Abstract
Smoothed particle hydrodynamics (SPH), as one of the earliest meshfree methods, has broad prospects in modeling a wide range of problems in engineering and science, including extremely large deformation problems such as explosion and high velocity impact. This paper aims to provide a comprehensive overview on the recent advances of SPH method in the fields of fluid, solid, and biomechanics. First, the theory of SPH is described, and improved algorithms of SPH with high accuracy are summarized, such as the finite particle method (FPM). Techniques used in SPH method for simulating fluid, solid and biomechanics problems are discussed. The δ-SPH method and Godunov SPH (GSPH) based on the Riemann model are described for handling instability issues in fluid dynamics. Next, the interface contact algorithm for fluid-structure interaction is also discussed. The common algorithms for improving the tensile instability and the framework of total Lagrangian SPH are examined for challenging tasks in solid mechanics. In terms of biomechanics, the governing equations and the coupling forces based on SPH method are exemplified. Then, various typical engineering applications and recent advances are elaborated. The application of fluid mainly depicts the interaction between fluid and rigid body as well as elastomer, while some complicated fluid-structure interaction ocean engineering problems are also presented. In the aspect of solid dynamics, galaxy, geotechnical mechanics, explosion and impact, and additive manufacturing are summarized. Furthermore, the recent advancements of SPH method in biomechanics, such as hemodynamically and gut health, are discussed in general. In addition, to overcome the limitations of computational efficiency and computational scale, the multiscale adaptive resolution, the parallel algorithm and the automated mesh generation are addressed. The development of SPH software in China and abroad is also summarized. Finally, the challenging task of SPH method in the future is summarized. In future research work, the establishment of multi-scale coupled SPH model and deep learning technology in solid and biodynamics will be the focus of expanding the engineering applications of SPH methods.
Keywords: Smoothed particle hydrodynamics, High-accuracy algorithms, Solid mechanics, Biomechanics, Computational efficiency
Abstract
光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)作为最早发展的无网格粒子方法之一, 对于模拟爆炸、冲击等涉及大变形问题, 具有广阔的发展前景. 本文对SPH方法在流体、固体和生物力学领域的改进算法和工程应用进行了全面介绍. 阐述了SPH的基本理论和高精度SPH改进算法, 分析了流体、固体和生物力学领域的改进技术. 在模拟流体问题时, 采用δ-SPH和GSPH方法解决了流体不稳定性的问题, 并且讨论了流固耦合中的界面接触方法. 针对固体的数值模拟, 总结了三种传统改进方法(如应力点法、守恒光滑法、人工应力法)和Total Lagrangian SPH方法, 改善了拉伸不稳定性问题; 在生物力学方面, 阐述了SPH控制方程和相互作用力的计算方法. 本文综述了近年来SPH方法的应用进展, 包括复杂海洋工程中的流固耦合问题, 固体领域的天体、岩土力学、爆炸冲击以及增材制造等工程应用和生物力学中血流动力学、肠道健康和植物生长等典型应用; 并分析了国内外SPH软件的发展, 介绍了多尺度自适应分辨率方法、并行计算方法和网格自动生成技术来克服数值模拟方法在计算效率和计算规模上的限制. 最后对目前存在的问题进行总结与展望, 包括提高SPH算法的数值精度、如何精确描述固体的损伤与断裂问题和计算精度与效率之间的平衡等. 在未来研究中, 建立多尺度耦合SPH模型和深度学习将是进一步拓宽SPH方法应用的重要方向.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 11972309), and Overseas Expertise Introduction Project for Discipline Innovation (the 111 Project) (Grant No. BP0719007). We also thank Professor Guirong Liu from the University of Cincinnati, Professor Lin Fu and Tianrun Gao from the Hong Kong University of Science and Technology for their helpful comments and support. The contributions of Xianpeng Zhang, Zhe Ji and Fupei Xie from Northwestern Polytechnical University, Jingyu Wang from Technische Universität München and Qiuzu Yang from Taiyuan University of Technology in this review are also acknowledged.
Footnotes
Author contributions
Fei Xu was responsible for methodology, writing review & editing, organization, supervision, funding acquisition and resources; Jiayi Wang contributed to the original draft and writes the technical methods for solid and solid application. Yang Yang summarized the development of high-accuracy SPH algorithms. Lu Wang reviewed the technical methods for fluid and applications. Zhen Dai wrote the advancement in application of additive manufacturing. Ruiqi Han was assigned to write the section on the application of the SPH method in biomechanics.
Change history
6/2/2023
A Correction to this paper has been published: 10.1007/s10409-023-23900-x
References
- 1.Monaghan J J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005;68:1703. doi: 10.1088/0034-4885/68/8/R01. [DOI] [Google Scholar]
- 2.Liu M B, Liu G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch Comput. Methods Eng. 2010;17:25. doi: 10.1007/s11831-010-9040-7. [DOI] [Google Scholar]
- 3.Bui H H, Nguyen G D. Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media. Comput. Geotech. 2021;138:104315. doi: 10.1016/j.compgeo.2021.104315. [DOI] [Google Scholar]
- 4.Meng S, Taddei L, Lebaal N, Roth S. Advances in ballistic penetrating impact simulations on thin structures using smooth particles hydrodynamics: A state of the art. Thin-Walled Struct. 2021;159:107206. doi: 10.1016/j.tws.2020.107206. [DOI] [Google Scholar]
- 5.S. R. Jeske, M. S. Simon, O. Semenov, J. Kruska, O. Mokrov, R. Sharma, U. Reisgen, and J. Bender, Quantitative evaluation of SPH in TIG spot welding, Comp. Part. Mech. (2022).
- 6.H. Shen, E. Brousseau, and S. Kulasegaram, Assessment and validation of SPH modeling for nano-indentation, Comp. Part. Mech. (2022).
- 7.Monaghan J J. Simulating free surface flows with SPH. J. Comput. Phys. 1994;110:399. doi: 10.1006/jcph.1994.1034. [DOI] [Google Scholar]
- 8.Liu G R, Liu M B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific; 2003. [Google Scholar]
- 9.Liu M, Zhang Z. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci. China-Phys. Mech. Astron. 2019;62:984701. doi: 10.1007/s11433-018-9357-0. [DOI] [Google Scholar]
- 10.Ye T, Pan D, Huang C, Liu M. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Phys. Fluids. 2019;31:011301. doi: 10.1063/1.5068697. [DOI] [Google Scholar]
- 11.Libersky L D, Petschek A G. Smooth Particle Hydrodynamics with Strength of Materials. Berlin, Heidelberg: Springer; 1991. pp. 248–257. [Google Scholar]
- 12.Tran H T, Wang Y, Nguyen G D, Kodikara J, Sanchez M, Bui H H. Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach. Comput. Geotech. 2019;116:103209. doi: 10.1016/j.compgeo.2019.103209. [DOI] [Google Scholar]
- 13.Jiao W, Chen X. Review on long-rod penetration at hypervelocity. Adv. Mech. 2019;49:201904. [Google Scholar]
- 14.Wu Y, Chen X. A numerical simulation method for long rods penetrating into ceramic targets. Expl. Shock Waves. 2020;40:053301. [Google Scholar]
- 15.Rausch M K, Karniadakis G E, Humphrey J D. Modeling soft tissue damage and failure using a combined particle/continuum approach. Biomech. Model. Mechanobiol. 2017;16:249. doi: 10.1007/s10237-016-0814-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Huang Y, Dai Z. Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method. Eng. Geol. 2014;168:86. doi: 10.1016/j.enggeo.2013.10.022. [DOI] [Google Scholar]
- 17.Kojić M, Filipović N, Stojanović B, Kojić N. Computer Modeling in Bioengineering: Theoretical Background, Examples and Software. Chichester: Wiley; 2008. [Google Scholar]
- 18.Toma M, Chan-Akeley R, Arias J, Kurgansky G D, Mao W. Fluid-structure interaction analyses of biological systems using smoothed-particle hydrodynamics. Biology. 2021;10:185. doi: 10.3390/biology10030185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Zhang L W, Ademiloye A S, Liew K M. Meshfree and particle methods in biomechanics: Prospects and challenges. Arch. Computat. Methods Eng. 2018;26:1547. doi: 10.1007/s11831-018-9283-2. [DOI] [Google Scholar]
- 20.Wang L, Xu F, Yang Y. An improved total Lagrangian SPH method for modeling solid deformation and damage. Eng. Anal. Bound. Elem. 2021;133:286. doi: 10.1016/j.enganabound.2021.09.010. [DOI] [Google Scholar]
- 21.Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 1995;116:123. doi: 10.1006/jcph.1995.1010. [DOI] [Google Scholar]
- 22.J. P. Morris, Analysis of smoothed particle hydrodynamics with applications (1996).
- 23.Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math. Comp. 1981;37:141. doi: 10.1090/S0025-5718-1981-0616367-1. [DOI] [Google Scholar]
- 24.Dilts G A. Moving-least-squares-particle hydrodynamics? I. Consistency and stability. Int. J. Numer. Meth. Eng. 1999;44:1115. doi: 10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L. [DOI] [Google Scholar]
- 25.Dilts G A. Moving least-squares particle hydrodynamics II: Conservation and boundaries. Int. J. Numer. Meth. Eng. 2000;48:1503. doi: 10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D. [DOI] [Google Scholar]
- 26.Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids. 1995;20:1081. doi: 10.1002/fld.1650200824. [DOI] [Google Scholar]
- 27.Liu W K, Jun S, Li S, Adee J, Belytschko T. Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meth. Eng. 1995;38:1655. doi: 10.1002/nme.1620381005. [DOI] [Google Scholar]
- 28.Liu W K, Jun S, Sihling D T, Chen Y, Hao W. Multiresolution reproducing kernel particle method for computational fluid dynamics. Int. J. Numer. Meth. Fluids. 1997;24:1391. doi: 10.1002/(SICI)1097-0363(199706)24:12<1391::AID-FLD566>3.0.CO;2-2. [DOI] [Google Scholar]
- 29.Sun C T, Guan P C, Jiang J H, Kwok O L A. The weighted reconstruction of reproducing kernel particle method for one-dimensional shock wave problems. Ocean Eng. 2018;149:325. doi: 10.1016/j.oceaneng.2017.12.017. [DOI] [Google Scholar]
- 30.Liu Z, Gao H, Wei G, Wang Z. The meshfree analysis of elasticity problem utilizing radial basis reproducing kernel particle method. Results Phys. 2020;17:103037. doi: 10.1016/j.rinp.2020.103037. [DOI] [Google Scholar]
- 31.Ma J, Gao H, Wei G, Qiao J. The meshless analysis of wave propagation based on the Hermit-type RRKPM. Soil Dyn. Earthquake Eng. 2020;134:106154. doi: 10.1016/j.soildyn.2020.106154. [DOI] [Google Scholar]
- 32.Peng P P, Cheng Y M. Analyzing three-dimensional transient heat conduction problems with the dimension splitting reproducing kernel particle method. Eng. Anal. Bound. Elem. 2020;121:180. doi: 10.1016/j.enganabound.2020.09.011. [DOI] [Google Scholar]
- 33.Liu Z, Wei G, Wang Z. The radial basis reproducing kernel particle method for geometrically nonlinear problem of functionally graded materials. Appl. Math. Model. 2020;85:244. doi: 10.1016/j.apm.2020.04.005. [DOI] [Google Scholar]
- 34.Kiran R, Nguyen-Thanh N, Huang J, Zhou K. Buckling analysis of cracked orthotropic 3D plates and shells via an isogeometric-reproducing kernel particle method. Theor. Appl. Fract. Mech. 2021;114:102993. doi: 10.1016/j.tafmec.2021.102993. [DOI] [Google Scholar]
- 35.Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Numer. Meth. Eng. 1999;46:231. doi: 10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K. [DOI] [Google Scholar]
- 36.Liu M B, Liu G R, Lam K Y. A one-dimensional meshfree particle formulation for simulating shock waves. Shock Waves. 2003;13:201. doi: 10.1007/s00193-003-0207-0. [DOI] [Google Scholar]
- 37.Xu F, Zhao Y, Yan R, Furukawa T. Multidimensional discontinuous SPH method and its application to metal penetration analysis. Int. J. Numer. Meth. Eng. 2013;93:1125. doi: 10.1002/nme.4414. [DOI] [Google Scholar]
- 38.Zhang G M, Batra R C. Modified smoothed particle hydrodynamics method and its application to transient problems. Comput. Mech. 2004;34:137. doi: 10.1007/s00466-004-0561-5. [DOI] [Google Scholar]
- 39.Liu M B, Xie W P, Liu G R. Modeling incompressible flows using a finite particle method. Appl. Math. Model. 2005;29:1252. doi: 10.1016/j.apm.2005.05.003. [DOI] [Google Scholar]
- 40.Yang Y, Xu F, Zhang M, Wang L. An effective improved algorithm for finite particle method. Int. J. Comput. Methods. 2016;13:1641009. doi: 10.1142/S0219876216410097. [DOI] [Google Scholar]
- 41.Wang L, Yang Y, Xu F. An improved finite particle method considering interfacial discontinuities. Expl. Shock Waves. 2019;39:121. [Google Scholar]
- 42.Wang L, Xu F, Yang Y. An improved specified finite particle method and its application to transient heat conduction. Int. J. Comput. Methods. 2017;14:1750050. doi: 10.1142/S0219876217500505. [DOI] [Google Scholar]
- 43.Yan R, Xu F. Research and improvement on the accuracy of discontinuous smoothed particle hydrodynamics (DSPH) method. Comput. Mater. Continua. 2015;47:179. [Google Scholar]
- 44.Chen D, Huang W, Sloan S W. An alternative updated Lagrangian formulation for finite particle method. Comput. Methods Appl. Mech. Eng. 2019;343:490. doi: 10.1016/j.cma.2018.09.001. [DOI] [Google Scholar]
- 45.Asprone D, Auricchio F, Manfredi G, Prota A, Reali A, Sangalli G. Particle methods for a 1D elastic model problem: Error analysis and development of a second-order accurate formulation. Comput. Model. Eng. Sci. 2010;62:1. [Google Scholar]
- 46.Asprone D, Auricchio F, Reali A. Novel finite particle formulations based on projection methodologies. Int. J. Numer. Meth. Fluids. 2011;65:1376. doi: 10.1002/fld.2327. [DOI] [Google Scholar]
- 47.Nasar A M A, Fourtakas G, Lind S J, King J R C, Rogers B D, Stansby P K. High-order consistent SPH with the pressure projection method in 2-D and 3-D. J. Comput. Phys. 2021;444:110563. doi: 10.1016/j.jcp.2021.110563. [DOI] [Google Scholar]
- 48.Zhang Z L, Liu M B. A decoupled finite particle method for modeling incompressible flows with free surfaces. Appl. Math. Model. 2018;60:606. doi: 10.1016/j.apm.2018.03.043. [DOI] [Google Scholar]
- 49.Achim C V, Rozas R E, Toledo P G. Semi-decoupled first-order correction for smoothed particle hydrodynamics. Appl. Math. Model. 2021;93:314. doi: 10.1016/j.apm.2020.12.006. [DOI] [Google Scholar]
- 50.Liu F, Yu Y, Wang Q, Luo Y. A coupled smoothed particle hydrodynamic and finite particle method: An efficient approach for fluid-solid interaction problems involving free-surface flow and solid failure. Eng. Anal. Bound. Elem. 2020;118:143. doi: 10.1016/j.enganabound.2020.03.006. [DOI] [Google Scholar]
- 51.Huang C, Zhang D H, Si Y L, Shi Y X, Lin Y G. Coupled finite particle method for simulations of wave and structure interaction. Coast. Eng. 2018;140:147. doi: 10.1016/j.coastaleng.2018.07.003. [DOI] [Google Scholar]
- 52.Huang C, Long T, Liu M B. Coupling finite difference method with finite particle method for modeling viscous incompressible flows. Int. J. Numer. Meth. Fluids. 2019;90:564. doi: 10.1002/fld.4735. [DOI] [Google Scholar]
- 53.Zhang Z L, Long T, Chang J Z, Liu M B. A smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with large fluid deformations. Comput. Methods Appl. Mech. Eng. 2019;356:261. doi: 10.1016/j.cma.2019.07.024. [DOI] [Google Scholar]
- 54.Mao Z, Liu G R, Dong X. A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems. Comput. Geotech. 2017;92:77. doi: 10.1016/j.compgeo.2017.07.024. [DOI] [Google Scholar]
- 55.Yang J, Zhang X, Liu G R, Zhang W. A compact perfectly matched layer algorithm for acoustic simulations in the time domain with smoothed particle hydrodynamic method. J. Acoust. Soc. Am. 2019;145:204. doi: 10.1121/1.5083832. [DOI] [PubMed] [Google Scholar]
- 56.Yang J, Zhang X, Liu G R, Mao Z, Zhang W. Perfectly matched layer absorbing boundary conditions for Euler equations with oblique mean flows modeled with smoothed particle hydrodynamics. J. Acoust. Soc. Am. 2020;147:1311. doi: 10.1121/10.0000648. [DOI] [PubMed] [Google Scholar]
- 57.Lin Y, Liu G R, Wang G. A particle-based free surface detection method and its application to the surface tension effects simulation in smoothed particle hydrodynamics (SPH) J. Comput. Phys. 2019;383:196. doi: 10.1016/j.jcp.2018.12.036. [DOI] [Google Scholar]
- 58.Hu M, Wang G, Liu G, Peng Q. The application of godunov SPH in the simulation of energetic materials. Int. J. Comput. Methods. 2020;17:1950028. doi: 10.1142/S0219876219500282. [DOI] [Google Scholar]
- 59.Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 2003;191:448. doi: 10.1016/S0021-9991(03)00324-3. [DOI] [Google Scholar]
- 60.Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 2003;26:787. doi: 10.1016/S0309-1708(03)00030-7. [DOI] [Google Scholar]
- 61.Xu R, Stansby P, Laurence D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 2009;228:6703. doi: 10.1016/j.jcp.2009.05.032. [DOI] [Google Scholar]
- 62.Lind S J, Xu R, Stansby P K, Rogers B D. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys. 2012;231:1499. doi: 10.1016/j.jcp.2011.10.027. [DOI] [Google Scholar]
- 63.Adami S, Hu X Y, Adams N A. A transport-velocity formulation for smoothed particle hydrodynamics. J. Comput. Phys. 2013;241:292. doi: 10.1016/j.jcp.2013.01.043. [DOI] [Google Scholar]
- 64.Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G. δ-SPH model for simulating violent impact flows. Comput. Methods Appl. Mech. Eng. 2011;200:1526. doi: 10.1016/j.cma.2010.12.016. [DOI] [Google Scholar]
- 65.De Chowdhury S, Sannasiraj S A. Numerical simulation of 2D sloshing waves using SPH with diffusive terms. Appl. Ocean Res. 2014;47:219. doi: 10.1016/j.apor.2014.06.004. [DOI] [Google Scholar]
- 66.Valizadeh A, Monaghan J J. A study of solid wall models for weakly compressible SPH. J. Comput. Phys. 2015;300:5. doi: 10.1016/j.jcp.2015.07.033. [DOI] [Google Scholar]
- 67.Vacondio R, Rogers B D, Stansby P K, Mignosa P. Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity. Comput. Methods Appl. Mech. Eng. 2016;300:442. doi: 10.1016/j.cma.2015.11.021. [DOI] [Google Scholar]
- 68.Oger G, Marrone S, Le Touzé D, de Leffe M. SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J. Comput. Phys. 2016;313:76. doi: 10.1016/j.jcp.2016.02.039. [DOI] [Google Scholar]
- 69.Yang X, Zhang Z, Zhang G, Feng S, Sun Z. Simulating multi-phase sloshing flows with the SPH method. Appl. Ocean Res. 2022;118:102989. doi: 10.1016/j.apor.2021.102989. [DOI] [Google Scholar]
- 70.Sun P N, Colagrossi A, Marrone S, Zhang A M. The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme. Comput. Methods Appl. Mech. Eng. 2017;315:25. doi: 10.1016/j.cma.2016.10.028. [DOI] [Google Scholar]
- 71.Sun P N, Colagrossi A, Zhang A M. Numerical simulation of the self-propulsive motion of a fishlike swimming foil using the δ+-SPH model. Theor. Appl. Mech. Lett. 2018;8:115. doi: 10.1016/j.taml.2018.02.007. [DOI] [Google Scholar]
- 72.Sun P N, Colagrossi A, Marrone S, Antuono M, Zhang A M. A consistent approach to particle shifting in the δ-plus-SPH model. Comput. Methods Appl. Mech. Eng. 2019;348:912. doi: 10.1016/j.cma.2019.01.045. [DOI] [Google Scholar]
- 73.Antuono M, Sun P N, Marrone S, Colagrossi A. The δ-ALE-SPH model: An arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique. Comput. Fluids. 2021;216:104806. doi: 10.1016/j.compfluid.2020.104806. [DOI] [Google Scholar]
- 74.Fang X L, Colagrossi A, Wang P P, Zhang A M. An accurate and robust axisymmetric SPH method based on Riemann solver with applications in ocean engineering. Ocean Eng. 2022;244:110369. doi: 10.1016/j.oceaneng.2021.110369. [DOI] [Google Scholar]
- 75.Zhang C, Hu X Y, Adams N A. A weakly compressible SPH method based on a low-dissipation Riemann solver. J. Comput. Phys. 2017;335:605. doi: 10.1016/j.jcp.2017.01.027. [DOI] [Google Scholar]
- 76.Meng Z F, Wang P P, Zhang A M, Ming F R, Sun P N. A multiphase SPH model based on Roe’s approximate Riemann solver for hydraulic flows with complex interface. Comput. Methods Appl. Mech. Eng. 2020;365:112999. doi: 10.1016/j.cma.2020.112999. [DOI] [Google Scholar]
- 77.Meng Z F, Zhang A M, Wang P P, Ming F R. A shock-capturing scheme with a novel limiter for compressible flows solved by smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 2021;386:114082. doi: 10.1016/j.cma.2021.114082. [DOI] [Google Scholar]
- 78.Meng Z F, Ming F R, Wang P P, Zhang A M. Numerical simulation of water entry problems considering air effect using a multiphase Riemann-SPH model. Adv. Aerodyn. 2021;3:13. doi: 10.1186/s42774-021-00066-x. [DOI] [Google Scholar]
- 79.Meng Z F, Zhang A M, Yan J L, Wang P P, Khayyer A. A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method. Comput. Methods Appl. Mech. Eng. 2022;390:114522. doi: 10.1016/j.cma.2021.114522. [DOI] [Google Scholar]
- 80.Vila J P. SPH renormalized hybrid methods for conservation laws: Applications to free surface flows. In: Griebel M, Schweitzer M A, editors. Meshfree Methods for Partial Differential Equations II. Berlin, Heidelberg: Springer; 2005. pp. 207–229. [Google Scholar]
- 81.Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996;126:202. doi: 10.1006/jcph.1996.0130. [DOI] [Google Scholar]
- 82.Avesani D, Dumbser M, Bellin A. A new class of Moving-Least-Squares WENO-SPH schemes. J. Comput. Phys. 2014;270:278. doi: 10.1016/j.jcp.2014.03.041. [DOI] [Google Scholar]
- 83.Avesani D, Dumbser M, Vacondio R, Righetti M. An alternative SPH formulation: ADER-WENO-SPH. Comput. Methods Appl. Mech. Eng. 2021;382:113871. doi: 10.1016/j.cma.2021.113871. [DOI] [Google Scholar]
- 84.Nogueira X, Ramírez L, Clain S, Loubère R, Cueto-Felgueroso L, Colominas I. High-accurate SPH method with multidimensional optimal order detection limiting. Comput. Methods Appl. Mech. Eng. 2016;310:134. doi: 10.1016/j.cma.2016.06.032. [DOI] [Google Scholar]
- 85.Zhang X, Tian H, Kuo L, Chen W. A contact SPH method with high-order limiters for simulation of inviscid compressible flows. Commun. Comput. Phys. 2013;14:425. doi: 10.4208/cicp.141211.260912a. [DOI] [Google Scholar]
- 86.Meng Z F, Zhang A M, Wang P P, Ming F R, Khoo B C. A targeted essentially non-oscillatory (TENO) SPH method and its applications in hydrodynamics. Ocean Eng. 2022;243:110100. doi: 10.1016/j.oceaneng.2021.110100. [DOI] [Google Scholar]
- 87.Fu L, Hu X Y, Adams N A. A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 2016;305:333. doi: 10.1016/j.jcp.2015.10.037. [DOI] [Google Scholar]
- 88.Zhang C, Xiang G M, Wang B, Hu X Y, Adams N A. A weakly compressible SPH method with WENO reconstruction. J. Comput. Phys. 2019;392:1. doi: 10.1016/j.jcp.2019.04.038. [DOI] [Google Scholar]
- 89.Adami S, Hu X Y, Adams N A. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 2012;231:7057. doi: 10.1016/j.jcp.2012.05.005. [DOI] [Google Scholar]
- 90.Zhang Z L, Walayat K, Chang J Z, Liu M B. Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method. Int. J. Numer. Methods Eng. 2018;116:530. doi: 10.1002/nme.5935. [DOI] [Google Scholar]
- 91.Chen C, Zhang A M, Chen J Q, Shen Y M. SPH simulations of water entry problems using an improved boundary treatment. Ocean Eng. 2021;238:109679. doi: 10.1016/j.oceaneng.2021.109679. [DOI] [Google Scholar]
- 92.Monaghan J J, Kajtar J B. SPH particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 2009;180:1811. doi: 10.1016/j.cpc.2009.05.008. [DOI] [Google Scholar]
- 93.Wei Z J, Yu D, Zhou C H. SPH Simulation of dam break flow impacting plunge pool. Water Resour. Power. 2021;39:41. [Google Scholar]
- 94.Wang L, Xu F, Yang Y. Research on water entry problems of gas-structure-liquid coupling based on SPH method. Ocean Eng. 2022;257:111623. doi: 10.1016/j.oceaneng.2022.111623. [DOI] [Google Scholar]
- 95.Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Comput. Methods Appl. Mech. Eng. 2004;193:1035. doi: 10.1016/j.cma.2003.12.005. [DOI] [Google Scholar]
- 96.Dyka C T, Ingel R P. An approach for tension instability in smoothed particle hydrodynamics (SPH) Comput. Struct. 1995;57:573. doi: 10.1016/0045-7949(95)00059-P. [DOI] [Google Scholar]
- 97.Chalk C M, Pastor M, Peakall J, Borman D J, Sleigh P A, Murphy W, Fuentes R. Stress-particle smoothed particle hydrodynamics: An application to the failure and post-failure behaviour of slopes. Comput. Methods Appl. Mech. Eng. 2020;366:113034. doi: 10.1016/j.cma.2020.113034. [DOI] [Google Scholar]
- 98.Hicks D L, Swegle J W, Attaway S W. Conservative smoothing stabilizes discrete-numerical instabilities in SPH material dynamics computations. Appl. Math. Comput. 1997;85:209. [Google Scholar]
- 99.Randles P W, Libersky L D. Smoothed particle hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 1996;139:375. doi: 10.1016/S0045-7825(96)01090-0. [DOI] [Google Scholar]
- 100.Guenther C, Hicks D, Swegle J. Conservative smoothing versus artificial viscosity. Albuquerque: Sandia National Lab; 1994. pp. 94–1853. [Google Scholar]
- 101.Hicks D L, Liebrock L M. Conservative smoothing with B-splines stabilizes SPH material dynamics in both tension and compression. Appl. Math. Comput. 2004;150:213. [Google Scholar]
- 102.Monaghan J J. SPH without a tensile instability. J. Comput. Phys. 2000;159:290. doi: 10.1006/jcph.2000.6439. [DOI] [Google Scholar]
- 103.Gray J P, Monaghan J J, Swift R P. SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 2001;190:6641. doi: 10.1016/S0045-7825(01)00254-7. [DOI] [Google Scholar]
- 104.Xu X, Ouyang J, Jiang T, Li Q. Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method. J. Non-Newtonian Fluid Mech. 2012;177–178:109. doi: 10.1016/j.jnnfm.2012.04.006. [DOI] [Google Scholar]
- 105.Hemeda A A, Zhang C, Hu X Y, Fukuda D, Cote D, Nault I M, Nardi A, Champagne V K, Ma Y, Palko J W. Particle-based simulation of cold spray: Influence of oxide layer on impact process. Addit. Manuf. 2021;37:101517. [Google Scholar]
- 106.Islam M R I, Bansal A, Peng C. Numerical simulation of metal machining process with Eulerian and total Lagrangian SPH. Eng. Anal. Bound. Elem. 2020;117:269. doi: 10.1016/j.enganabound.2020.05.007. [DOI] [Google Scholar]
- 107.Belytschko T, Xiao S. Stability analysis of particle methods with corrected derivatives. Comput. Math. Appl. 2002;43:329. doi: 10.1016/S0898-1221(01)00290-5. [DOI] [Google Scholar]
- 108.Campbell J, Vignjevic R, Libersky L. A contact algorithm for smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 2000;184:49. doi: 10.1016/S0045-7825(99)00442-9. [DOI] [Google Scholar]
- 109.Salehizadeh A M, Shafiei A R. A coupled ISPH-TLSPH method for simulating fluid-elastic structure interaction problems. J. Mar. Sci. Appl. 2022;21:15. doi: 10.1007/s11804-022-00260-3. [DOI] [Google Scholar]
- 110.Morikawa D S, Asai M. Coupling total Lagrangian SPH-EISPH for fluid-structure interaction with large deformed hyperelastic solid bodies. Comput. Methods Appl. Mech. Eng. 2021;381:113832. doi: 10.1016/j.cma.2021.113832. [DOI] [Google Scholar]
- 111.Han L, Hu X. SPH modeling of fluid-structure interaction. J. Hydrodyn. 2018;30:62. doi: 10.1007/s42241-018-0006-9. [DOI] [Google Scholar]
- 112.Hwang S C, Khayyer A, Gotoh H, Park J C. Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems. J. Fluids Struct. 2014;50:497. doi: 10.1016/j.jfluidstructs.2014.07.007. [DOI] [Google Scholar]
- 113.Vignjevic R, Reveles J R, Campbell J. SPH in a total Lagrangian formalism. Comput. Model. Eng. Sci. 2006;14:181. [Google Scholar]
- 114.Young J, Teixeira-Dias F, Azevedo A, Mill F. Adaptive total Lagrangian Eulerian SPH for high-velocity impacts. Int. J. Mech. Sci. 2021;192:106108. doi: 10.1016/j.ijmecsci.2020.106108. [DOI] [Google Scholar]
- 115.Serroukh H K, Mabssout M, Herreros M I. Updated Lagrangian Taylor-SPH method for large deformation in dynamic problems. Appl. Math. Model. 2020;80:238. doi: 10.1016/j.apm.2019.11.046. [DOI] [Google Scholar]
- 116.Islam M R I, Peng C. A total Lagrangian SPH method for modelling damage and failure in solids. Int. J. Mech. Sci. 2019;157–158:498. doi: 10.1016/j.ijmecsci.2019.05.003. [DOI] [Google Scholar]
- 117.Mimault M, Ptashnyk M, Bassel G W, Dupuy L X. Smoothed particle hydrodynamics for root growth mechanics. Eng. Anal. Bound. Elem. 2019;105:20. doi: 10.1016/j.enganabound.2019.03.025. [DOI] [Google Scholar]
- 118.Sinnott M D, Cleary P W, Harrison S M. Peristaltic transport of a particulate suspension in the small intestine. Appl. Math. Model. 2017;44:143. doi: 10.1016/j.apm.2017.01.034. [DOI] [Google Scholar]
- 119.Sigalotti L D G, Klapp J, Pedroza K, Nathal E, Alvarado-Rodríguez C E. Numerical simulation of the blood flow through a brain vascular aneurysm with an artificial stent using the SPH method. Engineering. 2018;10:891. doi: 10.4236/eng.2018.1012062. [DOI] [Google Scholar]
- 120.Mao W, Li K, Sun W. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Tech. 2016;7:374. doi: 10.1007/s13239-016-0285-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Palyanov A, Khayrulin S, Larson S D. Three-dimensional simulation of the Caenorhabditis elegans body and muscle cells in liquid and gel environments for behavioural analysis. Phil. Trans. R. Soc. B. 2018;373:20170376. doi: 10.1098/rstb.2017.0376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Shahriari S, Garcia D. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics. Phys. Med. Biol. 2018;63:205011. doi: 10.1088/1361-6560/aae3c3. [DOI] [PubMed] [Google Scholar]
- 123.Cleary P W. Prediction of coupled particle and fluid flows using DEM and SPH. Miner. Eng. 2015;73:85. doi: 10.1016/j.mineng.2014.09.005. [DOI] [Google Scholar]
- 124.Liu G R, Wang G Y, Peng Q, De S. A micro-macro coupling approach of MD-SPH method for reactive energetic materials. AIP Conf. Proc. 2017;1793:050006. doi: 10.1063/1.4971540. [DOI] [Google Scholar]
- 125.Peng Q, Rahul Q, Wang G, Liu G R, Grimme S, De S. Predicting elastic properties of β-HMX from first-principles calculations. J. Phys. Chem. B. 2015;119:5896. doi: 10.1021/acs.jpcb.5b00083. [DOI] [PubMed] [Google Scholar]
- 126.Liu M B, Liu G R. Particle Methods for Multi-Scale and Multi-Physics. Singapore: World Scientific; 2016. [Google Scholar]
- 127.Colagrossi A, Antuono M, Le Touzé D. Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. Phys. Rev. E. 2009;79:056701. doi: 10.1103/PhysRevE.79.056701. [DOI] [PubMed] [Google Scholar]
- 128.G. Oger, B. Alessandrini, and P. Ferrant, in Capture of air cushion effects in a wedge water entry SPH simulation: Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, 2005.
- 129.Yan R, Monaghan J J, Valizadeh A, Xu F. The effect of air on solid body impact with water in two dimensions. J. Fluids Struct. 2015;59:146. doi: 10.1016/j.jfluidstructs.2015.08.015. [DOI] [Google Scholar]
- 130.Yang Q, Xu F, Yang Y, Wang J, Wang A, Ma C. Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method. Acta Mech. Sin. 2021;37:1072. doi: 10.1007/s10409-021-01060-8. [DOI] [Google Scholar]
- 131.Siemann M H, Schwinn D B, Scherer J, Kohlgrüber D. Advances in numerical ditching simulation of flexible aircraft models. Int. J. Crashworthiness. 2018;23:236. doi: 10.1080/13588265.2017.1359462. [DOI] [Google Scholar]
- 132.Xu F, Ren X, Zhang X, Gao X, Liu J. Decreasing effectiveness of chine tire on contaminated runway at high taxiing speed. J. Aircraft. 2020;57:198. doi: 10.2514/1.C035293. [DOI] [Google Scholar]
- 133.Zhang X, Xu F, Ren X, Gao X, Cao R. Consideration on aircraft tire spray when running on wet runways. Chin. J. Aeronaut. 2020;33:520. doi: 10.1016/j.cja.2019.08.013. [DOI] [Google Scholar]
- 134.Guan X, Xu F, Hu M, Ren X, Zhang X. Numerical simulation of water spray generated by aircraft multi-wheels. Int. J. Comput. Fluid Dyn. 2021;35:93. doi: 10.1080/10618562.2020.1847276. [DOI] [Google Scholar]
- 135.Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 2007;85:879. doi: 10.1016/j.compstruc.2007.01.002. [DOI] [Google Scholar]
- 136.Wang L, Xu F, Yang Y. SPH scheme for simulating the water entry of an elastomer. Ocean Eng. 2019;178:233. doi: 10.1016/j.oceaneng.2019.02.072. [DOI] [Google Scholar]
- 137.Yang X, Liu M, Peng S, Huang C. Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH-EBG method. Coast. Eng. 2016;108:56. doi: 10.1016/j.coastaleng.2015.11.007. [DOI] [Google Scholar]
- 138.O’Connor J, Rogers B D. A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J. Fluids Struct. 2021;104:103312. doi: 10.1016/j.jfluidstructs.2021.103312. [DOI] [Google Scholar]
- 139.Nasar A M A, Rogers B D, Revell A, Stansby P K. Flexible slender body fluid interaction: Vector-based discrete element method with Eulerian smoothed particle hydrodynamics. Comput. Fluids. 2019;179:563. doi: 10.1016/j.compfluid.2018.11.024. [DOI] [Google Scholar]
- 140.Skillen A, Lind S, Stansby P K, Rogers B D. Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput. Methods Appl. Mech. Eng. 2013;265:163. doi: 10.1016/j.cma.2013.05.017. [DOI] [Google Scholar]
- 141.Liu M B, Shao J R, Li H Q. An SPH model for free surface flows with moving rigid objects. Int. J. Numer. Meth. Fluids. 2014;74:684. doi: 10.1002/fld.3868. [DOI] [Google Scholar]
- 142.Sun P, Ming F, Zhang A. Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Eng. 2015;98:32. doi: 10.1016/j.oceaneng.2015.01.019. [DOI] [Google Scholar]
- 143.Pan K, Jzermans R H A I, Jones B D, Thyagarajan A, van Beest B W H, Williams J R. Application of the SPH method to solitary wave impact on an offshore platform. Comp. Part. Mech. 2016;3:155. doi: 10.1007/s40571-015-0069-0. [DOI] [Google Scholar]
- 144.Antuono M, Colagrossi A, Marrone S, Lugni C. Propagation of gravity waves through an SPH scheme with numerical diffusive terms. Comput. Phys. Commun. 2011;182:866. doi: 10.1016/j.cpc.2010.12.012. [DOI] [Google Scholar]
- 145.Sun P N, Luo M, Le Touzé D, Zhang A M. The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study. Phys. Fluids. 2019;31:117108. doi: 10.1063/1.5124613. [DOI] [Google Scholar]
- 146.Mintu S, Molyneux D, Colbourne B. Full-scale SPH simulations of ship-wave impact generated sea spray. Ocean Eng. 2021;241:110077. doi: 10.1016/j.oceaneng.2021.110077. [DOI] [Google Scholar]
- 147.Marrone S, Colagrossi A, Baudry V, Le Touzé D. Extreme wave impacts on a wave energy converter: Load prediction through a SPH model. Coast. Eng. J. 2019;61:63. doi: 10.1080/21664250.2018.1560684. [DOI] [Google Scholar]
- 148.Zhu G, Graham D, Zheng S, Hughes J, Greaves D. Hydrodynamics of onshore oscillating water column devices: A numerical study using smoothed particle hydrodynamics. Ocean Eng. 2020;218:108226. doi: 10.1016/j.oceaneng.2020.108226. [DOI] [Google Scholar]
- 149.Wei Z, Edge B L, Dalrymple R A, Hérault A. Modeling of wave energy converters by GPUSPH and Project Chrono. Ocean Eng. 2019;183:332. doi: 10.1016/j.oceaneng.2019.04.029. [DOI] [Google Scholar]
- 150.Lyu H G, Sun P N, Huang X T, Zhong S Y, Peng Y X, Jiang T, Ji C N. A review of SPH techniques for hydrodynamic simulations of ocean energy devices. Energies. 2022;15:502. doi: 10.3390/en15020502. [DOI] [Google Scholar]
- 151.Dong X, Liu G R, Li Z, Zeng W. Smoothed particle hydrodynamics (SPH) modeling of shot peening process. J. Clin. Med. 2017;17:799. [Google Scholar]
- 152.Niu W, Mo R, Liu G R, Sun H, Dong X, Wang G. Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method. Int. J. Adv. Manuf. Technol. 2018;95:905. doi: 10.1007/s00170-017-1253-6. [DOI] [Google Scholar]
- 153.Feng L, Dong X, Li Z, Liu G, Sun Z. Modeling of waterjet abrasion in mining processes based on the smoothed particle hydrodynamics (SPH) method. Int. J. Comput. Methods. 2020;17:1950075. doi: 10.1142/S0219876219500750. [DOI] [Google Scholar]
- 154.Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977;181:375. doi: 10.1093/mnras/181.3.375. [DOI] [Google Scholar]
- 155.Berczik P. Modeling the star formation in galaxies using the chemodynamical SPH code. Astrophys. Space Sci. 2000;271:103. doi: 10.1023/A:1002485702347. [DOI] [Google Scholar]
- 156.Monaghan J J. Modelling the universe. Publ. Astron. Soc. Aust. 1990;8:233. doi: 10.1017/S1323358000023390. [DOI] [Google Scholar]
- 157.Pakmor R, Edelmann P, Röpke F K, Hillebrandt W. Stellar GADGET: A smoothed particle hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white dwarf mergers. Mon. Not. R. Astron. Soc. 2012;424:2222. doi: 10.1111/j.1365-2966.2012.21383.x. [DOI] [Google Scholar]
- 158.Liu Z W, Pakmor R, Seitenzahl I R, Hillebrandt W, Kromer M, Röpke F K, Edelmann P, Taubenberger S, Maeda K, Wang B, Han Z W. The impact of Type Ia supernova explosions on helium companions in the Chandrasekhar-mass explosion scenario. Astrophys. J. 2013;774:37. doi: 10.1088/0004-637X/774/1/37. [DOI] [Google Scholar]
- 159.Mao Z, Liu G R. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface. Comp. Part. Mech. 2018;5:539. doi: 10.1007/s40571-018-0189-4. [DOI] [Google Scholar]
- 160.Bao Y, Huang Y, Liu G R, Wang G. SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part I: Initiation process and slope failure. Int. J. Comput. Methods. 2018;17:1850150. doi: 10.1142/S0219876218501505. [DOI] [Google Scholar]
- 161.Bao Y, Huang Y, Liu G R, Zeng W. SPH simulation of high-volume rapid landslides triggered by earthquakes based on a unified constitutive model. Part II: Solid-liquid-like phase transition and flow-like landslides. Int. J. Comput. Methods. 2018;17:1850149. doi: 10.1142/S0219876218501499. [DOI] [Google Scholar]
- 162.G. R. Liu, Z. Mao, and Y. Huang, SPH modeling for soil mechanics with application to landslides, edited by P. Samui, S. Kumari, V. Makarov, P. Kurup, Modeling in Geotechnical Engineering (Academic Press, 2021), pp. 257–289.
- 163.Nguyen C T, Nguyen C T, Bui H H, Nguyen G D, Fukagawa R. A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides. 2016;14:69. doi: 10.1007/s10346-016-0681-y. [DOI] [Google Scholar]
- 164.H. H. Bui, K. Sako, R. Fukagawa, and J. Guan, in Non-cohesion material flows in rotating drum: Smoothed particle hydrodynamics (SPH) and discrete element method (DEM): Proceedings of the 41st Japan National Conference on Geotechnical Engineering (JNCGS), 2006.
- 165.Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature. 2006;441:727. doi: 10.1038/nature04801. [DOI] [PubMed] [Google Scholar]
- 166.Bui H H, Nguyen G D. A coupled fluid-solid SPH approach to modelling flow through deformable porous media. Int. J. Solids Struct. 2017;125:244. doi: 10.1016/j.ijsolstr.2017.06.022. [DOI] [Google Scholar]
- 167.Das R, Cleary P W. Effect of rock shapes on brittle fracture using Smoothed Particle Hydrodynamics. Theor. Appl. Fract. Mech. 2010;53:47. doi: 10.1016/j.tafmec.2009.12.004. [DOI] [Google Scholar]
- 168.Kahraman S, Alber M. Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix. Int. J. Rock Mech. Min. Sci. 2006;43:1277. doi: 10.1016/j.ijrmms.2006.03.017. [DOI] [Google Scholar]
- 169.Ming F R, Zhang A M, Yang W S. Three-dimensional simulations on explosive load characteristics of underwater explosion near free surface. Expl. Shock Waves. 2012;32:508. [Google Scholar]
- 170.Qiang H F, Fan S J, Chen F, Liu H. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method. Expl. Shock Waves. 2016;36:516. [Google Scholar]
- 171.Yang G, Fu Y, Hu D, Han X. Feasibility analysis of SPH method in the simulation of condensed explosives detonation with ignition and growth model. Comput. Fluids. 2013;88:51. doi: 10.1016/j.compfluid.2013.09.002. [DOI] [Google Scholar]
- 172.Zhang A, Wang S, Peng Y, Ming F, Liu Y. Research progress in underwater explosion and its damage to ship structures. Chin. J. Ship Res. 2019;14:1. [Google Scholar]
- 173.Wang G, Liu G, Peng Q, De S. A SPH implementation with ignition and growth and afterburning models for aluminized explosives. Int. J. Comput. Methods. 2017;14:1750046. doi: 10.1142/S0219876217500463. [DOI] [Google Scholar]
- 174.Wang G, Liu G, Peng Q, De S, Feng D, Liu M. A 3D smoothed particle hydrodynamics method with reactive flow model for the simulation of ANFO. Propellants Explosives Pyrotechnics. 2015;40:566. doi: 10.1002/prep.201400244. [DOI] [Google Scholar]
- 175.Dong X W, Liu G R, Li Z, Zeng W. A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles. Tribol. Int. 2016;95:267. doi: 10.1016/j.triboint.2015.11.038. [DOI] [Google Scholar]
- 176.Dong X, Li Z, Zhang Q, Zeng W, Liu G R. Analysis of surface-erosion mechanism due to impacts of freely rotating angular particles using smoothed particle hydrodynamics erosion model. Proc. Inst. Mech. Engineers Part J-J. Eng. Tribol. 2017;231:1537. doi: 10.1177/1350650117700750. [DOI] [Google Scholar]
- 177.Dong X, Li Z, Liu G, Zhao L, Zhang X. Numerical study of impact behaviors of angular particles on metallic surface using smoothed particle hydrodynamics. Tribol. Trans. 2017;60:693. doi: 10.1080/10402004.2016.1204490. [DOI] [Google Scholar]
- 178.Feng L, Liu G R, Li Z, Dong X, Du M. Study on the effects of abrasive particle shape on the cutting performance of Ti-6Al-4V materials based on the SPH method. Int. J. Adv. Manuf. Technol. 2019;101:3167. doi: 10.1007/s00170-018-3119-y. [DOI] [Google Scholar]
- 179.Shintate K, Sekine H. Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method. Compos. Part A-Appl. Sci. Manuf. 2004;35:683. doi: 10.1016/j.compositesa.2004.02.011. [DOI] [Google Scholar]
- 180.Kitsionas S, Whitworth A P. Smoothed Particle Hydrodynamics with particle splitting, applied to self-gravitating collapse. Mon. Not. R. Astron. Soc. 2002;330:129. doi: 10.1046/j.1365-8711.2002.05115.x. [DOI] [Google Scholar]
- 181.Xu F, Zhao Y, Li Y, Kikuchi M. Study of numerical and physical fracture with SPH method. Acta Mech. Solid Sin. 2010;23:49. doi: 10.1016/S0894-9166(10)60006-7. [DOI] [Google Scholar]
- 182.Zhao Y, Xu F, Li Y. A method of preventing SPH numerical fracture for irregular particle models. Acta Aeronau. Astronaut. Sin. 2009;30:2100. [Google Scholar]
- 183.Zhao Y, Xu F, Li Y, Chen L-D. An improved SPH method for preventing numerical fractures. Expl. Shock Waves. 2009;29:503. [Google Scholar]
- 184.Benz W. Smooth particle hydrodynamics: A review. In: Buchler J R, editor. The Numerical Modelling of Nonlinear Stellar Pulsations: Problems and Prospects. Dordrecht: Springer Netherlands; 1990. [Google Scholar]
- 185.Gingold R A, Monaghan J J. Kernel estimates as a basis for general particle methods in hydrodynamics. J. Comput. Phys. 1982;46:429. doi: 10.1016/0021-9991(82)90025-0. [DOI] [Google Scholar]
- 186.Qiang H F, Wang K P, Gao W R. Numerical simulation of high explosive detonation process using SPH method with fully variable smoothing lengths. Energ. Mater. 2009;17:27. [Google Scholar]
- 187.Zhang Z, Qiang H, Gao W. Application of SPH-FEM contact algorithm in impact dynamics simulation. Acta Mech. Solida Sin. 2011;32:319. [Google Scholar]
- 188.Shen Y, Shi W, Chen J, He K. Application of SPH method with space-based variable smoothing length to water entry simulation. J. Ship Mech. 2020;24:323. [Google Scholar]
- 189.Zhu Y, Liu G R, Wen Y, Xu C, Niu W, Wang G. Back-spalling process of an Al2O3 ceramic plate subjected to an impact of steel ball. Int. J. Impact Eng. 2018;122:451. doi: 10.1016/j.ijimpeng.2018.09.011. [DOI] [Google Scholar]
- 190.Zhang C, Di D, Chen X, Wen K. Characteristics structure analysis on debris cloud in the hypervelocity impact of disk projectile on thin plate. Defence Tech. 2020;16:299. doi: 10.1016/j.dt.2019.09.011. [DOI] [Google Scholar]
- 191.Organ D, Fleming M, Terry T, Belytschko T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 1996;18:225. doi: 10.1007/BF00369940. [DOI] [Google Scholar]
- 192.Sames W J, List F A, Pannala S, Dehoff R R, Babu S S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016;61:1. doi: 10.1080/09506608.2015.1116649. [DOI] [Google Scholar]
- 193.Frazier W E. Metal additive manufacturing: A review. J. Materi Eng Perform. 2014;23:1917. doi: 10.1007/s11665-014-0958-z. [DOI] [Google Scholar]
- 194.Otto A, Koch H, Leitz K H, Schmidt M. Numerical simulations—A versatile approach for better understanding dynamics in laser material processing. Phys. Procedia. 2011;12:11. doi: 10.1016/j.phpro.2011.03.003. [DOI] [Google Scholar]
- 195.Tong M, Browne D J. Smoothed particle hydrodynamics modelling of the fluid flow and heat transfer in the weld pool during laser spot welding. IOP Conf. Ser.-Mater. Sci. Eng. 2012;27:012080. doi: 10.1088/1757-899X/27/1/012080. [DOI] [Google Scholar]
- 196.Farrokhpanah A, Bussmann M, Mostaghimi J. New smoothed particle hydrodynamics (SPH) formulation for modeling heat conduction with solidification and melting. Numer. Heat Transfer Part B-Fundamentals. 2016;71:299. doi: 10.1080/10407790.2017.1293972. [DOI] [Google Scholar]
- 197.Das R, Cleary P W. Three-dimensional modelling of coupled flow dynamics, heat transfer and residual stress generation in arc welding processes using the mesh-free SPH method. J. Comput. Sci. 2016;16:200. doi: 10.1016/j.jocs.2016.03.006. [DOI] [Google Scholar]
- 198.Hu H, Fetzer F, Berger P, Eberhard P. Simulation of laser welding using advanced particle methods. GAMM-Mitteilungen. 2016;39:149. doi: 10.1002/gamm.201610010. [DOI] [Google Scholar]
- 199.D. Shah, and A. N. Volkov, in combined smoothed particle hydrodynamics-ray tracing method for simulations of keyhole formation in laser melting of bulk and powder metal targets: Proceedings of International Mechanical Engineering Congress and Exposition, Salt Lake City, 2019.
- 200.Meier C, Fuchs S L, Hart A J, Wall W A. A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling. Comput. Methods Appl. Mech. Eng. 2021;381:113812. doi: 10.1016/j.cma.2021.113812. [DOI] [Google Scholar]
- 201.Qiu Y, Niu X, Song T, Shen M, Li W, Xu W. Three-dimensional numerical simulation of selective laser melting process based on SPH method. J. Manuf. Process. 2021;71:224. doi: 10.1016/j.jmapro.2021.09.018. [DOI] [Google Scholar]
- 202.Russell M A, Souto-Iglesias A, Zohdi T I. Numerical simulation of laser fusion additive Manufacturing processes using the SPH method. Comput. Methods Appl. Mech. Eng. 2018;341:163. doi: 10.1016/j.cma.2018.06.033. [DOI] [Google Scholar]
- 203.Gnanasekaran B, Liu G R, Fu Y, Wang G, Niu W, Lin T. A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process—A study using particles. Surf. Coatings Tech. 2019;377:124812. doi: 10.1016/j.surfcoat.2019.07.036. [DOI] [Google Scholar]
- 204.Yin S, Wang X F, Xu B P, Li W Y. Examination on the calculation method for modeling the multi-particle impact process in cold spraying. J. Therm. Spray Tech. 2010;19:1032. doi: 10.1007/s11666-010-9489-9. [DOI] [Google Scholar]
- 205.Manap A, Ogawa K, Okabe T. Numerical analysis of interfacial bonding of Al-Si particle and mild steel substrate by cold spray technique using the SPH method. J. Solid Mech. Mater. Eng. 2012;6:241. doi: 10.1299/jmmp.6.241. [DOI] [Google Scholar]
- 206.Tyagi S, Yadav A, Deshmukh S. Review on mechanical characterization of 3D printed parts created using material jetting process. Mater. Today-Proc. 2022;51:1012. doi: 10.1016/j.matpr.2021.07.073. [DOI] [Google Scholar]
- 207.Deng H, Huang Y, Wu S, Yang Y. Binder jetting additive manufacturing: Three-dimensional simulation of micrometer droplet impact and penetration into powder bed. J. Manuf. Process. 2022;74:365. doi: 10.1016/j.jmapro.2021.12.019. [DOI] [Google Scholar]
- 208.Cleary P W, Monaghan J J. Conduction modelling using smoothed particle hydrodynamics. J. Comput. Phys. 1999;148:227. doi: 10.1006/jcph.1998.6118. [DOI] [Google Scholar]
- 209.Chen P, Yang G, Wu N. Meshless numerical analysis of phase change problems in artificial freezing technology applied in geomedia. Int. J. Comput. Methods. 2021;18:2150023. doi: 10.1142/S0219876221500237. [DOI] [Google Scholar]
- 210.Hérault A, Bilotta G, Vicari A, Rustico E, Negro C D. Numerical simulation of lava flow using a GPU SPH model. Ann. Geophys. 2011;54:600. [Google Scholar]
- 211.Cui X, Habashi W G, Casseau V. Multiphase SPH modelling of supercooled large droplets freezing on aircraft surfaces. Int. J. Comput. Fluid Dyn. 2021;35:79. doi: 10.1080/10618562.2020.1817401. [DOI] [Google Scholar]
- 212.Morikawa D S, Asai M. A phase-change approach to landslide simulations: Coupling finite strain elastoplastic TLSPH with non-Newtonian IISPH. Comput. Geotech. 2022;148:104815. doi: 10.1016/j.compgeo.2022.104815. [DOI] [Google Scholar]
- 213.Mousavi S M, Faghihi J S D, Sommer K, Bhurwani M M S, Patel T R, Santo B, Waqas M, Ionita C, Levy E I, Siddiqui A H, Tutino V M. Realistic computer modelling of stent retriever thrombectomy: A hybrid finite-element analysis-smoothed particle hydrodynamics model. J. R. Soc. Interface. 2021;18:20210583. doi: 10.1098/rsif.2021.0583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Al-Saad M, Suarez C A, Obeidat A, Bordas S P A, Kulasegaram S. Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation. Comput. Model. Eng. Sci. 2020;122:831. [Google Scholar]
- 215.Wang F, Xu S, Jiang D, Zhao B, Dong X, Zhou T, Luo X. Particle hydrodynamic simulation of thrombus formation using velocity decay factor. Comput. Methods Programs Biomed. 2021;207:106173. doi: 10.1016/j.cmpb.2021.106173. [DOI] [PubMed] [Google Scholar]
- 216.Kamada H, Tsubota K, Nakamura M, Wada S, Ishikawa T, Yamaguchi T. A three-dimensional particle simulation of the formation and collapse of a primary thrombus. Int. J. Numer. Meth. Biomed. Eng. 2010;26:488. doi: 10.1002/cnm.1367. [DOI] [Google Scholar]
- 217.Harrison S M, Cohen R C Z, Cleary P W, Barris S, Rose G. A coupled biomechanical-smoothed particle hydrodynamics model for predicting the loading on the body during elite platform diving. Appl. Math. Model. 2016;40:3812. doi: 10.1016/j.apm.2015.11.009. [DOI] [Google Scholar]
- 218.H. N. P. Gallage, S. C. Saha, and Y. T. Gu, in Deformation of a three-dimensional red blood cell in a stenosed micro-capillary: Proceedings of 8th Australasian Congress on Applied Mechanics, ACAM 7, Melbourne, 2014.
- 219.Meng S, Taddei L, Lebaal N, Veysset D, Roth S. Modeling micro-particles impacts into ballistic gelatine using smoothed particles hydrodynamics method. Extreme Mech. Lett. 2020;39:100852. doi: 10.1016/j.eml.2020.100852. [DOI] [Google Scholar]
- 220.Zhang C, Hu X, Gao H. An integrative SPH for cardiac function with network; Catania: Istituto Nazionale di Geofisica e Vulcanologia; 2022. [Google Scholar]
- 221.English A, Fourtakas B D R G, Lind S J, Stansby P K. SPH model of human breathing with and without face coverings; Catania: Istituto Nazionale di Geofisica e Vulcanologia; 2022. [Google Scholar]
- 222.Heck T, Smeets B, Vanmaercke S, Bhattacharya P, Odenthal T, Ramon H, Van Oosterwyck H, Van Liedekerke P. Modeling extracellular matrix viscoelasticity using smoothed particle hydrodynamics with improved boundary treatment. Comput. Methods Appl. Mech. Eng. 2017;322:515. doi: 10.1016/j.cma.2017.04.031. [DOI] [Google Scholar]
- 223.Bate M R, Bonnell I A, Price N M. Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 1995;277:362. doi: 10.1093/mnras/277.2.362. [DOI] [Google Scholar]
- 224.Feldman J, Bonet J. Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Meth. Eng. 2007;72:295. doi: 10.1002/nme.2010. [DOI] [Google Scholar]
- 225.Reyes López Y, Roose D, Recarey Morfa C. Dynamic particle refinement in SPH: Application to free surface flow and non-cohesive soil simulations. Comput. Mech. 2013;51:731. doi: 10.1007/s00466-012-0748-0. [DOI] [Google Scholar]
- 226.Omidvar P, Stansby P K, Rogers B D. Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. Int. J. Numer. Meth. Fluids. 2012;68:686. doi: 10.1002/fld.2528. [DOI] [Google Scholar]
- 227.Barcarolo D A, Le Touzé D, Oger G, de Vuyst F. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method. J. Comput. Phys. 2014;273:640. doi: 10.1016/j.jcp.2014.05.040. [DOI] [Google Scholar]
- 228.Chiron L, Oger G, de Leffe M, Le Touzé D. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations. J. Comput. Phys. 2018;354:552. doi: 10.1016/j.jcp.2017.10.041. [DOI] [Google Scholar]
- 229.Sun P, Zhang A M, Marrone S, Ming F. An accurate and efficient SPH modeling of the water entry of circular cylinders. Appl. Ocean Res. 2018;72:60. doi: 10.1016/j.apor.2018.01.004. [DOI] [Google Scholar]
- 230.Liu H, Qiang H F, Chen F Z, Shi C. A particle refinement scheme with hybrid particle interacting technique for multi-resolution SPH. Eng. Anal. Bound. Elem. 2020;118:108. doi: 10.1016/j.enganabound.2020.06.001. [DOI] [Google Scholar]
- 231.He L, Liu S, Gan Y, Seaid M, Niu C. Development of time-space adaptive smoothed particle hydrodynamics method with Runge-Kutta Chebyshev scheme. Eng. Anal. Bound. Elem. 2021;126:55. doi: 10.1016/j.enganabound.2021.02.004. [DOI] [Google Scholar]
- 232.Zhang C, Rezavand M, Hu X. A multi-resolution SPH method for fluid-structure interactions. J. Comput. Phys. 2021;429:110028. doi: 10.1016/j.jcp.2020.110028. [DOI] [Google Scholar]
- 233.Davé R, Dubinski J, Hernquist L. Parallel TreeSPH. New Astron. 1997;2:277. doi: 10.1016/S1384-1076(97)00019-5. [DOI] [Google Scholar]
- 234.Moulinec C, Issa R, Marongiu J-C, Violeau D. Parallel 3-D SPH simulations. Comput. Model. Eng. Sci. 2008;25:133. [Google Scholar]
- 235.Ferrari A, Dumbser M, Toro E F, Armanini A. A new 3D parallel SPH scheme for free surface flows. Comput. Fluids. 2009;38:1203. doi: 10.1016/j.compfluid.2008.11.012. [DOI] [Google Scholar]
- 236.Lia C, Carraro G. A parallel TreeSPH code for galaxy formation. Mon. Not. R. Astron. Soc. 2000;314:145. doi: 10.1046/j.1365-8711.2000.03321.x. [DOI] [Google Scholar]
- 237.Marrone S, Bouscasse B, Colagrossi A, Antuono M. Study of ship wave breaking patterns using 3D parallel SPH simulations. Comput. Fluids. 2012;69:54. doi: 10.1016/j.compfluid.2012.08.008. [DOI] [Google Scholar]
- 238.Crespo A J C, Domínguez J M, Rogers B D, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O. DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH) Comput. Phys. Commun. 2015;187:204. doi: 10.1016/j.cpc.2014.10.004. [DOI] [Google Scholar]
- 239.Valdez-Balderas D, Domínguez J M, Rogers B D, Crespo A J C. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. J. Parallel Distributed Computing. 2013;73:1483. doi: 10.1016/j.jpdc.2012.07.010. [DOI] [Google Scholar]
- 240.Domínguez J M, Crespo A J C, Valdez-Balderas D, Rogers B D, Gómez-Gesteira M. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput. Phys. Commun. 2013;184:1848. doi: 10.1016/j.cpc.2013.03.008. [DOI] [Google Scholar]
- 241.Ji Z, Xu F, Takahashi A, Sun Y. Large scale water entry simulation with smoothed particle hydrodynamics on single- and multi-GPU systems. Comput. Phys. Commun. 2016;209:1. doi: 10.1016/j.cpc.2016.05.016. [DOI] [Google Scholar]
- 242.O’Connor J, Domínguez J M, Rogers B D, Lind S J, Stansby P K. Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. Comput. Phys. Commun. 2022;273:108263. doi: 10.1016/j.cpc.2021.108263. [DOI] [Google Scholar]
- 243.Fu L, Hu X Y, Adams N A. A physics-motivated Centroidal Voronoi Particle domain decomposition method. J. Comput. Phys. 2017;335:718. doi: 10.1016/j.jcp.2017.01.051. [DOI] [Google Scholar]
- 244.Ji Z, Fu L, Hu X Y, Adams N A. A new multi-resolution parallel framework for SPH. Comput. Methods Appl. Mech. Eng. 2019;346:1156. doi: 10.1016/j.cma.2018.09.043. [DOI] [Google Scholar]
- 245.Ji Z, Fu L, Hu X Y, Adams N A. A Lagrangian Inertial Centroidal Voronoi Particle method for dynamic load balancing in particle-based simulations. Comput. Phys. Commun. 2019;239:53. doi: 10.1016/j.cpc.2019.01.011. [DOI] [Google Scholar]
- 246.Ji Z, Fu L, Hu X, Adams N. A consistent parallel isotropic unstructured mesh generation method based on multi-phase SPH. Comput. Methods Appl. Mech. Eng. 2020;363:112881. doi: 10.1016/j.cma.2020.112881. [DOI] [Google Scholar]
- 247.Ji Z, Fu L, Hu X, Adams N. A feature-aware SPH for isotropic unstructured mesh generation. Comput. Methods Appl. Mech. Eng. 2021;375:113634. doi: 10.1016/j.cma.2020.113634. [DOI] [Google Scholar]
- 248.Hernquist L, Katz N. TreeSPH—A unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 1989;70:419. doi: 10.1086/191344. [DOI] [Google Scholar]
- 249.Springel V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 2005;364:1105. doi: 10.1111/j.1365-2966.2005.09655.x. [DOI] [Google Scholar]
- 250.Mokos A, Rogers B D, Stansby P K. A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. J. Hydraulic Res. 2017;55:143. doi: 10.1080/00221686.2016.1212944. [DOI] [Google Scholar]
- 251.Zhang C, Rezavand M, Zhu Y, Yu Y, Wu D, Zhang W, Wang J, Hu X. SPHinXsys: An open-source multi-physics and multiresolution library based on smoothed particle hydrodynamics. Comput. Phys. Commun. 2021;267:108066. doi: 10.1016/j.cpc.2021.108066. [DOI] [Google Scholar]
- 252.Ji Z, Stanic M, Hartono E A, Chernoray V. Numerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) method. Tribol. Int. 2018;127:47. doi: 10.1016/j.triboint.2018.05.034. [DOI] [Google Scholar]
- 253.Incardona P, Leo A, Zaluzhnyi Y, Ramaswamy R, Sbalzarini I F. OpenFPM: A scalable open framework for particle and particle-mesh codes on parallel computers. Comput. Phys. Commun. 2019;241:155. doi: 10.1016/j.cpc.2019.03.007. [DOI] [Google Scholar]
- 254.Amicarelli A, Manenti S, Albano R, Agate G, Paggi M, Longoni L, Mirauda D, Ziane L, Viccione G, Todeschini S, Sole A, Baldini L M, Brambilla D, Papini M, Khellaf M C, Tagliafierro B, Sarno L, Pirovano G. SPHERA v.9.0.0: A computational fluid dynamics research code, based on the smoothed particle hydrodynamics mesh-less method. Comput. Phys. Commun. 2020;250:107157. doi: 10.1016/j.cpc.2020.107157. [DOI] [Google Scholar]
- 255.Wessels H, Weißenfels C, Wriggers P. The neural particle method—An updated Lagrangian physics informed neural network for computational fluid dynamics. Comput. Methods Appl. Mech. Eng. 2020;368:113127. doi: 10.1016/j.cma.2020.113127. [DOI] [Google Scholar]

