Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2022 Nov 30;55(1):144–148. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2023.01.022

3D打印人工椎体在颈椎脊索瘤全脊椎切除术中的应用

3D-printed vertebral body in anterior spinal reconstruction after total spondylectomy for patients with cervical chordoma

Hua ZHOU 1, Ren-ji WANG 1, Zhong-jun LIU 1, Xiao-guang LIU 1, Feng-liang WU 1, Lei DANG 1, Feng WEI 1,*
PMCID: PMC9894787  PMID: 36718703

Abstract

Objective

To investigate whether 3D-printed artificial vertebral body can reduce prosthesis subsidence rate for patients with cervical chordomas, through comparing the rates of prosthesis subsidence between 3D printing artificial vertebral body and titanium mesh for anterior spinal reconstruction after total spondylectomy.

Methods

This was a retrospective analysis of patients who underwent surgical treatment for cervical chordoma at our hospital from March 2005 to September 2019. There were nine patients in the group of 3D artificial vertebral body (3D group), and 15 patients in the group of titanium mesh cage (Mesh group). The patients' characteristics and treatment data were extracted from the medical records, including age, gender, CT hounsfield unit of cervical vertebra and surgical information, such as the surgical segments, time and blood loss of surgery, frequency and degree of prosthesis subsidence after surgery. Radiographic observations of prosthesis subsidence during the follow-up, including X-rays, CT, and magnetic resonance imaging were also collected. SPSS 22.0 was used to analysis the data.

Results

There was no significant difference between the two groups in gender, age, CT hounsfield unit, surgical segments, time of surgery, blood loss of posterior surgery and total blood loss. Blood loss of anterior surgery was 700 (300, 825) mL in 3D group and 1 500 (750, 2 800) mL in Mesh group (P < 0.05). The prosthesis subsidence during the follow-up, 3 months after surgery, there was significant difference between the two groups in mild prosthesis subsidence (P < 0.05). The vertebral height of the 3D group decreased less than 1 mm in eight cases (no prosthesis subsidence) and more than 1 mm in one case (mild prosthesis subsidence). The vertebral height of the Mesh group decreased less than 1 mm in five cases (no prosthesis subsidence), and more than 1 mm in eight cases (mild prosthesis subsidence). Two patients did not have X-rays in 3 months after surgery. There was a statistically significant difference between the two groups in the prosthesis subsidence rate at the end of 12 months (P < 0.01). The vertebral height of eight cases in the 3D group decreased less than 1 mm (no prosthesis subsidence) and one case more than 3 mm (severe prosthesis subsidence). Four of the 15 cases in the Mesh group decreased less than 1 mm (no prosthesis subsidence), two cases more than 1 mm (mild prosthesis subsidence), and nine cases more than 3 mm (severe prosthesis subsidence). There was a statistically significant difference between the two groups in the prosthesis subsidence rate at the end of 24 months (P < 0.01). The vertebral height of seven cases in the 3D group decreased less than 1 mm (no prosthesis subsidence), one case more than 3 mm (severe prosthesis subsidence), and one case died with tumor. One case in the Mesh group decreased less than 1 mm (no prosthesis subsidence), one case more than 1 mm (mild prosthesis subsidence), 11 case more than 3 mm (severe prosthesis subsidence), one case died with tumor and one lost the follow-up. Moreover, at the end of 12 months and 24 months, there was significant difference between the two groups in severe prosthesis subsidence rate (P < 0.01).

Conclusion

3D-printed artificial vertebral body for anterior spinal reconstruction after total spondylectomy for patients with cervical chordoma can provide reliable spinal stability, and reduce the incidence of prosthesis subsidence after 2-year follow-up.

Keywords: Cervical chordoma, Total spondylectomy, 3D-printed artificial vertebral body, Titanium mesh cage, Prosthesis subsidence


脊索瘤是一种来源于胚胎脊索残留组织的低度恶性肿瘤,发病率低,约0.001‰,好发于颅底及骶骨,在脊柱的活动节段中,以颈椎脊索瘤多见[1]。全脊椎切除术是颈椎脊索瘤首选的治疗方式[2],全脊椎切除后需要使用内植物来重建脊柱的稳定性,传统的前方重建方式采用大块自体骨或钛网植骨联合钛板固定,有较好的临床效果,但也存在一些问题,如大块自体骨来源有限,骨融合的时间长,发生内植物移位和钛网下沉等并发症比较常见[3];另外,对于多节段、特别是肿瘤累及3个节段以上的椎体切除,难以找到合适的钛网来重建颈椎的稳定性;而且颈椎解剖形态特异,尤其是上颈椎,钛网形态与椎体差异很大,所以使用钛网重建颈椎难以即刻实现可靠的稳定性[4]

与传统钛网不同的是,3D打印可根据肿瘤的节段和相邻椎体终板的角度定制个性化的人工椎体。由于3D打印人工椎体应用于临床的时间较短,所以颈椎肿瘤术后应用3D打印人工椎体进行重建多为个案报道[5-6]。目前,3D打印人工椎体和钛网在颈椎脊索瘤术后稳定性重建中的对比研究未见报道,本文回顾性分析2005年3月至2019年9月在北京大学第三医院行颈椎脊索瘤全脊椎切除术的患者资料,比较术后3D打印人工椎体和钛网下沉率的差异,旨在探讨3D打印人工椎体能否降低全脊椎切除术后内植物的下沉。

1. 资料与方法

1.1. 资料

本文为回顾性病例研究,获得北京大学第三医院医学科学研究伦理委员会批准(批准号:IRB00006761-M2017374),研究对象均已签署知情同意书。纳入标准:(1)行全脊椎切除术的颈椎肿瘤的患者;(2)病理证实为脊索瘤的患者;(3)随访大于12个月的患者。排除标准:(1)减瘤手术或者椎体矢状切除等没有实现全脊椎切除的病例;(2)围手术期死亡病例;(3)颈椎脊索瘤同时累及胸腰椎或者颅底者。共有24例脊索瘤患者纳入本研究,根据颈椎前方重建方式的不同分为3D椎体组和钛网组,3D椎体组有9例,钛网组有15例。由于多数患者没有行骨密度检查,故采用测量肿瘤所累及椎体的下一节段的椎体CT值来评估患者的椎体骨密度。

1.2. 手术方法

所有患者均采用前后联合入路完成全脊椎切除术。后路手术时,患者为俯卧位,用头架固定,碘酒和乙醇消毒,铺单。经后正中入路逐层显露相应节段椎板及两侧侧块,于病变脊椎的两端置入螺钉,经透视证实螺钉位置满意,切除病变脊椎椎板、侧块及横突后壁,显露两侧的神经根,游离并保护椎动脉,安装钛棒,拧紧螺帽进行固定;冲洗伤口,止血彻底后放置引流,逐层缝合伤口,无菌敷料包扎。前路手术时,患者为仰卧位,在颈后垫枕,使颈部后伸,碘伏消毒,铺单;肿瘤位于上颈椎时采取经口或者颌下入路[7],肿瘤位于下颈椎时采用颈前入路。逐层显露到椎前筋膜,注意保护颈部血管、气管和食管;切开椎前筋膜,显露病变椎体及椎间盘,透视确定病变节段后,整块或分块切除肿瘤、受累椎体及横突前壁,刮除椎体终板的软骨,冲洗伤口后,3D椎体组采用3D打印人工椎体重建颈椎,螺钉固定(图 1);钛网组采用填充植骨的钛网重建颈椎,钛板螺钉固定(图 2);再次冲洗伤口,止血彻底后放置引流,逐层缝合伤口,无菌敷料包扎。

图 1.

颈椎脊索瘤全脊椎切除术后3D打印人工椎体重建

3D-printed artificial vertebral body for anterior spinal reconstruction after total spondylectomy for patients with cervical chordoma

Case 1, female, 47 years old, cervical 2-5 chordoma, 3D printed artificial vertebral body and screws were used in the operation. A, B, anteroposterior and lateral X-rays after operation; C, D, E, lateral X-rays 3 months, 12 months and 24 months after operation.

图 1

图 2.

颈椎脊索瘤全脊椎切除术后钛网重建

Titanium mesh cage for anterior spinal reconstruction after total spondylectomy for patients with cervical chordoma

Case 2, male, 68 years old, cervical 3-5 chordoma, titanium mesh and plate were used in the operation. A, B, anteroposterior and lateral X-rays after operation; C, D, E, lateral X-rays 3 months, 12 months and 24 months after operation.

图 2

1.3. 主要观察指标

收集3D椎体组和钛网组的手术信息及术后内植物下沉情况,(1) 手术切除的节段数,如单节段或多节段;(2) 前路手术时间和出血量,后路手术时间和出血量,总手术时间(前路+后路)和总出血量(前路+后路);(3) 围手术期并发症,包括术中重要血管、神经损伤,脑脊液漏,伤口血肿形成,伤口愈合不良或伤口感染,肺部感染,下肢深静脉血栓或肺栓塞等;(4)采用颈椎功能障碍指数量表评价术后颈椎功能;(5)分别在术后3、12、24个月时随访患者的颈椎正侧位片,测量侧位片内植物的上位椎体前上缘至后上缘中点和下位椎体前下缘至后下缘中点的距离,作为椎间高度,通过比较椎间高度的下降值来判断内植物有无下沉。内植物下沉的评价标准为:比较术后3、12和24个月与患者出院前的椎间高度,下降在1~3 mm时为轻度下沉;椎体高度下降>3 mm时为重度下沉[8]。椎间高度的测量受颈椎曲度、拍摄颈椎X线片机器的投射角度等影响,并且存在一定的测量误差,因此,本研究将椎间高度下降在1 mm以内归于无内植物下沉。有部分学者采用测量上位椎体前上缘和下位椎体前下缘或上位椎体后上缘和下位椎体后下缘,取两者中差值较大者作为椎间高度[9];多数学者建议采用上位椎体前上缘至后上缘中点和下位椎体前下缘至后下缘中点的距离作为椎间高度[8],本研究采用后者。

1.4. 统计学分析

采用SPSS 22.0软件进行统计学分析,计量资料先行正态性检验,如满足正态分布,采用均数±标准差表示,并用t检验比较两组间的差异,如不符合正态分布,采用M(P25P75)表示,并用Wilcoxon秩和检验比较两组间的差异;计数资料采用例数n (%)表示,采用Fisher确切概率法比较两组间的差异。假设检验统一使用双侧检验,以P < 0.05为差异有统计学意义。

2. 结果

2.1. 患者基线资料

本研究共纳入24例患者,3D椎体组9例(男4例,女5例),年龄30~58岁,平均年龄(45.56±10.03)岁;钛网组15例(男9例,女6例),年龄26~70岁,平均年龄(50.27±14.41)岁。两组性别比较采用Fisher检验,P值为0.399,差异无统计学意义;两组间的年龄和CT值比较,t值分别为0.860和0.399,P值分别为0.399和0.690,差异无统计学意义。

2.2. 手术信息及内植物下沉率

3D椎体组和钛网组在手术节段、前路手术时间、后路手术时间、总手术时间和总出血量的比较,差异无统计学意义;而两组前路手术的出血量比较显示,3D椎体组为700 (300, 825) mL,而钛网组为1500 (750, 2 800) mL,差异有统计学意义(P=0.024)。术后3个月颈椎功能障碍指数评分,3D椎体组为3.22,钛网组为3.33;术后12个月,3D椎体组为1.33,钛网组为1.53,两组在3个月和12个月的颈椎功能比较差异无统计学意义。术后3个月随访,两组内植物下沉率比较,差异有统计学意义(P=0.031)。3D椎体组有8例椎体高度下降 < 1 mm (无内植物下沉),1例椎体高度下沉>1 mm (轻度内植物下沉);钛网组有5例椎体高度下降 < 1 mm (无内植物下沉),8例椎体高度下沉>1 mm (轻度内植物下沉),2例缺失术后3个月影像学资料。术后12个月内植物下沉比较显示,3D椎体组有8例椎体高度下降 < 1 mm (无内植物下沉),1例椎体高度下沉>3 mm (重度内植物下沉);钛网组有4例椎体高度下降 < 1 mm (无内植物下沉),2例椎体高度下沉>1 mm (轻度内植物下沉),9例椎体高度下沉>3 mm (重度内植物下沉),两组下沉率比较差异有统计学意义(P=0.009),且两组的重度内植物下沉率(椎体高度下沉>3 mm) 比较,差异有统计学意义(P=0.033)。术后24个月内植物下沉比较显示,3D椎体组有1例在18个月时死亡,7例椎体高度下降 < 1 mm (无内植物下沉),1例椎体高度下沉>3 mm (重度内植物下沉);钛网组有1例在21个月时死亡,1例在18个月时失访,1例椎体高度下降 < 1 mm (无内植物下沉),1例椎体高度下沉>1 mm (轻度内植物下沉),11例椎体高度下沉>3 mm (重度内植物下沉),两组下沉率比较差异有统计学意义(P=0.001),且两组的重度内植物下沉率比较,差异有统计学意义(P=0.002)。

2.3. 典型病例

病例1,女性,47岁,颈椎(cervical, C)2~5脊索瘤,一期后路手术切除C2~C5椎板、右侧侧块及横突后壁,用螺钉固定左侧C1侧块、C2椎弓根、C3~C6侧块和右侧C1、C6侧块。二期前路手术切除C2~C5椎体及右侧横突肿瘤,植入3D打印人工椎体后用螺钉固定。术后规律随访,术后3、12、24个月行颈椎正侧位片检查,术后24个月无内植物下沉(图 1)。

病例2,男性,68岁,C3~C5脊索瘤,一期后路手术切除C3~C5椎板及双侧附件,行C2椎弓根、C6、C7侧块螺钉内固定;二期前路手术切除C3~C5椎体及附件,植入钛网后用钛板螺钉固定。术后规律随访,术后3、12、24个月行颈椎正侧位片检查,术后12个月出现重度内植物下沉(图 2)。

3. 讨论

颈椎脊索瘤全脊椎切除术后3D打印人工椎体与钛网重建比较,能够明显地减少内植物下沉。在术后3、12、24个月时,3D椎体组的内植物下沉率都显著低于钛网组,特别是在术后12及24个月时,3D打印人工椎体发生重度内植物下沉率更低。

脊索瘤的全脊椎切除术使大多数患者获得了较好的疗效[10]。随着颈椎脊索瘤患者的生存期延长,内植物下沉导致内固定失败是面临的新问题。既往研究认为,影响重建钛网下沉的相关因素有年龄、性别、手术节段、骨质疏松、内植物直径等[11]。本研究中两组患者的年龄、性别、椎体CT值差异没有统计学意义,所以年龄、性别、骨密度不影响两组患者的比较。Matsumoto等[12]发现在40%的单节段整块全脊椎切除术的病例中,出现不同程度的脊柱内固定失败,甚至发生在一些已经实现了脊柱融合的病例中。Yoshioka等[11]研究表明,多节段整块全脊椎切除术是内固定失败的风险因素之一。Huang等[13]比较了全骶骨切除术后3D打印人工椎体与传统重建技术,结果显示使用3D打印的内植物能提供可靠的脊柱和骨盆稳定性。颈椎解剖结构特殊,传统钛网的相关并发症(如下沉、移位、不融合)比较常见[4]。Kaloostian等[14]报告1例枢椎脊索瘤整块切除术后4个月,钛网移位导致气管受压。Wei等[7]总结了19例原发性上颈椎肿瘤切除术的患者,有6例发生了内固定失败,其中3例表现为明显的钛网下沉。钛网与椎体的接触面积小和应力分布不均匀是导致钛网下沉的主要原因[11]。Li等[3]研究表明,钛网倾斜是内固定失败的独立危险因素,其原因可能与钛网倾斜产生应力切割有关。本研究结果表明,在术后3、12及24个月时,3D椎体组的内植物下沉率都显著低于钛网组,特别是在术后12及24个月,3D打印人工椎体发生重度内植物下沉率更低,这可能与3D打印人工椎体的接触面积大且具有良好的载荷分布有关。

本研究结果显示,3D打印人工椎体术后两年的内植物下沉率显著低于钛网,表明3D打印人工椎体能够获得更好的中远期稳定性。中远期内植物下沉的主要原因是没有骨融合[15],我们前期的动物实验研究表明,宿主骨和3D打印人工椎体的骨融合是通过骨与金属界面的骨整合来实现[16]。在绵羊的动物实验中发现,骨细胞能长入3D打印人工椎体内的微孔结构[17]。对复发肿瘤的3D打印人工椎体进行病理学研究,证实了内植物和骨界面存在骨融合[18]。3D打印人工椎体的微孔结构具有促进骨细胞黏附、增殖、分化的作用[19]。3D打印人工椎体可能通过骨界面融合,减少了内植物下沉,使颈椎获得更好的中远期稳定。

本研究也有一定的局限性,尽管这是目前较大宗的3D打印人工椎体在颈椎中的应用,但样本量仍偏少,3D打印人工椎体的下沉率更低需要更大样本的多中心研究来证实。此外,为了确保手术时成功置入3D打印人工椎体,需要提前定制不同尺寸的内植物,相应增加了医疗成本。

综上所述,在颈椎脊索瘤的全脊椎切除术后重建中,3D打印人工椎体可提供即刻可靠的稳定性,并且能够降低术后中远期内植物下沉的发生率。

Funding Statement

北京大学第三医院临床重点项目(BYSY2017001)和吴阶平医学基金会临床科研专项基金(320.6750.2022-3-37)

Supported by the Key Clinical Projects of Peking University Third Hospital (BYSY2017001) and Wu Jieping Medical Foundation Special Clinical Research Project (320.6750.2022-3-37)

References

  • 1.Casali PG, Stacchiotti S, Sangalli C, et al. Chordoma. Curr Opin Oncol. 2007;19(4):367–370. doi: 10.1097/CCO.0b013e3281214448. [DOI] [PubMed] [Google Scholar]
  • 2.Dea N, Fisher CG, Reynolds JJ, et al. Current treatment strategy for newly diagnosed chordoma of the mobile spine and sacrum: Results of an international survey. J Neurosurg Spine. 2018;30(1):119–125. doi: 10.3171/2018.6.SPINE18362. [DOI] [PubMed] [Google Scholar]
  • 3.Li Z, Wei F, Liu Z, et al. Risk factors for instrumentation failure after total en bloc spondylectomy of thoracic and lumbar spine tumors using titanium mesh cage for anterior reconstruction. World Neurosurg. 2020;135:106–115. doi: 10.1016/j.wneu.2019.11.057. [DOI] [PubMed] [Google Scholar]
  • 4.Wei F, Li Z, Liu Z, et al. Upper cervical spine reconstruction using customized 3D-printed vertebral body in 9 patients with primary tumors involving C2. Ann Transl Med. 2020;8(6):332. doi: 10.21037/atm.2020.03.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Choy WJ, Mobbs RJ, Wilcox B, et al. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg. 2017;105:1013–1032. doi: 10.1016/j.wneu.2017.05.133. [DOI] [PubMed] [Google Scholar]
  • 6.Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976) 2016;41(1):50–54. doi: 10.1097/BRS.0000000000001179. [DOI] [PubMed] [Google Scholar]
  • 7.Wei F, Liu Z, Liu X, et al. An approach to primary tumors of the upper cervical spine with spondylectomy using a combined approach: Our experience with 19 cases. Spine (Phila Pa 1976) 2018;43(2):81–88. doi: 10.1097/BRS.0000000000001007. [DOI] [PubMed] [Google Scholar]
  • 8.Hu B, Wang L, Song Y, et al. A comparison of long-term outcomes of nanohydroxyapatite/polyamide-66 cage and titanium mesh cage in anterior cervical corpectomy and fusion: A clinical follow-up study of least 8 years. Clin Neurol Neurosurg. 2019;176:25–29. doi: 10.1016/j.clineuro.2018.11.015. [DOI] [PubMed] [Google Scholar]
  • 9.Jin YZ, Zhao B, Lu XD, et al. Mid- and long-term follow-up efficacy analysis of 3D-printed interbody fusion cages for anterior cervical discectomy and fusion. Orthop Surg. 2021;13(7):1969–1978. doi: 10.1111/os.13005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Zhou H, Jiang L, Wei F, et al. Prognostic factors in surgical patients with chordomas of the cervical spine: A study of 52 cases from a single institution. Ann Surg Oncol. 2017;24(8):2355–2362. doi: 10.1245/s10434-017-5884-5. [DOI] [PubMed] [Google Scholar]
  • 11.Yoshioka K, Murakami H, Demura S, et al. Risk factors of instrumentation failure after multilevel total en bloc spondylectomy. Spine Surg Relat Res. 2017;1(1):31–39. doi: 10.22603/ssrr.1.2016-0005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Matsumoto M, Watanabe K, Tsuji T, et al. Late instrumentation failure after total en bloc spondylectomy. J Neurosurg Spine. 2011;15(3):320–327. doi: 10.3171/2011.5.SPINE10813. [DOI] [PubMed] [Google Scholar]
  • 13.Huang S, Ji T, Guo W. Biomechanical comparison of a 3D-printed sacrum prosthesis versus rod-screw systems for reconstruction after total sacrectomy: A finite element analysis. Clin Biomech (Bristol, Avon) 2019;70:203–208. doi: 10.1016/j.clinbiomech.2019.10.019. [DOI] [PubMed] [Google Scholar]
  • 14.Kaloostian PE, Gokaslan ZL. Surgical management of primary tumors of the cervical spine: Surgical considerations and avoidance of complications. Neurol Res. 2014;36(6):557–565. doi: 10.1179/1743132814Y.0000000367. [DOI] [PubMed] [Google Scholar]
  • 15.Park SJ, Lee CS, Chang BS, et al. Rod fracture and related factors after total en bloc spondylectomy. Spine J. 2019;19(10):1613–1619. doi: 10.1016/j.spinee.2019.04.018. [DOI] [PubMed] [Google Scholar]
  • 16.Zhang T, Wei Q, Zhou H, et al. Three-dimensional-printed individualized porous implants: A new "implant-bone" interface fusion concept for large bone defect treatment. Bioact Mater. 2021;6(11):3659–3670. doi: 10.1016/j.bioactmat.2021.03.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces. 2016;8(28):17964–17975. doi: 10.1021/acsami.6b05893. [DOI] [PubMed] [Google Scholar]
  • 18.Girolami M, Boriani S, Bandiera S, et al. Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine, a tailored option following en bloc resection for spinal tumors: Preliminary results on a case-series of 13 patients. Eur Spine J. 2018;27(12):3073–3083. doi: 10.1007/s00586-018-5708-8. [DOI] [PubMed] [Google Scholar]
  • 19.Yang J, Cai H, Lv J, et al. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting. Spine (Phila Pa 1976) 2014;39(8):486–492. doi: 10.1097/BRS.0000000000000211. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES