Skip to main content
Frontiers in Cellular and Infection Microbiology logoLink to Frontiers in Cellular and Infection Microbiology
. 2023 Jan 23;12:1116035. doi: 10.3389/fcimb.2022.1116035

Molecular phylogeny and taxonomy of the remarkable genus Leptoporus (Polyporales, Basidiomycota) with description of a new species from Southwest China

Shun Liu 1, Yi-Fei Sun 1, Xing Ji 1, Chang-Ge Song 1, Tai-Min Xu 1, Bao-Kai Cui 1,*
PMCID: PMC9901564  PMID: 36755851

Abstract

Leptoporus is a rare and remarkable genus, mainly occurring in coniferous forests in the Northern Hemisphere. Recent phylogenetic studies showed that Leptoporus belongs to Irpicaceae in the phlebioid clade. It is worth noting that most species in the phlebioid clade can cause white-rot decay, except for the Leptoporus species, which can cause a brown-rot decay. In this study, we performed phylogenetic and taxonomic studies of Leptoporus and related genera. Molecular phylogenetic analyses were conducted based on sequences from multiple loci including the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II gene (RPB1), the second largest subunit of RNA polymerase II gene (RPB2), and the translation elongation factor 1-α gene (TEF1). Combined with morphological characteristics, a new species, Leptoporus submollis sp. nov., is discovered and illustrated from Southwest China.

Keywords: brown-rot fungi, Irpicaceae, macro-fungi, multi-gene phylogeny, taxonomy

Introduction

Irpicaceae Spirin & Zmitr. was proposed by Spirin (2003) with Irpex Fr. as type genus. The great majority of the species in Irpicaceae, even in the phlebioid clade, can cause a white rot, except for Leptoporus mollis (Pers.) Quél., which causes a brown rot (Gilbertson and Ryvarden, 1986; Chen et al., 2021). This makes Leptoporus a remarkable genus, which has attracted many mycologists’ attention.

Leptoporus Quél. was established by Quél (1886), with L. mollis as type species, which was described as causing a brown rot on dead conifers and mainly distributed in the Northern Hemisphere (North America, Europe, and Asia) (Gilbertson and Ryvarden, 1986; Ryvarden and Gilbertson, 1993; Núñez and Ryvarden, 2001; Yu et al., 2004; Volobuev, 2019). In North America, L. mollis has been reported in boreal coniferous forests (Gilbertson and Ryvarden, 1986). In Europe, this species was considered as a rare species and needs to be protected (Ryvarden and Gilbertson, 1993; Volobuev, 2019). In Asia, this species has been reported from China and Japan and was also considered as a rare species (Núñez and Ryvarden, 2001; Yu et al., 2004). Previously, Leptoporus was placed in Polyporaceae Fr. ex Corda (Yu et al., 2004; Kirk et al., 2008). Subsequently, some phylogenetic studies showed that Leptoporus was embedded in the phlebioid clade (Binder et al., 2005; Lindner and Banik, 2008; Binder et al., 2013). In recent years, Leptoporus has been proven to belong to Irpicaceae and was closely related to Ceriporia Donk (Justo et al., 2017; Chen et al., 2021). Currently, although the databases Index Fungorum (http://www.indexfungorum.org/) and MycoBank (https://www.mycobank.org/) still record some Leptoporus species, only one species, L. mollis, is accepted in recent studies (Lindner and Banik, 2008; He et al., 2019; Chen et al., 2020; Chen et al., 2021).

During investigations on the diversity of polypores in the Hengduan Mountains of Southwest China, one undescribed species of Leptoporus was discovered. To confirm the affinity of the undescribed species corresponding to Leptoporus, phylogenetic analyses of Irpicaceae were carried out based on the combined sequences datasets of ITS+nLSU and ITS+nLSU+RPB1+RPB2+TEF1.

Materials and methods

Morphological studies

The examined specimens were mostly deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University, China (BJFC), and some specimens were deposited at the Institute of Applied Ecology, Chinese Academy of Sciences, China (IFP). Macromorphological descriptions were based on the field notes and measurements of herbarium specimens. Special color terms followed Petersen (1996). Micromorphological data were obtained from the dried specimens and observed under a light microscope following Ji et al. (2022) and Sun et al. (2022). Sections were studied at a magnification up to ×1,000 using a Nikon Eclipse 80i microscope and phase-contrast illumination (Nikon, Tokyo, Japan). Drawings were made with the aid of a drawing tube. Microscopic features, measurements, and drawings were made from slide preparations stained with Cotton Blue and Melzer’s reagent. Spores were measured from sections cut from the tubes. To present variations in the size of basidiospores, 5% of measurements were excluded from each end of the range and extreme values are given in parentheses.

In the text, the following abbreviations were used: IKI, Melzer’s reagent; IKI–, neither amyloid nor dextrinoid; KOH, 5% potassium hydroxide; CB, Cotton Blue; CB–, acyanophilous; L, mean spore length (arithmetic average of all spores); W, mean spore width (arithmetic average of all spores); Q, variation in the L/W ratios between the specimens studied; n (a/b), number of spores (a) measured from given number (b) of specimens.

Molecular studies and phylogenetic analysis

A cetyl trimethylammonium bromide (CTAB) rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to extract total genomic DNA from dried specimens, and the polymerase chain reaction (PCR) was performed according to the manufacturer’s instructions with some modifications as described by Cui et al. (2019) and Shen et al. (2019). The internal transcribed spacer (ITS) regions were amplified with primer pairs ITS5 and ITS4 (White et al., 1990). The large subunit of nuclear ribosomal RNA gene (nLSU) regions were amplified with primer pairs LR0R and LR7 (http://www.biology.duke.edu/fungi/mycolab/primers.htm). RPB1 was amplified with primer pairs RPB1-Af and RPB1-Cr (Matheny et al., 2002). RPB2 was amplified with primer pairs fRPB2-f5F and bRPB2-7.1R (Matheny, 2005). Part of TEF1 was amplified with primer pairs EF1-983F and EF1-1567R (Rehner, 2001).

The PCR cycling schedule for ITS and TEF1 included an initial denaturation at 95°C for 3 min, followed by 35 cycles at 94°C for 40 s, 54°C for ITS, 55°C for TEF1 for 45 s, 72°C for 1 min, and a final extension at 72°C for 10 min. The PCR cycling schedule for nLSU included an initial denaturation at 94°C for 1 min, followed by 35 cycles at 94°C for 30 s, 51°C for 1 min, 72°C for 1.5 min, and a final extension at 72°C for 10 min. The PCR cycling schedule for RPB1 and RPB2 included an initial denaturation at 94°C for 2 min, followed by 10 cycles at 94°C for 40 s, 60°C for 40 s, and 72°C for 2 min, then followed by 37 cycles at 94°C for 45 s, 55°C–57°C for 1.5 min, 72°C for 2 min, and a final extension of 72°C for 10 min. The PCR products were purified and sequenced at Beijing Genomics Institute (BGI), China, with the same primers. All newly generated sequences were deposited at GenBank ( Table 1 ).

Table 1.

A list of species, specimens, and GenBank accession number of sequences used for phylogenetic analyses in this study.

Species Sample no. Locality GenBank accessions References
ITS nLSU RPB1 RPB2 TEF1
Byssomerulius corium FCUG 2701 Russia MZ636931 GQ470630 MZ748415 OK136068 MZ913668 Wu et al., 2010; Chen et al., 2021
Byssomerulius corium Wu 1207-55 China MZ636932 MZ637096 Chen et al., 2021
Byssomerulius corium FP-102382 USA KP135007 KP135230 KP134802 KP134921 Floudas and Hibbett, 2015
Ceriporia bubalinomarginata Dai 11327 China JX623953 JX644045 Jia et al., 2014
Ceriporia bubalinomarginata Dai 12499 China JX623954 JX644044 Jia et al., 2014
Ceriporia viridans Spirin 5909 Finland KX236481 KX236481 Spirin et al., 2016
Ceriporia viridans Miettinen 1170 Netherlands KX752600 KX752600 Miettinen et al., 2016
Crystallicutis cf. serpens Wu 1608-130 China MZ636946 MZ637108 Chen et al., 2021
Crystallicutis cf. serpens Wu 1608-81 China MZ636947 MZ637109 MZ748435 OK136094 MZ913699 Chen et al., 2021
Crystallicutis serpens HHB-15692 USA KP135031 KP135200 KP134785 KP134914 Floudas and Hibbett, 2015
Cytidiella albida GB-1833 Spain KY948748 KY948889 KY948960 OK136069 MZ913675 Justo et al., 2017; Chen et al., 2021
Cytidiella albomarginata Wei 18-474 China MZ636948 MZ637110 MZ748429 OK136070 MZ913678 Chen et al., 2021
Cytidiella albomarginata Wu 0108-86 China MZ636949 MZ637111 MZ748430 OK136071 MZ913677 Chen et al., 2021
Cytidiella albomellea FP-102339 USA MZ636950 MZ637112 MZ748431 Chen et al., 2021
Cytidiella nitidula T-407 USA KY948747 MZ637113 KY948961 OK136072 MZ913676 Justo et al., 2017; Chen et al., 2021
Efibula gracilis FD-455 USA KP135027 MZ637116 KP134804 OK136077 MZ913679 Floudas and Hibbett, 2015; Chen et al., 2021
Efibula intertexta Wu 1707-93 China MZ636953 MZ637117 MZ748416 OK136085 Chen et al., 2021
Efibula intertexta Wu 1707-96 China MZ636954 MZ637118 MZ748417 OK136086 Chen et al., 2021
Efibula matsuensis Wu 1011-18 China MZ636956 MZ637119 MZ748418 OK136078 MZ913680 Chen et al., 2021
Efibula tropica Wei 18-149 China MZ636967 MZ637129 MZ748419 OK136079 MZ913681 Chen et al., 2021
Efibula tropica Chen 3596 China (Taiwan) MZ636966 MZ637128 Chen et al., 2021
Efibula yunnanensis Wu 880515-1 China MZ636977 GQ470672 MZ748420 OK136080 MZ913682 Wu et al., 2010; Chen et al., 2021
Gloeoporus orientalis Wei 16-485 China MZ636980 MZ637141 MZ748443 OK136095 MZ913709 Chen et al., 2021
Gloeoporus pannocinctus L-15726 USA KP135060 KP135214 KP134867 KP134973 Floudas and Hibbett, 2015
Irpex flavus Wu 0705-1 China MZ636988 MZ637149 MZ748432 OK136087 MZ913683 Chen et al., 2021
Irpex flavus Wu 0705-2 China MZ636989 MZ637150 Chen et al., 2021
Irpex hydnoides KUC 20121109-01 South Korea KJ668510 KJ668362 Jang et al., 2016
Irpex laceratus WHC 1372 China MZ636990 MZ637151 Chen et al., 2021
Irpex lacteus DO 421 Sweden JX109852 JX109852 JX109882 Binder et al., 2013
Irpex lacteus FD-9 USA KP135026 KP135224 KP134806 Floudas and Hibbett, 2015
,Irpex latemarginatus FP-55521-T USA KP135024 KP135202 KP134805 KP134915 Floudas and Hibbett, 2015
Irpex latemarginatus Dai 7165 China KY131834 KY131893 Wu et al., 2017
Irpex lenis Wu 1608-14 China MZ636991 MZ637152 MZ748434 MZ913685 Chen et al., 2021
Irpex rosettiformis Meijer 3729 Brazil JN649346 JN649346 JX109875 JX109904 Sjökvist et al., 2012; Binder et al., 2013
Irpex sp. Wu 910807-35 China MZ636994 GQ470627 MZ748433 OK136088 MZ913684 Wu et al., 2010; Chen et al., 2021
Leptoporus mollis LE BIN 3849 Russia MG735341 Psurtseva, 2010
Leptoporus mollis Dai 21062 Belarus MW377302 MW377381 MW337062 MW337129 Present study
Leptoporus mollis JV 12117 USA MW377303 Present study
Leptoporus mollis RLG-7163 USA KY948794 MZ637155 KY948956 OK136101 MZ913693 Justo et al., 2017; Chen et al., 2021
Leptoporus submollis Cui 17584 China MW377305 MW377383 MW337195 MW337064 MW337131 Present study
Leptoporus submollis Cui 17514 China MW377304 MW377382 MW337194 MW337063 MW337130 Present study
Leptoporus submollis Cui 18379 China ON468433 ON468245 ON468447 ON468449 ON468451 Present study
Leptoporus submollis Dai 20182 China ON468434 ON468246 ON468448 ON468450 ON468452 Present study
Meruliopsis albostramineus HHB 10729 USA KP135051 KP135229 KP134787 Floudas and Hibbett, 2015
Meruliopsis crassitunicata CHWC 1506-46 China LC427010 LC427034 Chen et al., 2020
Meruliopsis leptocystidiata Wu 1708-43 China LC427013 LC427033 LC427070 Chen et al., 2020
Meruliopsis parvispora Wu 1209-58 China LC427017 LC427039 LC427065 Chen et al., 2020
Meruliopsis taxicola GC 1704-60 China LC427028 LC427050 LC427063 Chen et al., 2020
Phanerochaete albida GC 1407-14 China MZ422788 MZ637179 MZ748384 OK136013 MZ913704 Chen et al., 2021
Phanerochaete alnea FP-151125 USA KP135177 MZ637181 MZ748385 OK136014 MZ913641 Floudas and Hibbett, 2015; Chen et al., 2021
Phanerochaetella angustocystidiata Wu 9606-39 China MZ637020 GQ470638 MZ748422 OK136082 MZ913687 Wu et al., 2010; Chen et al., 2021
Phanerochaetella angustocystidiata Wu 1109-56 China MZ637019 MZ637227 MZ748421 OK136081 MZ913686 Chen et al., 2021
Phanerochaetella exilis HHB-6988 USA KP135001 KP135236 KP134799 KP134918 Floudas and Hibbett, 2015
Phanerochaetella formosana Chen 479 China MZ637023 GQ470650 MZ748424 OK136084 MZ913718 Wu et al., 2010; Chen et al., 2021
Phanerochaetella leptoderma Chen 1362 China MZ637025 GQ470646 MZ748423 OK136083 MZ913689 Wu et al., 2010; Chen et al., 2021
Phanerochaetella sp. HHB-11463 USA KP134994 KP135235 KP134797 KP134892 Floudas and Hibbett, 2015
Phanerochaetella sp. HHB-18104 New Zealand KP135003 KP135254 KP134798 KP134917 Floudas and Hibbett, 2015
Phanerochaetella xerophila HHB-8509 USA KP134996 KP135259 KP134800 KP134919 MZ913688 Floudas and Hibbett, 2015; Chen et al., 2021
Raduliporus aneirinus HHB-15629 USA KP135023 KP135207 KP134795 Floudas and Hibbett, 2015
Raduliporus aneirinus Wu 0409-199 China MZ637068 MZ637267 OK136096 MZ913712 Chen et al., 2021
Resiniporus pseudogilvescens Wu 9508-54 China MZ637069 MZ637269 Chen et al., 2021
Resiniporus pseudogilvescens Wu 1209-46 China KY688203 MZ637268 MZ748436 OK136097 MZ913713 Chen et al., 2018; Chen et al., 2021
Resiniporus resinascens BRNM 710169 Czech Republic FJ496675 FJ496698 Tomšovský et al., 2010
Trametopsis aborigena Robledo 1236 Argentina KY655336 KY655338 Gómez-Montoya et al., 2017
Trametopsis aborigena Robledo 1238 Argentina KY655337 KY655339 Gómez-Montoya et al., 2017
Trametopsis brasiliensis Meijer 3637 Brazil JN710510 JN710510 Miettinena et al., 2012
Trametopsis cervina Cui 18017 China ON041041 ON041057 ON099414 ON083780 Liu et al., 2022c
Trametopsis cervina Dai 21820 China ON041044 ON041060 ON099407 ON099416 ON083783 Liu et al., 2022c
Trametopsis cervina TJV-93-216T USA JN165020 JN164796 JN164839 JN164877 JN164882 Justo and Hibbett, 2011
Trametopsis montana Cui 18363 China ON041038 ON041054 ON099403 ON099411 ON083777 Liu et al., 2022c
Trametopsis montana Cui 18383 China ON041039 ON041055 ON099404 ON099412 ON083778 Liu et al., 2022c
Trametopsis tasmanica Cui 16606 Australia ON041048 ON041064 ON099409 ON099419 ON083787 Liu et al., 2022c
Trametopsis tasmanica Cui 16607 Australia ON041049 ON041065 ON099410 ON099420 ON083788 Liu et al., 2022c

Newly generated sequences for this study are shown in bold.

Additional sequences were downloaded from GenBank ( Table 1 ). All sequences of ITS, nLSU, RPB1, RPB2, and TEF1 were respectively aligned in MAFFT 7 (Katoh and Standley, 2013; http://mafft.cbrc.jp/alignment/server/) and manually adjusted in BioEdit (Hall, 1999). Alignments were spliced in Mesquite (Maddison and Maddison, 2017). The missing sequences and ambiguous nucleotides were both coded as “N.”

Most parsimonious phylogenies were inferred from the combined 2-gene dataset (ITS+nLSU) and 5-gene dataset (ITS+nLSU+RPB1+RPB2+TEF1), and their congruences were evaluated with the incongruence length difference (ILD) test (Farris et al., 1994) implemented in PAUP* 4.0b10 (Swofford, 2002) under heuristic search and 1,000 homogeneity replicates. Phylogenetic analyses followed Sun et al. (2020). In phylogenetic reconstruction, the sequences of Phanerochaete albida Sheng H. Wu and P. alnea (Fr.) P. Karst. obtained from GenBank were used as outgroups to root trees following Liu et al. (2022c). Maximum parsimony (MP) analysis was applied to the combined multiple gene datasets, and the tree construction procedure was performed in PAUP* version 4.0b10. All characters were equally weighted, and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1,000 replicates (Felsenstein, 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each most parsimonious tree (MPT) generated. RAxmL v.7.2.8 was used to construct a maximum likelihood (ML) tree with a GTR+G+I model of site substitution including estimation of gamma-distributed rate heterogeneity and a proportion of invariant sites (Stamatakis, 2006). The branch support was evaluated with a bootstrapping method of 1,000 replicates (Hillis and Bull, 1993).

MrModeltest 2.3 (Posada and Crandall, 1998; Nylander, 2004) was used to determine the best-fit evolution model for the combined multigene dataset for Bayesian inference (BI). BI was calculated with MrBayes 3.1.2 with a general time-reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites (Ronquist and Huelsenbeck, 2003). Four Markov chains were run for two runs from random starting trees for 2.5 million generations (ITS+nLSU) and for 4 million generations (ITS+nLSU+RPB1+RPB2+TEF1), and trees were sampled every 100 generations. The first one-fourth generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated. Branches that received BT support for MP, ML, and Bayesian posterior probabilities (BPP) greater than or equal to 75% (MP and ML) and 0.95 (BPP) were considered as significantly supported. Trees were viewed in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). Sequence alignment was deposited at TreeBase (submission ID: 29921; http://www.treebase.org).

Results

Phylogeny

The combined 2-gene (ITS+nLSU) sequences dataset had an aligned length of 1,556 characters, including gaps (655 characters for ITS, 901 characters for nLSU), of which 998 characters were constant, 78 were variable and parsimony-uninformative, and 480 were parsimony-informative. MP analysis yielded 14 equally parsimonious trees (TL = 2,272, CI = 0.386, RI = 0.760, RC = 0.294, HI = 0.614). The best model for the concatenate sequence dataset estimated and applied in the BI was GTR+I+G with equal frequency of nucleotides. ML analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Figure 1 .

Figure 1.

Figure 1

Maximum likelihood tree illustrating the phylogeny of Irpicaceae based on the combined sequence dataset of ITS+nLSU. Branches are labeled with maximum likelihood bootstrap higher than 50%, parsimony bootstrap proportions higher than 50%, and Bayesian posterior probabilities more than 0.90, respectively. Bold names = New species.

The combined 5-gene (ITS+nLSU+RPB1+RPB2+TEF1) sequences dataset had an aligned length of 4,234 characters, including gaps (655 characters for ITS, 901 characters for nLSU, 1,192 characters for RPB1, 1,019 characters for RPB2, 467 characters for TEF1), of which 2,327 characters were constant, 207 were variable and parsimony-uninformative, and 1,700 were parsimony-informative. MP analysis yielded 33 equally parsimonious trees (TL = 10,223, CI = 0.332, RI = 0.665, RC = 0.221, HI = 0.668). The best model for the concatenate sequence dataset estimated and applied in the BI was GTR+I+G with equal frequency of nucleotides. ML analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Figure 2 .

Figure 2.

Figure 2

Maximum likelihood tree illustrating the phylogeny of Irpicaceae based on the combined sequence dataset of ITS+nLSU+RPB1+RPB2+TEF1. Branches are labeled with maximum likelihood bootstrap higher than 50%, parsimony bootstrap proportions higher than 50%, and Bayesian posterior probabilities more than 0.90, respectively. Bold names = New species.

The combined datasets of ITS+nLSU and ITS+nLSU+RPB1+RPB2+TEF1 contained sequences obtained from 74 fungal samples representing 45 taxa within the phlebioid clade ( Figures 1 , 2 ). The phylogenetic trees ( Figures 1 , 2 ) generated by MP, ML, and Bayesian analyses show that the new species Leptoporus submollis grouped with L. mollis with strong support (100% MP, 100% ML, 1.00 BPP; Figures 1 , 2 ) within Irpicaceae.

Taxonomy

Leptoporus Quél., Enchiridion Fungorum in Europa media et praesertim in Gallia Vigentium: 175, 1886.

Type species: L. mollis (Pers.) Quél.

MycoBank: MB 17951

Basidiomata annual, effused-reflexed to pileate or resupinate, soft corky to corky or fragile. Pileal surface pale vinaceous to milky coffee, azonate, glabrous to tomentose. Pore surface flesh pink to snuff brown; pores circular to angular. Context pinkish buff to buff, corky. Tubes concolorous with pore surface, corky. Hyphal system monomitic; generative hyphae simple-septate, IKI–, CB–. Cystidia absent, cystidioles present. Basidiospores allantoid, cylindrical to oblong-ellipsoid, hyaline, thin-walled, smooth, IKI–, CB–. Causing a brown rot.

Specimen examined: L. mollis. BELARUS. Brestskaya Voblasts, Belavezhskaya Pushcha National Park, on stump of Picea sp., 19 October 2019, Dai 21062 (BJFC 032721). CHINA. Heilongjiang, Yichun, Fenglin Nature Reserve, on fallen trunk of Picea sp., 5 August 2000, Penttilä 13266 (IFP 014914). FINLAND. Koillissmaa, Oulanka National Park, on rotten wood of Picea sp., 17 September 1997, Dai 2674 (IFP 014915).

Leptoporus submollis B.K. Cui & Shun Liu, sp. nov. ( Figures 3 , 4 )

Figure 3.

Figure 3

Basidiocarps of Leptoporus submollis (Cui 17514) (scale bar = 1.5 cm). Photo by Bao-Kai Cui.

Figure 4.

Figure 4

Microscopic structures of Leptoporus submollis (drawn from the holotype). (A) Basidiospores. (B) Basidia and basidioles. (C) Cystidioles. (D) Hyphae from trama. (E) Hyphae from context. Scale bar: A = 5 µm; B–E = 10 µm. Drawings by Shun Liu.

MycoBank: MB 840366

Diagnosis. L. submollis is characterized by its pale vinaceous to pale reddish pileal surface when fresh, becoming grayish brown to milky coffee upon drying, flesh pink to brownish vinaceous pore surface when fresh, becoming isabelline to snuff brown when dry, circular to angular pores (4–6 per mm) and cylindrical to oblong-ellipsoid basidiospores (4–4.8 μm × 1.8–2.3 μm).

Type. CHINA. Sichuan Province, Yanyuan County, on stump of Pinus yunnanensis, elevation 3,100 m, 15 August 2019, Cui 17514 (holotype, BJFC 034373).

Etymology. “submollis” (Lat.) refers to the new species is similar to L. mollis in morphology.

Fruiting body. Basidiomata annual, effused-reflexed to pileate, solitary, soft corky, without odor or taste when fresh, corky and light in weight when dry. Pileus semicircular or irregular, projecting up to 2.5 cm, 5 cm wide, and 2 cm thick at base. Pileal surface pale vinaceous to pale reddish when fresh, becoming grayish brown to milky coffee upon drying, glabrous. Pore surface flesh pink to brownish vinaceous when fresh, becoming isabelline to snuff brown when dry; sterile margin narrow to almost lacking; pores circular to angular, 4–6 per mm; dissepiments slightly thick to thick, entire to lacerate. Context pinkish buff to buff, corky, up to 10 mm thick. Tubes concolorous with pore surface, corky, up to 6 mm long.

Hyphal structure. Hyphal system monomitic; generative hyphae simple-septate, IKI–, CB–; tissues unchanged in KOH.

Context. Generative hyphae hyaline, thin- to slightly thick-walled, occasionally branched, interwoven, 3.5–8.5 μm in diameter.

Tubes. Generative hyphae hyaline, thin- to slightly thick-walled, occasionally branched, 2–5 μm in diameter. Cystidia absent; fusoid cystidioles present, hyaline, thin-walled, 11–17 μm × 2–4 μm. Basidia clavate, bearing four sterigmata and a basal simple-septum, 12–20 μm × 3–5 μm; basidioles dominant, in shape similar to basidia, but smaller.

Spores. Basidiospores cylindrical to oblong-ellipsoid, hyaline, thin-walled, smooth, occasionally with 1–3 small oily inclusions, IKI–, CB–, 4–4.8 μm × 1.8–2.3 μm, L = 4.46 μm, W = 2.06 μm, Q = 2.02–2.13 (n = 90/3).

Type of rot. Brown rot.

Additional specimens examined. CHINA. Sichuan Province, Muli County, on stump of Pinus yunnanensis, elevation 3,050 m, 16 August 2019, Cui 17584 (paratype, BJFC 034443). Xizang Autonomous Region (Tibet), Linzhi, on living gymnosperm tree, elevation 3,100 m, 18 July 2019, Dai 20182 (paratype, BJFC 031853); Mangkang County, on stump of Abies sp., elevation 3,900 m, 8 September 2020, Cui 18379 (paratype, BJFC 035238).

Discussion

Decay mode is one of the most stable characteristics in Polyporales and has been used as the basis for distinguishing genera (Gilbertson and Ryvarden, 1986; Ryvarden, 1991). Among the Polyporales, nearly all of the brown-rot fungi species are clustered in the antrodia clade, which have been widely studied in recent years (Ortiz-Santana et al., 2013; Han et al., 2014; Shen et al., 2014; Song et al., 2014; Han et al., 2015; Han and Cui, 2015; Shen et al., 2015; Chen et al., 2015; Han et al., 2016; Chen and Cui, 2016; Song and Cui, 2017; Song et al., 2018; Shen et al., 2019; Liu et al., 2019; Liu et al., 2021a; Liu et al., 2021b; Liu et al., 2022a; Liu et al., 2022b; Liu et al., 2022d). In the phlebioid clade, most species can produce white-rot decay, with one notable exception, L. mollis, which can produce brown-rot decay (Binder et al., 2013; Chen et al., 2021). This result suggests that brown-rot fungi may have evolved more than once in Polyporales (Floudas and Hibbett, 2015).

In the present study, the phylogenetic analyses of Irpicaceae are inferred from the combined datasets of ITS+nLSU sequences ( Figure 1 ) and ITS+nLSU+RPB1+RPB2+TEF1 sequences ( Figure 2 ). The results show that the genera of Ceriporia and Leptoporus grouped together and formed a highly supported lineage ( Figures 1 , 2 ). Morphologically, Ceriporia spp. differs by possessing resupinate basidiomata, absence of cystidioles, and causing a white decay of wood (Chen et al., 2020; Chen et al., 2022). Therefore, Ceriporia and Leptoporus are treated as independent genera in Irpicaceae (Chen et al., 2020; Chen et al., 2021).

In our current phylogenetic analyses, L. mollis and L. submollis grouped together and formed a well-supported lineage ( Figures 1 , 2 ). Morphologically, L. mollis may be confused with L. submollis by possessing annual growth habit, soft to corky basidiomata when fresh, and monomitic hyphal system with simple-septate generative hyphae, while L. mollis differs in having larger pores (2–4 per mm), narrower contextual generative hyphae (3–4 μm), and larger basidiospores (4.7–6 μm × 1.6–2.1 μm; Yu et al., 2004). Geographically, L. mollis has been reported in Asia, Europe, and North America (Gilbertson and Ryvarden, 1986; Ryvarden and Gilbertson, 1993; Núñez and Ryvarden, 2001; Yu et al., 2004). Yu et al. (2004) reported Leptoporus in China for the first time, which is distributed in Heilongjiang Province of China. In their study, the morphological characteristics of the studied specimens fit well with L. mollis. Therefore, there are two species of Leptoporus in China, viz., L. mollis is distributed in Northeast China, while L. submollis is distributed in Southwest China. In terms of ecological habits, Leptoporus species mainly grow on fallen trunk or stump of various coniferous trees (especially on Abies sp., Picea sp., and Pinus sp.) in the alpine plateau and cold temperate zone and cause a brown decay of wood.

Nomenclature

BI, Bayesian inference; BJFC, Herbarium of the Institute of Microbiology, Beijing Forestry University; BGI, Beijing Genomics Institute; BPP, Bayesian posterior probabilities; BT, bootstrap; CB, Cotton Blue; CB–, acyanophilous; GTR+I+G, general time reversible+proportion invariant+gamma; IFP, Herbarium of the Institute of Applied Ecology, Chinese Academy of Sciences; IKI, Melzer’s reagent; IKI–, neither amyloid nor dextrinoid; ILD, incongruence length difference test; ITS, internal transcribed spacer; KOH, 5% potassium hydroxide; L, mean spore length (arithmetic average of all spores); ML, maximum likelihood; MP, maximum parsimony; MPT, most parsimonious tree; n (a/b), number of spores (a) measured from given number (b) of specimens; nLSU, large subunit of nuclear ribosomal RNA; Q, variation in the L/W ratios between the specimens studied; RPB1, DNA-directed RNA polymerase II subunit 1; RPB2, DNA-directed RNA polymerase II subunit 2; TL, tree length; W, mean spore width (arithmetic average of all spores); CI, consistency index; RI, retention index; RC, rescaled consistency index; TBR, tree-bisection-reconnection HI, homoplasy index; TEF1, translation elongation factor 1-α.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author contributions

B-KC designed the research. B-KC, SL, Y-FS, XJ, C-GS and T-MX prepared the samples. SL, C-GS and T-MX conducted the molecular experiments and analyzed the data. SL, Y-FS and B-KC drafted the manuscript. All authors contributed to the article and approved the submitted version.

Acknowledgments

We express our gratitude to Ms. Yan Wang (China) is grateful for help during field collections and molecular studies. Drs. Yu-Cheng Dai (China), Jun-Zhi Qiu (China), Xiao-Lan He (China), Hai-Xia Ma (China), Yuan-Yuan Chen (China), Shi-Liang Liu (China) and Long-Fei Fan (China) for assistance during field collections.

Funding Statement

The research is supported by the National Natural Science Foundation of China (Nos. 32270010, U2003211, 31870008), the Scientific and Technological Tackling Plan for the Key Fields of Xinjiang Production and Construction Corps (No. 2021AB004) and Beijing Forestry University Outstanding Young Talent Cultivation Project (No. 2019JQ03016).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Binder M., Hibbett D. S., Larsson K. H., Larsson E., Langer E., Langer G. (2005). The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst. Biodivers. 3, 113–157. doi:  10.1017/S1477200005001623 [DOI] [Google Scholar]
  2. Binder M., Justo A., Riley R., Salamov A., López-Giráldez F., Sjökvist E., et al. (2013). Phylogenetic and phylogenomic overview of the polyporales. Mycologia 105, 1350–1373. doi:  10.3852/13-003 [DOI] [PubMed] [Google Scholar]
  3. Chen C. C., Chen C. Y., Lim Y. W., Wu S. H. (2020). Phylogeny and taxonomy of Ceriporia and other related taxa and description of three new species. Mycologia 112, 64–82. doi:  10.1080/00275514.2019.1664097 [DOI] [PubMed] [Google Scholar]
  4. Chen C. C., Chen C. Y., Wu S. H. (2021). Species diversity, taxonomy and multi−gene phylogeny of phlebioid clade (Phanerochaetaceae, irpicaceae, meruliaceae) of polyporales. Fungal Divers. 6, 337–442. doi:  10.1007/s13225-021-00490-w [DOI] [Google Scholar]
  5. Chen C. C., Wu S. H., Chen C.Y. (2018). Four species of polyporoid fungi newly recorded from Taiwan. Mycotaxon 133 (1), 45–54. doi:  10.5248/133.45 [DOI] [Google Scholar]
  6. Chen Y. Y., Cui B. K. (2016). Phylogenetic analysis and taxonomy of the Antrodia heteromorpha complex in China. Mycoscience 57, 1–10. doi:  10.1016/j.myc.2015.07.003 [DOI] [Google Scholar]
  7. Chen Y. Y., Li H. J., Cui B. K. (2015). Molecular phylogeny and taxonomy of Fibroporia (Basidiomycota) in China. Phytotaxa 203, 47–54. doi:  10.11646/phytotaxa.203.1.4 [DOI] [Google Scholar]
  8. Chen J. J., Wang Y. R., Wang C. G., Dai Y. C. (2022). Two new species of Ceriporia (Irpicaceae, basidiomycota) from the Asia pacific area. Mycol. Prog. 21, 39–48. doi:  10.1007/s11557-021-01731-7 [DOI] [Google Scholar]
  9. Chen Y. Y., Wu F., Wang M., Cui B. K. (2017). Species diversity and molecular systematics of Fibroporia (Polyporales, basidiomycota) and its related genera. Mycol. Prog. 16, 521–533. doi:  10.1007/s11557-017-1285-1 [DOI] [Google Scholar]
  10. Cui B. K., Li H. J., Ji X., Zhou J. L., Song J., Si J., et al. (2019). Species diversity, taxonomy and phylogeny of polyporaceae (Basidiomycota) in China. Fungal Divers. 97, 137–392. doi:  10.1007/s13225-019-00427-4 [DOI] [Google Scholar]
  11. Farris J. S., Källersjö M., Kluge A. G., Kluge A. G., Bult C. (1994). Testing significance of incongruence. Cladistics 10, 315–319. doi: 10.1111/j.1096-0031.1994.tb00181.x [DOI] [Google Scholar]
  12. Felsenstein J. (1985). Confidence intervals on phylogenies: An approach using the bootstrap. Evolution 39, 783–791. doi: 10.2307/2408678 [DOI] [PubMed] [Google Scholar]
  13. Floudas D., Hibbett D. S. (2015). Revisiting the taxonomy of Phanerochaete (Polyporales, basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biol. 119, 679–719. doi:  10.1016/j.funbio.2015.04.003 [DOI] [PubMed] [Google Scholar]
  14. Gilbertson R. L., Ryvarden L. (1986). North American polypores 1 (Oslo: Fungiflora: Abortiporus - Lindtneria; ), 1–433. [Google Scholar]
  15. Gómez-Montoya N., Drechsler-Santos E. R., Ferreira-Lopes V., Tomšovský M., Urcelay C., Roble-do G. L. (2017). New insights on Trametopsis Tomšovský (Polyporales Gäum.) based on phylogenetic evidences and morphological analyses of neotropical species. Phytotaxa 311 (2), 155–166. doi:  10.11646/phytotaxa.311.2.3 [DOI] [Google Scholar]
  16. Hall T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. doi:  10.1021/bk-1999-0734.ch008 [DOI] [Google Scholar]
  17. Han M. L., Chen Y. Y., Shen L. L., Song J., Vlasák J., Dai Y. C., et al. (2016). Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera. Fungal Divers. 80, 343–373. doi:  10.1007/s13225-016-0364-y [DOI] [Google Scholar]
  18. Han M. L., Cui B. K. (2015). Morphological characters and molecular data reveal a new species of Fomitopsis (Polyporales) from southern China. Mycoscience 56, 168–176. doi:  10.1016/j.myc.2014.05.004 [DOI] [Google Scholar]
  19. Han M. L., Song J., Cui B. K. (2014). Morphology and molecular phylogeny for two new species of Fomitopsis (Basidiomycota) from south China. Mycol. Prog. 13, 905–914. doi:  10.1007/s11557-014-0976-0 [DOI] [Google Scholar]
  20. Han M. L., Vlasák J., Cui B. K. (2015). Daedalea americana sp. nov. (Polyporales, basidiomycota) evidenced by morphological characters and phylogenetic analysis. Phytotaxa 204, 277–286. doi:  10.11646/phytotaxa.204.4.4 [DOI] [Google Scholar]
  21. He M. Q., Zhao R. L., Hyde K. D., Begerow D., Kemler M., Yurkov A., et al. (2019). Notes, outline and divergence times of Basidiomycota. Fungal Divers 99, 105–367. doi:  10.1007/s13225-019-00435-4 [DOI] [Google Scholar]
  22. Hillis D. M., Bull J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biodivers. 42, 182–192. doi:  10.1093/sysbio/42.2.182 [DOI] [Google Scholar]
  23. Ji X., Zhou J. L., Song C. G., Xu T. M., Wu D. M., Cui B. K. (2022). Taxonomy, phylogeny and divergence times of Polyporus (Basidiomycota) and related genera. Mycosphere 13, 1–52. doi:  10.5943/mycosphere/13/1/1 [DOI] [Google Scholar]
  24. Jang Y., Jang S., Lee J., Lee H., Lim Y.W., Kim C., et al. (2016). Diversity of wood-inhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. Mycobiology 44 (4), 217–236. doi:  10.5941/MYCO.2016.44.4.217 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jia B. S., Zhou L.W., Cui B. K., Rivoire B., Dai Y. C. (2014). Taxonomy and phylogeny of Ceriporia (Polyporales, Basidiomycota) with an emphasis of Chinese collections. Mycol. Prog. 13 (1), 81–93. doi:  10.1007/s11557-013-0895-5 [DOI] [Google Scholar]
  26. Justo A., Hibbett D.S. (2011). Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. Taxon 60 (6), 1567–1583. doi:  10.1002/tax.606003 [DOI] [Google Scholar]
  27. Justo A., Miettinen O., Floudas D., Ortiz-Santana B., Sjökvist E., Lindner D., et al. (2017). A revised family-level classification of the polyporales (Basidiomycota). Fungal Biol. 121, 798–824. doi:  10.1016/j.funbio.2017.05.010 [DOI] [PubMed] [Google Scholar]
  28. Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi:  10.1093/molbev/mst010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kirk P. M., Cannon P. F., Minter D. W., Stalpers J. A. (2008). Dictionary of the fungi. 10th Edn (Oxon: CAB International Wallingford, UK; ). [Google Scholar]
  30. Lindner D. L., Banik M. T. (2008). Molecular phylogeny of Laetiporus and other brown rot polypore genera in north America. Mycologia 100, 417–430. doi:  10.3852/07-124R2 [DOI] [PubMed] [Google Scholar]
  31. Liu S., Chen Y. Y., Sun Y. F., He X. L., Song C. G., Si J., et al. (2022. a). Systematic classification and phylogenetic relationships of the brown−rot fungi within the polyporales. Fungal Divers. doi:  10.1007/s13225-022-00511-2 [DOI] [Google Scholar]
  32. Liu S., Han M. L., Xu T. M., Wang Y., Wu D. M., Cui B. K. (2021. a). Taxonomy and phylogeny of the Fomitopsis pinicola complex with descriptions of six new species from east Asia. Front. Microbiol. 12, 644979. doi:  10.3389/fmicb.2021.644979 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Liu S., Shen L. L., Wang Y., Xu T. M., Gates G., Cui B. K. (2021. b). Species diversity and molecular phylogeny of Cyanosporus (Polyporales, basidiomycota). Front. Microbiol. 12 , 631166. doi:  10.3389/fmicb.2021.631166 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Liu S., Song C. G., Cui B. K. (2019). Morphological characters and molecular data reveal three new species of Fomitopsis (Basidiomycota). Mycol. Prog. 18, 1317–1327. doi:  10.1007/s11557-019-01527-w [DOI] [Google Scholar]
  35. Liu S., Song C. G., Xu T. M., Ji X., Wu D. M., Cui B. K. (2022. b). Species diversity, molecular phylogeny, and ecological habits of Fomitopsis (Polyporales, basidiomycota). Front. Microbiol. 13 , 859411. doi:  10.3389/fmicb.2022.859411 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Liu S., Sun Y. F., Wang Y., Xu T. M., Song C. G., Chen Y. Y., et al. (2022. c). Taxonomy and molecular phylogeny of Trametopsis (Polyporales, basidiomycota) with descriptions of two new species. MycoKeys 90, 31–51. doi:  10.3897/mycokeys.90.84717 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Liu S., Xu T. M., Song C. G., Zhao C. L., Wu D. M., Cui B. K. (2022. d). Species diversity, molecular phylogeny and ecological habits of Cyanosporus (Polyporales, basidiomycota) with an emphasis on Chinese collections. MycoKeys 86, 19–46. doi:  10.3897/mycokeys.86.78305 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Maddison W. P., Maddison D. R. (2017) Mesquite: A modular system for evolutionary analysis, version 3.2. Available at: http://mesquiteproject.org.
  39. Miettinena O., Larssonb E., Sjökvist E., Larssonc K. H. (2012). Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota). Cladistics 28 (3), 251–270. doi:  10.1111/j.1096-0031.2011.00380.x [DOI] [PubMed] [Google Scholar]
  40. Miettinen O., Spirin V., Vlasák J., Rivoire B., Stenroos S., Hibbett D. (2016). Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 17, 1–46. doi:  10.3897/mycokeys.17.10153 [DOI] [Google Scholar]
  41. Matheny P. B. (2005). Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, agaricales). Mol. Phylogenet Evol. 35, 1–20. doi:  10.1016/j.ympev.2004.11.014 [DOI] [PubMed] [Google Scholar]
  42. Matheny P. B., Liu Y. J., Ammirati J. F., Hall B. D. (2002). Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, agaricales). Am. J. Bot. 89, 688–698. doi:  10.2307/4131413 [DOI] [PubMed] [Google Scholar]
  43. Núñez M., Ryvarden L. (2001). East Asian Polypores 2. Synop. Fungorum 14, 170–522. [Google Scholar]
  44. Nylander J. A. A. (2004). MrModeltest v2. program. distributed by the author; evolutionary biology center (Uppsala: Uppsala University; ). [Google Scholar]
  45. Ortiz-Santana B., Lindner D. L., Miettinen O., Justo A., Hibbett D. S. (2013). A phylogenetic overview of the antrodia clade (Basidiomycota, polyporales). Mycologia 105, 1391–1411. doi:  10.3852/13-051 [DOI] [PubMed] [Google Scholar]
  46. Petersen J. H. (1996). Farvekort (Greve: The Danish Mycological Society’s colour-chart. Foreningen til Svampekundskabens Fremme; ). [Google Scholar]
  47. Posada D., Crandall K. A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics 14, 817–818. doi:  10.1093/bioinformatics/14.9.817 [DOI] [PubMed] [Google Scholar]
  48. Psurtseva N. V. (2010). Conservation of medicinal mushrooms in the V. L. Komarov Botanical Institute Basidiomycetes Culture Collection (LE-BIN, Russia). Int. J. Med. Mushrooms 12 (12), 193–199. doi:  10.1615/IntJMedMushr.v12.i2.100 [DOI] [Google Scholar]
  49. Quélet L. (1886). Enchiridion fungorum in Europa media et praesertim in Gallia vigentium. Octave Dion, Paris, 1–352. [Google Scholar]
  50. Rehner S. (2001) Primers for elongation factor 1-a (EF1-a). Available at: http://ocid.nacse.org/research/deephyphae/EF1primer.pdf (Accessed 20 May 2020).
  51. Ronquist F., Huelsenbeck J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi:  10.1093/bioinformatics/btg180 [DOI] [PubMed] [Google Scholar]
  52. Ryvarden L. (1991). Genera of polypores: Nomenclature and taxonomy. Synop. Fungorum (Oslo, Norway) 5, 363. [Google Scholar]
  53. Ryvarden L., Gilbertson R. L. (1993). European Polypores 1. Synop. Fungorum 6, 1–387. [Google Scholar]
  54. Shen L. L., Cui B. K., Dai Y. C. (2014). A new species of Postia (Polyporales, basidiomycota) from China based on morphological and molecular evidence. Phytotaxa 162, 147–156. doi:  10.11646/phytotaxa.162.3.3 [DOI] [Google Scholar]
  55. Shen L. L., Liu H. X., Cui B. K. (2015). Morphological characters and molecular data reveal two new species of Postia (Basidiomycota) from China. Mycol. Prog. 14, 7. doi:  10.1007/s11557-015-1032-4 [DOI] [Google Scholar]
  56. Shen L. L., Wang M., Zhou J. L., Xing J. H., Cui B. K., Dai Y. C. (2019). Taxonomy and phylogeny of Postia. multi-gene phylogeny and taxonomy of the brown-rot fungi: Postia (Polyporales, basidiomycota) and related genera. Persoonia 42, 101–126. doi:  10.3767/persoonia.2019.42.05 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sjökvist E., Larsson E., Eberhardt U., Ryvarden L., Larsson K. H. (2012). Stipitate stereoid basidiocarps have evolved multiple times. Mycologia 104 (5), 1046–1055. doi:  10.3852/11-174 [DOI] [PubMed] [Google Scholar]
  58. Song J., Chen Y. Y., Cui B. K., Liu H. G., Wang Y. Z. (2014). Morphological and molecular evidence for two new species of Laetiporus (Basidiomycota, polyporales) from southwestern China. Mycologia 106, 1039–1050. doi:  10.3852/13-402 [DOI] [PubMed] [Google Scholar]
  59. Song J., Cui B. K. (2017). Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, polyporales). BMC Evol. Biol. 17, 102. doi:  10.1186/s12862-017-0948-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Song J., Sun Y. F., Ji X., Dai Y. C., Cui B. K. (2018). Phylogeny and taxonomy of Laetiporus (Basidiomycota, polyporales) with descriptions of two new species from western China. MycoKeys 37, 57–71. doi:  10.3897/mycokeys.37.26016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Spirin W. (2003). Antrodiella romellii (Irpicaceae, basidiomycetes) in Russia. Mycena 3, 48–52. [Google Scholar]
  62. Spirin V., Vlasák J., Rivoire B., Kout J., Kotiranta H., Miettinen O. (2016). Studies in the Ceriporia purpurea group (Polyporales, Basidiomycota), with notes on similar Ceriporia species. Cryptogamie Mycol 37 (4), 421–435. doi:  10.7872/crym/v37.iss4.2016.421 [DOI] [Google Scholar]
  63. Stamatakis A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. doi:  10.1093/bioinformatics/btl446 [DOI] [PubMed] [Google Scholar]
  64. Sun Y. F., Costa-Rezende D. H., Xing J. H., Zhou J. L., Zhang B., Gibertoni T. B., et al. (2020). Multi-gene phylogeny and taxonomy of Amauroderma s. lat. (Ganodermataceae). Persoonia 44, 206–239. doi:  10.3767/persoonia.2020.44.08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Sun Y. F., Xing J. H., He X. L., Wu D. M., Song C. G., Liu S., et al. (2022). Species diversity, systematic revision and molecular phylogeny of ganodermataceae (Polyporales, basidiomycota) with an emphasis on Chinese collections. Stud. Mycol. 101, 287–415. doi:  10.3767/10.3114/sim.2022.101.05 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Swofford D. L. (2002). PAUP∗: Phylogenetic analysis using parsimony (∗and other methods). version 4.0b10 (Sunderland, MA: Sinauer Associates; ). doi:  10.1111/j.0014-3820.2002.tb00191.x [DOI] [Google Scholar]
  67. Tomšovský M., Menkis A., Vasaitis R. (2010). Phylogenetic relationships in European Ceriporiopsis species inferred from nuclear and mitochondrial ribosomal DNA sequences. Fungal Biol. 114 (4), 350–358. doi:  10.1016/j.funbio.2010.02.004 [DOI] [PubMed] [Google Scholar]
  68. Volobuev S. (2019). To the study of aphyllophoroid fungi (Agaricomycetes, basidiomycota) in shebekinsky district, belgorod region. Diversity Plant World 3, 21–25. doi: 10.22281/2686-9713-2019-3-21-25 [DOI] [Google Scholar]
  69. White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR protocols: A guide to methods and applications. Eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (San Diego: Academic Press; ), 315–322. doi:  10.1016/B978-0-12-372180-8.50042-1 [DOI] [Google Scholar]
  70. Wu F., Chen J. J., Ji X. H., Vlasák J., Dai Y. C. (2017). Phylogeny and diversity of the morphologically similar polypore genera Rigidoporus, Physisporinus, Oxyporus, and Leucophellinus . Mycologia 109, 749–765. doi:  10.1080/00275514.2017.1405215 [DOI] [PubMed] [Google Scholar]
  71. Wu S. H., Nilsson H. R., Chen C. T., Yu S. Y., Hallenberg N. (2010). The white-rotting genus Phanerochaete is polyphyletic and distributed throughout the phleboid clade of the Polyporales (Basidiomycota). Fungal Divers 42 (1), 107–118. doi:  10.1007/s13225-010-0031-7 [DOI] [Google Scholar]
  72. Yu C. J., Dai Y. C., Yuan H. S. (2004). Leptoporus, a polypore genus new to China. Mycosystema 23, 596–598. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.


Articles from Frontiers in Cellular and Infection Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES