China Gansu Province (18YF1WA115).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Footnotes

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Jun-Xia An, Yue Ma

References

  • 1.Bebber DP, Holmes T, Gurr SJ. The global spread of crop pests and pathogens. Glob Ecol Biogeogr. 2014;23:1398–407. doi: 10.1111/geb.12214. [DOI] [Google Scholar]
  • 2.Stukenbrock EH, McDonald BA. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol. 2008;46:75–100. doi: 10.1146/annurev.phyto.010708.154114. [DOI] [PubMed] [Google Scholar]
  • 3.Zhang Q, Men X, Hui C, Ge F, Ouyang F. Wheat yield losses from pests and pathogens in China. Agric Ecosyst Environ. 2022;326:107821. doi: 10.1016/j.agee.2021.107821. [DOI] [Google Scholar]
  • 4.Horbach R, Navarro-Quesada AR, Knogge W. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J Plant Physiol. 2011;168:51–62. doi: 10.1016/j.jplph.2010.06.014. [DOI] [PubMed] [Google Scholar]
  • 5.Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered. 2019;10:409–24. doi: 10.1080/21655979.2019.1649520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Li Y, Aioub AAA, Lv B, Hu Z, Wu W. Antifungal activity of pregnane glycosides isolated from Periploca sepium root barks against various phytopathogenic fungi. Ind Crops Prod. 2019;132:150–55. doi: 10.1016/j.indcrop.2019.02.009. [DOI] [Google Scholar]
  • 7.Dean R, Van Kan Ja Fau - Pretorius ZA, Pretorius Za Fau - Hammond-Kosack KE, Hammond-Kosack Ke Fau - Di Pietro A, Di Pietro A Fau - Spanu PD, Spanu Pd Fau - Rudd JJ, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:414–30. doi: 10.1111/j.1364-3703.2011.00783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.He Z, Zhang J, Shi D, Gao B, Wang Z, Zhang Y, et al. Deoxynivalenol in Fusarium graminearum: Evaluation of Cyproconazole Stereoisomers in vitro and in planta. J Agric Food Chem. 2021;69:9735–42. doi: 10.1021/acs.jafc.1c02555. [DOI] [PubMed] [Google Scholar]
  • 9.Aqueveque P, Céspedes CL, Alarcón J, Schmeda-Hirschmann G, Cañumir JA, Becerra J, et al. Antifungal activities of extracts produced by liquid fermentations of Chilean Stereum species against Botrytis cinerea (grey mould agent) Crop Prot. 2016;89:95–100. doi: 10.1016/j.cropro.2016.07.014. [DOI] [Google Scholar]
  • 10.Fisher MC, Henk Da Fau -, Briggs CJ, Briggs Cj Fau -, Brownstein JS, Brownstein Js Fau -, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94. doi: 10.1038/nature10947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Chuan YH. The screening of biocontrol agents against fusarium head blight and the research on Frenolicin B against the disease. (Doctoral dissertation) Northeast Agricultural University 2020.
  • 12.Jochum CC, Osborne LE, Yuen GY. Fusarium head blight biological control with Lysobacter enzymogenes strain C3. Biol Control. 2006;39:336–44. doi: 10.1016/j.biocontrol.2006.05.004. [DOI] [Google Scholar]
  • 13.Schisler DA, Khan NI, Boehm MJ. Biological control of Fusarium head blight of wheat and deoxynivalenol levels in grain via use of microbial antagonists. Adv Exp Med Biol. 2002;504:53–69. doi: 10.1007/978-1-4615-0629-4_6. [DOI] [PubMed] [Google Scholar]
  • 14.Wang L, Li C, Zhang Y, Qiao C, Ye Y. Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi. J Agric Food Chem. 2013;61:8632–40. doi: 10.1021/jf402388x. [DOI] [PubMed] [Google Scholar]
  • 15.Sparks TC, Lorsbach BA. Perspectives on the agrochemical industry and agrochemical discovery. Pest Manag Sci. 2017;73:672–77. doi: 10.1002/ps.4457. [DOI] [PubMed] [Google Scholar]
  • 16.Ribas e Ribas AD, Spolti P, Del Ponte EM, Donato KZ, Schrekker H, Fuentefria AM. Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review. Braz J Microbiol. 2016;47:793–99. doi: 10.1016/j.bjm.2016.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hermann D, Stenzel K. FRAC mode-of-action classification and resistance risk of fungicides. Mod Crop Prot Compd. 2019;14:589–608. [Google Scholar]
  • 18.Zheng W, Sun W, Simeonov A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br J Pharmacol. 2018;175:181–91. doi: 10.1111/bph.13895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22:151–85. doi: 10.1016/S0167-6296(02)00126-1. [DOI] [PubMed] [Google Scholar]
  • 20.Wall G, Lopez-Ribot JL. Screening repurposing libraries for identification of drugs with novel antifungal activity. Antimicrob Agents Chemother. 2020;64:e00924. doi: 10.1128/AAC.00924-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Demarque DP, Espindola LS. Challenges, advances, and opportunities in exploring natural products to control arboviral disease vectors. Front Chem. 2021;9:779049. doi: 10.3389/fchem.2021.779049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Tcs A, Fjw B, Bal B, Bmn B. The new age of insecticide discovery-the crop protection industry and the impact of natural products. Pestic Biochem Physiol. 2019;161:12–22. doi: 10.1016/j.pestbp.2019.09.002. [DOI] [PubMed] [Google Scholar]
  • 23.An Q, Li C, Chen Y, Deng Y, Yang T, Luo Y. Repurposed drug candidates for antituberculosis therapy. Eur J Med Chem. 2020;192:112175. doi: 10.1016/j.ejmech.2020.112175. [DOI] [PubMed] [Google Scholar]
  • 24.Stylianou M, Kulesskiy E Fau - Lopes JP, Lopes Jp Fau - Granlund M, Granlund M Fau - Wennerberg K, Wennerberg K Fau - Urban CF, Urban CF. Antifungal application of nonantifungal drugs. Antimicrob Agents Chemother. 2014;58:1055–62. doi: 10.1128/AAC.01087-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Serafin MB, Bottega A, Foletto VS, da Rosa TF, Machado CS, Coelho SS, et al. Drug repurposing identifies new promising treatment options for invasive fungal diseases. Clin Ther. 2019;41:2454–59. doi: 10.1016/j.clinthera.2019.08.014. [DOI] [PubMed] [Google Scholar]
  • 26.Mohammad H, AbdelKhalek A, Abutaleb NS, Seleem MN. Repurposing niclosamide for intestinal decolonization of vancomycin-resistant enterococci. Int J Antimicrob Agents. 2018;51:897–904. doi: 10.1016/j.ijantimicag.2018.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Abdelkhalek A, Mohammad H, Mayhoub AS. Screening for potent and selective anticlostridial leads among FDA-approved drugs. J Antibiot. 2020;73:392–409. doi: 10.1038/s41429-020-0288-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, et al. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem. 2017;139:22–47. doi: 10.1016/j.ejmech.2017.07.061. [DOI] [PubMed] [Google Scholar]
  • 29.Karad SC, Purohit VB, Thakor P, Thakkar VR. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur J Med Chem. 2016;112:270–9. doi: 10.1016/j.ejmech.2016.02.016. [DOI] [PubMed] [Google Scholar]
  • 30.Mohamed F, El S, Mostafa M, et al. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur J Med Chem. 2018;143:1463–73. doi: 10.1016/j.ejmech.2017.10.046. [DOI] [PubMed] [Google Scholar]
  • 31.Yang GZ, Zhu JK, Yin X, Yan YF, Wang YL, Shang XF, et al. Design, synthesis, and antifungal evaluation of novel quinoline derivatives inspired from natural quinine alkaloids. J Agric Food Chem. 2019;67:11340–53. doi: 10.1021/acs.jafc.9b04224. [DOI] [PubMed] [Google Scholar]
  • 32.Cinelli MA, Jones AD. Alkaloids of the genus datura: review of a rich resource for natural product discovery. Molecules. 2021;26:2629. doi: 10.3390/molecules26092629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Zhu JK, Gao JM, Yang CJ, Shang XF, Zhao ZM, Lawoe RK, et al. Design, synthesis, and antifungal evaluation of neocryptolepine derivatives against phytopathogenic fungi. J Agric Food Chem. 2020;68:2306–15. doi: 10.1021/acs.jafc.9b06793. [DOI] [PubMed] [Google Scholar]
  • 34.Hua L. Study on the design and synthesis of cryptolepine derivatives, structure-activity relationship, and its mechanism. (Master’s thesis) Lanzhou University 2020.
  • 35.Chen YJ, Liu H, Zhang SY, Li H, Ma KY, Liu YQ, et al. Design, synthesis, and antifungal evaluation of cryptolepine derivatives against phytopathogenic fungi. J Agric Food Chem. 2021;69:1259–71. doi: 10.1021/acs.jafc.0c06480. [DOI] [PubMed] [Google Scholar]
  • 36.Kun YM. The development of new quinoline antifungal chemical entities inspired from natural Quinine Alkaloids-III. (Master’s thesis) Lanzhou University 2021.
  • 37.Chu QR, He YH, Tang C, Zhang ZA-O, Luo XF, Zhang BQ, et al. Design, synthesis, and antimicrobial activity of quindoline derivatives inspired by the cryptolepine alkaloid. J Agric Food Chem. 2022;70:2851–63. doi: 10.1021/acs.jafc.1c07536. [DOI] [PubMed] [Google Scholar]
  • 38.Yang CJ, Li HX, Wang JR, Zhang ZJ, Wu TL, Liu YQ, et al. Design, synthesis and biological evaluation of novel evodiamine and rutaecarpine derivatives against phytopathogenic fungi. Eur J Med Chem. 2022;227:113937. doi: 10.1016/j.ejmech.2021.113937. [DOI] [PubMed] [Google Scholar]
  • 39.Zhou Y, Yang CJ, Luo XF, Li AP, Zhang SY, An JX, et al. Design, synthesis, and biological evaluation of novel berberine derivatives against phytopathogenic fungi. Pest Manag Sci. 2022;78:4361–76. doi: 10.1002/ps.7055. [DOI] [PubMed] [Google Scholar]
  • 40.Wang RX, Du SS, Wang JR, Chu QR, Tang C, Zhang ZA-O, et al. Design, synthesis, and antifungal evaluation of Luotonin a derivatives against phytopathogenic fungi. J Agric Food Chem. 2021;69:14467–77. doi: 10.1021/acs.jafc.1c04242. [DOI] [PubMed] [Google Scholar]
  • 41.Shrivastava N, Naim MJ, Alam MJ, Nawaz F, Ahmed S, Alam O. Benzimidazole scaffold as anticancer agent: synthetic approaches and structure-activity relationship. Arch Pharm. 2017;350:e1700040. doi: 10.1002/ardp.201700040. [DOI] [PubMed] [Google Scholar]
  • 42.Picconi P, Hind C, Jamshidi S, Nahar K, Clifford M, Wand ME, et al. Triaryl Benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J Med Chem. 2017;60:6045–59. doi: 10.1021/acs.jmedchem.7b00108. [DOI] [PubMed] [Google Scholar]
  • 43.Youssif, Bahaa GM, Mohamed, Yaseen AM, Mukai C, et al. Synthesis of some benzimidazole derivatives endowed with 1,2,3-triazole as potential inhibitors of hepatitis C virus. Acta Pharm. 2016;66:219–31. doi: 10.1515/acph-2016-0014. [DOI] [PubMed] [Google Scholar]
  • 44.Goodwin KD, Lewis MA, Tanious FA, Tidwell RR, Wilson WD, Georgiadis MM, et al. A high-throughput, high-resolution strategy for the study of site-selective DNA binding agents: analysis of a "highly twisted" benzimidazole-diamidine. J Am Chem Soc. 2006;128:7846–54. doi: 10.1021/ja0600936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ghoraba Z, Aibaghi B, Soleymanpour AJE, Safety E. Ultrasound-assisted dispersive liquid-liquid microextraction followed by ion mobility spectrometry for the simultaneous determination of bendiocarb and azinphos-ethyl in water, soil, food and beverage samples. Ecotoxicol Environ Saf. 2018;165:459–66. doi: 10.1016/j.ecoenv.2018.09.021. [DOI] [PubMed] [Google Scholar]
  • 46.Wang X, Meng X, Wu Q, Wang C, Wang Z. Solid phase extraction of carbamate pesticides with porous organic polymer as adsorbent followed by high performance liquid chromatography-diode array detection. J Chromatogr A. 2019;1600:9–16. doi: 10.1016/j.chroma.2019.04.031. [DOI] [PubMed] [Google Scholar]
  • 47.Benhamou RI, Bibi M, Steinbuch KB, Engel H, Levin M, Roichman Y, et al. Real-time imaging of the azole class of antifungal drugs in live candida cells. ACS Chem Biol. 2017;12:1769–77. doi: 10.1021/acschembio.7b00339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Robbertse B, Rijst M, Aarde I, Lennox C, Crous PW. DMI sensitivity and cross-resistance of Rhynchosporium secalis isolates from South Africa. Crop Prot. 2001;20:97–102. doi: 10.1016/S0261-2194(00)00061-2. [DOI] [Google Scholar]
  • 49.Wang XX, Zhang TY, Dao GH, Hu HY. Interaction between 1,2-benzisothiazol-3(2H)-one and microalgae: Growth inhibition and detoxification mechanism. Aquat Toxicol. 2018;205:66–75. doi: 10.1016/j.aquatox.2018.10.002. [DOI] [PubMed] [Google Scholar]
  • 50.Castelli R, Scalvini L, Vacondio F, Lodola A, Anselmi M, Vezzosi S, et al. Benzisothiazolinone derivatives as potent allosteric monoacylglycerol lipase inhibitors that functionally mimic sulfenylation of regulatory cysteines. J Med Chem. 2020;63:1261–80. doi: 10.1021/acs.jmedchem.9b01679. [DOI] [PubMed] [Google Scholar]
  • 51.Liang L, Haltli BA, Marchbank DH, Fischer M, Kerr RG. Discovery of an isothiazolinone-containing antitubercular natural product Levesquamide. J Org Chem. 2020;85:6450–62. doi: 10.1021/acs.joc.0c00339. [DOI] [PubMed] [Google Scholar]
  • 52.Aastha M, Tanya P, Tripti S. Pyrimidine: a review on anticancer activity with key emphasis on SAR. Future J Pharm Sci. 2021;7:123. doi: 10.1186/s43094-021-00274-8. [DOI] [Google Scholar]
  • 53.Chen MH, Wu WN, Chen LJ. Progresses on the pyrimidine derivatives as agrochemical fungicides. Agrochemicals. 2017;56:474–77. [Google Scholar]
  • 54.Bakhite EA, Abd-Ella AA, El-Sayed MEA, Abdel-Raheem SAA. Pyridine derivatives as insecticides. Part 2: Synthesis of some piperidinium and morpholinium cyanopyridinethiolates and their insecticidal activity. J Saudi Chem Soc. 2017;21:95–104. doi: 10.1016/j.jscs.2016.02.005. [DOI] [Google Scholar]
  • 55.Salmanpour M, Tamaddon A, Yousefi G, Mohammadi-Samani S. "Grafting-from" synthesis and characterization of poly (2-ethyl-2-oxazoline)-b-poly (benzyl L-glutamate) micellar nanoparticles for potential biomedical applications. Bioimpact. 2017;7:155–66. doi: 10.15171/bi.2017.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Huang JJ, Zhang ZH, He F, Liu XW, Xu XJ, Dai LJ, et al. Novel naftopidil derivatives containing methyl phenylacetate and their blocking effects on α1D/1A-adrenoreceptor subtypes. Bioorg Med Chem Lett. 2018;28:547–51. doi: 10.1016/j.bmcl.2018.01.068. [DOI] [PubMed] [Google Scholar]
  • 57.Ma H, Lu W, Sun Z, Luo L, Geng D, Yang Z, et al. Design, synthesis, and structure-activity-relationship of tetrahydrothiazolopyridine derivatives as potent smoothened antagonists. Eur J Med Chem. 2015;89:721–32. doi: 10.1016/j.ejmech.2014.11.006. [DOI] [PubMed] [Google Scholar]
  • 58.Li DK, Wei W. Synthesis and antitumor activity of Tetrahydroimidazo[2',1': 2,3]thiazolo[5,4-c]piperdine derivatives. Chin J Appl Chem. 2017;34:905–11. [Google Scholar]
  • 59.Chen YT, Xiao MP, Cui QL. Progress in the application of ionic liquids in the extraction of natural products. Guid J Tradit Chin Med Pharm. 2019;25:67–71. [Google Scholar]
  • 60.Lebedeva O, Kultin D, Zakharov A, Кustov L. Advances in application of ionic liquids: fabrication of surface nanoscale oxide structures by anodization of metals and alloys. Surf Interfaces. 2022;34:102345. doi: 10.1016/j.surfin.2022.102345. [DOI] [Google Scholar]
  • 61.Sun P, Cabrera ML, Huang CH, Pavlostathis SG. Biodegradation of veterinary ionophore antibiotics in broiler litter and soil microcosms. Technology. 2014;48:2724–31. doi: 10.1021/es404619q. [DOI] [PubMed] [Google Scholar]
  • 62.Panyod S, Wu WK, Ho CT, Lu KH, Liu CT, Chu YL, et al. Diet supplementation with allicin protects against alcoholic fatty liver disease in mice by improving anti-inflammation and antioxidative functions. J Agric Food Chem. 2016;64:7104–13. doi: 10.1021/acs.jafc.6b02763. [DOI] [PubMed] [Google Scholar]
  • 63.Chen G-Q, Lu F-P, Du L-X. Natamycin production by Streptomyces gilvosporeus based on statistical optimization. J Agric Food Chem. 2008;56:5057–61. doi: 10.1021/jf800479u. [DOI] [PubMed] [Google Scholar]
  • 64.Kassem MA, Esmat S, Bendas ER, El-Komy MH. Efficacy of topical griseofulvin in treatment of tinea corporis. Mycoses. 2006;49:232–35. doi: 10.1111/j.1439-0507.2006.01221.x. [DOI] [PubMed] [Google Scholar]
  • 65.Täuber A, Müller-Goymann CC. Comparison of the antifungal efficacy of terbinafine hydrochloride and ciclopirox olamine-containing formulations against the dermatophyte trichophyton rubrum in an infected nail plate model. Mol Pharm. 2014;11:1991–6. doi: 10.1021/mp400711q. [DOI] [PubMed] [Google Scholar]
  • 66.Song L, Jiang X, Fau -, Wang L, Wang L. Determination of butenafine hydrochloride in human plasma by liquid chromatography electrospray ionization-mass spectrometry following its topical administration in human subjects. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:3658–62. doi: 10.1016/j.jchromb.2011.09.042. [DOI] [PubMed] [Google Scholar]
  • 67.Rana A, Roohi N, Khan MA. Fascioliasis in cattle-a review. J Anim Plant Sci. 2014;24:668–75. [Google Scholar]
  • 68.Kwon D, Park E, Sesaki H, Kang SJ. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) suppresses STING-mediated DNA sensing pathway through inducing mitochondrial fission. Biochem Biophys Res Commun. 2017;493:737–43. doi: 10.1016/j.bbrc.2017.08.121. [DOI] [PubMed] [Google Scholar]
  • 69.Moroney J, Fu S, Moulder S, Falchook G, Helgason T, Levenback C, et al. Phase I study of the antiangiogenic antibody Bevacizumab and the mTOR/Hypoxia-inducible factor inhibitor temsirolimus combined with liposomal doxorubicin: tolerance and biological activity. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18:5796–805. doi: 10.1158/1078-0432.CCR-12-1158. [DOI] [PubMed] [Google Scholar]
  • 70.Moroney J, Schlumbrecht M, Helgason T, Coleman R, Moulder S, Naing A, et al. A Phase I trial of Liposomal Doxorubicin, Bevacizumab, and Temsirolimus in patients with advanced gynecologic and breast malignancies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17:6840–6. doi: 10.1158/1078-0432.CCR-11-0666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Ferreira D, Martins L, Fernandes A, Martins M. A tale of two ends: repurposing metallic compounds from anti-tumour agents to effective antibacterial activity. Antibiotics. 2020;9:321. doi: 10.3390/antibiotics9060321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Gur D, Chitlaru T, Mamroud E, Zauberman A. Screening of an FDA-approved library for novel drugs against Y. pestis. Antibiotics. 2021;10:40. doi: 10.3390/antibiotics10010040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Hanane Y, Ranque S, Cassagne C, Rolain J-M, Bittar F. Identification of repositionable drugs with novel antimycotic activity by screening Prestwick Chemical Library against emerging invasive molds. J Glob Antimicrob Resist. 2020;21:314–7. doi: 10.1016/j.jgar.2020.01.002. [DOI] [PubMed] [Google Scholar]
  • 74.Serafin M, Hörner R. Drug repositioning, a new alternative in infectious diseases. Braz J Infect Dis. 2018;22:252–56. doi: 10.1016/j.bjid.2018.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Yan Y-F, Yang C-J, Shang X-F, Zhao Z-M, Liu Y-Q, Zhou R, et al. Bioassay-guided isolation of two antifungal compounds from Magnolia officinalis, and the mechanism of action of honokiol. Pesticide Biochem Physiol. 2020;170:104705. doi: 10.1016/j.pestbp.2020.104705. [DOI] [PubMed] [Google Scholar]
  • 76.Zhao W, An J-X, Hu Y-M, Li A-P, Zhang S-Y, Zhang B-Q, et al. Tavaborole-induced inhibition of the Aminoacyl-tRNA biosynthesis pathway against botrytis cinerea contributes to disease control and fruit quality preservation. J Agric Food Chem. 2022;70:12297–309. doi: 10.1021/acs.jafc.2c03441. [DOI] [PubMed] [Google Scholar]
  • 77.Li A-P, He Y-H, Zhang S-Y, Shi Y-P. Antibacterial activity and action mechanism of flavonoids against phytopathogenic bacteria. Pesticide Biochem Physiol. 2022;188:105221. doi: 10.1016/j.pestbp.2022.105221. [DOI] [PubMed] [Google Scholar]
  • 78.Zhang S, Cai J, Xie Y, Zhang X, Yang X, Lin S, et al. Anti-Phytophthora activity of halofuginone and the corresponding mode of action. J Agric Food Chem. 2022;70:12364–71. doi: 10.1021/acs.jafc.2c04266. [DOI] [PubMed] [Google Scholar]
  • 79.Chang C-W, Fosso Yatchang M, Kawasaki Y, Shrestha S, Bensaci M, Wang J, et al. Antibacterial to antifungal conversion of neamine aminoglycosides through alkyl modification. Strategy for reviving old drugs into agrofungicides. J Antibiot. 2010;63:667–72. doi: 10.1038/ja.2010.110. [DOI] [PubMed] [Google Scholar]
  • 80.Garcia M, Chua S, Low Y-S, Lee Y-T, Agnew-Francis K, Wang J-G, et al. Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Proc Natl Acad Sci. 2018;115:E9649–58. doi: 10.1073/pnas.1809422115. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Antibiotics are provided here courtesy of Nature Publishing Group

RESOURCES