Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Jan 27:2023.01.26.525787. [Version 1] doi: 10.1101/2023.01.26.525787

TRPV1 Opening is Stabilized Equally by Its Four Subunits

Shisheng Li, Phuong Tran Nguyen, Simon Vu, Vladimir Yarov-Yarovoy, Jie Zheng
PMCID: PMC9900918  PMID: 36747729

Abstract

Capsaicin receptor TRPV1 is a nociceptor for vanilloid molecules such as capsaicin and resiniferatoxin (RTX). Even though cryo-EM structures of TRPV1 in complex with these molecules are available, how their binding energetically favors the open conformation is not known. Here we report an approach to control the number of bound RTX molecules (0-to-4) in functional mouse TRPV1. The approach allowed direct measurements of each of the intermediate open states under equilibrium conditions at both macroscopic and single-molecule levels. We found that RTX binding to each of the four subunits contributes virtually the same activation energy, which we estimated to be 1.86 kcal/mol and found to arise predominately from destabilizing the closed conformation. We further showed that sequential bindings of RTX increase open probability without altering single-channel conductance, confirming that there is likely a single open-pore conformation for TRPV1 activated by RTX.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES