Abstract
Synthetic biology provides a new paradigm for life science research (“build to learn”) and opens the future journey of biotechnology (“build to use”). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Keywords: synthetic biology, quantitative synthetic biology, genome synthesis and assembly, DNA storage, molecular evolution, de novo design, computer-aided design, cell engineering, gene circuit, chassis cell, artificial intelligent (AI), biofoundry
Acknowledgements
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB29050100, XDB29050500, XDA24020102) to X.E. Zhang, C. Liu and C. Gao, respectively; the National Natural Science Foundation of China (31725002, 31861143017, 32022044, 62050152 and 32071428) to J. Dai, Y. Yuan, C. You, and X. Wang, respectively; the National Key Research and Development Program of China (2020YFA0907700, 2018YFA0901600, 2019YFA09004500) to Y. Feng and P. Wei. We thank Ms Min Li of the Institute of Biophysics, Chinese Academy of Sciences for her assistance in preparation of the manuscript.
Compliance and ethics The authors declare that they have no conflict of interest.
Contributor Information
Xian-En Zhang, Email: zhangxe@ibp.ac.cn.
Chenli Liu, Email: chenli.liu@siat.ac.cn.
Junbiao Dai, Email: junbiao.dai@siat.ac.cn.
Yingjin Yuan, Email: yjyuan@tju.edu.cn.
Caixia Gao, Email: cxgao@genetics.ac.cn.
Yan Feng, Email: yfeng2009@sjtu.edu.cn.
Bian Wu, Email: wub@im.ac.cn.
Ping Wei, Email: ping.wei@siat.ac.cn.
Chun You, Email: you_c@tib.cas.cn.
Xiaowo Wang, Email: xwwang@tsinghua.edu.cn.
Tong Si, Email: tong.si@siat.ac.cn.
References
- Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–284. doi: 10.1038/nature24049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365:382–386. doi: 10.1126/science.aax7063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Acharya N, Kumar P, Varshney U. Complexes of the uracil-DNA glycosylase inhibitor protein, Ugi, with Mycobacterium smegmatis and Mycobacterium tuberculosis uracil-DNA glycosylases. Microbiology. 2003;149:1647–1658. doi: 10.1099/mic.0.26228-0. [DOI] [PubMed] [Google Scholar]
- Aderem A. Systems biology: its practice and challenges. Cell. 2005;121:511–513. doi: 10.1016/j.cell.2005.04.020. [DOI] [PubMed] [Google Scholar]
- Afriat-Jurnou L, Jackson CJ, Tawfik DS. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry. 2012;51:6047–6055. doi: 10.1021/bi300694t. [DOI] [PubMed] [Google Scholar]
- Agarwal KL, Büchi H, Caruthers MH, Gupta N, Khorana HG, Kleppe K, Kumar A, Ohtsuka E, Rajbhandary UL, Van de Sande JH, et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature. 1970;227:27–34. doi: 10.1038/227027a0. [DOI] [PubMed] [Google Scholar]
- Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem. 2015;26:176–192. doi: 10.1021/bc5004982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA. 2010;107:4004–4009. doi: 10.1073/pnas.0910781107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aharoni A, Thieme K, Chiu CPC, Buchini S, Lairson LL, Chen H, Strynadka NCJ, Wakarchuk WW, Withers SG. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods. 2006;3:609–614. doi: 10.1038/nmeth899. [DOI] [PubMed] [Google Scholar]
- AlQuraishi M. AlphaFold at CASP13. Bioinformatics. 2019;35:4862–4865. doi: 10.1093/bioinformatics/btz422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albayrak C, Swartz JR. Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation. Nucleic Acids Res. 2013;41:5949–5963. doi: 10.1093/nar/gkt226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altan-Bonnet G, Mukherjee R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat Rev Immunol. 2019;19:205–217. doi: 10.1038/s41577-019-0131-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amaral, M.M.F., Frigotto, L., and Hine, A.V. (2017). Beyond the natural proteome: nondegenerate saturation mutagenesis—methodologies and advantages. In: Proteomics, in Biology Part A. Methods in Enzymology. Volume 585. 111–133. [DOI] [PubMed]
- Anavy L, Vaknin I, Atar O, Amit R, Yakhini Z. Data storage in DNA with fewer synthesis cycles using composite DNA letters. Nat Biotechnol. 2019;37:1229–1236. doi: 10.1038/s41587-019-0240-x. [DOI] [PubMed] [Google Scholar]
- Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA, Arkin A P, Keasling JD. BglBricks: a flexible standard for biological part assembly. J Biol Eng. 2010;4:1. doi: 10.1186/1754-1611-4-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson JC, Voigt CA, Arkin AP. Environmental signal integration by a modular AND gate. Mol Syst Biol. 2007;3:133. doi: 10.1038/msb4100173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol. 2016;12:878. doi: 10.15252/msb.20156651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anishchenko I, Baek M, Park H, Hiranuma N, Kim DE, Dauparas J, Mansoor S, Humphreys IR, Baker D. Protein tertiary structure prediction and refinement using deep learning and Rosetta in CASP14. Proteins. 2021;89:1722–1733. doi: 10.1002/prot.26194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anishchenko I, Pellock SJ, Chidyausiku TM, Ramelot TA, Ovchinnikov S, Hao J, Bafna K, Norn C, Kang A, Bera AK, et al. De novo protein design by deep network hallucination. Nature. 2021;600:547–552. doi: 10.1038/s41586-021-04184-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Versai, A. (2019). Data startup Catalog Stores 16 GB of Wikipedia Text onto DNA strands. Available online at https://www.technowize.com/data-startup-catalog-stores-16gb-of-wikipedia-text-onto-dna-strands/.
- Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G, Richardson SM, Dymond JS, Kuang Z, Scheifele LZ, Cooper EM, et al. Total synthesis of a functional designer eukaryotic chromosome. Science. 2014;344:55–58. doi: 10.1126/science.1249252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antkowiak PL, Lietard J, Darestani MZ, Somoza MM, Stark WJ, Heckel R, Grass RN. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction. Nat Commun. 2020;11:5345. doi: 10.1038/s41467-020-19148-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, Levy JM, Mercer JAM, Liu DR. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2021;40:731–740. doi: 10.1038/s41587-021-01133-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–157. doi: 10.1038/s41586-019-1711-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armaroli N, Balzani V. The Hydrogen Issue. ChemSusChem. 2010;4:21–36. doi: 10.1002/cssc.201000182. [DOI] [PubMed] [Google Scholar]
- Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. Consurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010;38:W529–W533. doi: 10.1093/nar/gkq399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–89. doi: 10.1038/nature06450. [DOI] [PubMed] [Google Scholar]
- Au LC, Yang FY, Yang WJ, Lo SH, Kao CF. Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem Biophysl Res Commun. 1998;248:200–203. doi: 10.1006/bbrc.1998.8929. [DOI] [PubMed] [Google Scholar]
- Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–876. doi: 10.1126/science.abj8754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bai X, Meng D, Wei X, Zhou X, Lu F, You C. Facile synthesis of (−)- vibo-quercitol from maltodextrin via an in vitro synthetic enzymatic biosystem. Biotechnol Bioeng. 2019;116:2710–2719. doi: 10.1002/bit.27096. [DOI] [PubMed] [Google Scholar]
- Bancroft C, Bowler T, Bloom B, Clelland CT. Long-term storage of information in DNA. Science. 2001;293:1763–1765. doi: 10.1126/science.293.5536.1763c. [DOI] [PubMed] [Google Scholar]
- Banal JL, Shepherd TR, Berleant J, Huang H, Reyes M, Ackerman CM, Blainey PC, Bathe M. Random access DNA memory using Boolean search in an archival file storage system. Nat Mater. 2021;20:1272–1280. doi: 10.1038/s41563-021-01021-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bang D, Church GM. Gene synthesis by circular assembly amplification. Nat Methods. 2008;5:37–39. doi: 10.1038/nmeth1136. [DOI] [PubMed] [Google Scholar]
- Bano S, Wu X, Zhang X. Towards sustainable agriculture: rhizosphere microbiome engineering. Appl Microbiol Biotechnol. 2021;105:7141–7160. doi: 10.1007/s00253-021-11555-w. [DOI] [PubMed] [Google Scholar]
- Barthel S, Palluk S, Hillson NJ, Keasling JD, Arlow DH. Enhancing terminal deoxynucleotidyl transferase activity on substrates with 3′ terminal structures for enzymatic de novo DNA synthesis. Genes. 2020;11:102. doi: 10.3390/genes11010102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–1712. doi: 10.1126/science.1138140. [DOI] [PubMed] [Google Scholar]
- Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R. A synthetic multicellular system for programmed pattern formation. Nature. 2005;434:1130–1134. doi: 10.1038/nature03461. [DOI] [PubMed] [Google Scholar]
- Bau D, Zhu JY, Strobelt H, Lapedriza A, Zhou B, Torralba A. Understanding the role of individual units in a deep neural network. Proc Natl Acad Sci USA. 2020;117:30071–30078. doi: 10.1073/pnas.1907375117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaucage SL, Caruthers MH. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981;22:1859–1862. doi: 10.1016/S0040-4039(01)90461-7. [DOI] [Google Scholar]
- Bee C, Chen YJ, Queen M, Ward D, Liu X, Organick L, Seelig G, Strauss K, Ceze L. Molecular-level similarity search brings computing to DNA data storage. Nat Commun. 2021;12:4764. doi: 10.1038/s41467-021-24991-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beal J, Goñi-Moreno A, Myers C, Hecht A, de Vicente MDC, Parco M, Schmidt M, Timmis K, Baldwin G, Friedrichs S, et al. The long journey towards standards for engineering biosystems. EMBO Rep. 2020;21:e50521. doi: 10.15252/embr.202050521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beal J, Rogers M. Levels of autonomy in synthetic biology engineering. Mol Syst Biol. 2020;16:e10019. doi: 10.15252/msb.202010019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betton JM. Rapid translation system (RTS): a promising alternative for recombinant protein production. Curr Protein Pept Sci. 2003;4:73–80. doi: 10.2174/1389203033380359. [DOI] [PubMed] [Google Scholar]
- Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM. Low-N protein engineering with data-efficient deep learning. Nat Methods. 2021;18:389–396. doi: 10.1038/s41592-021-01100-y. [DOI] [PubMed] [Google Scholar]
- Boeke JD, Church G, Hessel A, Kelley NJ, Arkin A, Cai Y, Carlson R, Chakravarti A, Cornish VW, Holt L, et al. The genome project-write. Science. 2016;353:126–127. doi: 10.1126/science.aaf6850. [DOI] [PubMed] [Google Scholar]
- Bogard N, Linder J, Rosenberg AB, Seelig G. A deep neural network for predicting and engineering alternative polyadenylation. Cell. 2019;178:91–106.e23. doi: 10.1016/j.cell.2019.04.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollum FJ. Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase. J Biol Chem. 1962;237:1945–1949. doi: 10.1016/S0021-9258(19)73964-7. [DOI] [PubMed] [Google Scholar]
- Borkowski O, Koch M, Zettor A, Pandi A, Batista AC, Soudier P, Faulon JL. Large scale active-learning-guided exploration for in vitro protein production optimization. Nat Commun. 2020;11:1872. doi: 10.1038/s41467-020-15798-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornscheuer UT, Altenbuchner J, Meyer HH. Directed evolution of an esterase: screening of enzyme libraries based on pH-indicators and a growth assay. Bioorg Medicinal Chem. 1999;7:2169–2173. doi: 10.1016/S0968-0896(99)00147-9. [DOI] [PubMed] [Google Scholar]
- Borovkov AY, Loskutov AV, Robida MD, Day KM, Cano JA, Le Olson T, Patel H, Brown K, Hunter PD, Sykes KF. High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides. Nucleic Acids Res. 2010;38:e180. doi: 10.1093/nar/gkq677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brands S, Brass HUC, Klein AS, Pietruszka J, Ruff AJ, Schwaneberg U. A colourimetric high-throughput screening system for directed evolution of prodigiosin ligase pigc. Chem Commun. 2020;56:8631–8634. doi: 10.1039/D0CC02181D. [DOI] [PubMed] [Google Scholar]
- Brini E, Simmerling C, Dill K. Protein storytelling through physics. Science. 2020;370:eaaz3041. doi: 10.1126/science.aaz3041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brower KK, Carswell-Crumpton C, Klemm S, Cruz B, Kim G, Calhoun SGK, Nichols L, Fordyce PM. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery. Lab Chip. 2020;20:2062–2074. doi: 10.1039/D0LC00261E. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant DH, Bashir A, Sinai S, Jain NK, Ogden PJ, Riley PF, Church GM, Colwell LJ, Kelsic ED. Deep diversification of an AAV capsid protein by machine learning. Nat Biotechnol. 2021;39:691–696. doi: 10.1038/s41587-020-00793-4. [DOI] [PubMed] [Google Scholar]
- Budin I, Szostak JW. Physical effects underlying the transition from primitive to modern cell membranes. Proc Natl Acad Sci USA. 2011;108:5249–5254. doi: 10.1073/pnas.1100498108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cadet F, Fontaine N, Li G, Sanchis J, Ng Fuk Chong M, Pandjaitan R, Vetrivel I, Offmann B, Reetz MT. A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes. Sci Rep. 2018;8:16757–16771. doi: 10.1038/s41598-018-35033-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai T, Sun H, Qiao J, Zhu L, Zhang F, Zhang J, Tang Z, Wei X, Yang J, Yuan Q, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science. 2021;373:1523–1527. doi: 10.1126/science.abh4049. [DOI] [PubMed] [Google Scholar]
- Callura JM, Dwyer DJ, Isaacs FJ, Cantor CR, Collins JJ. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci USA. 2010;107:15898–15903. doi: 10.1073/pnas.1009747107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao L, Goreshnik I, Coventry B, Case JB, Miller L, Kozodoy L, Chen RE, Carter L, Walls AC, Park YJ, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science. 2020;370:426–431. doi: 10.1126/science.abd9909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbonell P, Radivojevic T, García Martín H. Opportunities at the intersection of synthetic biology, machine learning, and automation. ACS Synth Biol. 2019;8:1474–1477. doi: 10.1021/acssynbio.8b00540. [DOI] [PubMed] [Google Scholar]
- Ceelen LM, Decostere A, Ducatelle R, Haesebrouck F. Cytolethal distending toxin generates cell death by inducing a bottleneck in the cell cycle. Microbiol Res. 2006;161:109–120. doi: 10.1016/j.micres.2005.04.002. [DOI] [PubMed] [Google Scholar]
- Cella F, Wroblewska L, Weiss R, Siciliano V. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat Commun. 2018;9:4392. doi: 10.1038/s41467-018-06825-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018. doi: 10.1126/science.1072266. [DOI] [PubMed] [Google Scholar]
- Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82. doi: 10.1093/nar/gkr218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ceze L, Nivala J, Strauss K. Molecular digital data storage using DNA. Nat Rev Genet. 2019;20:456–466. doi: 10.1038/s41576-019-0125-3. [DOI] [PubMed] [Google Scholar]
- Chao R, Liang J, Tasan I, Si T, Ju L, Zhao H. Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry. ACS Synth Biol. 2017;6:678–685. doi: 10.1021/acssynbio.6b00293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chao R, Mishra S, Si T, Zhao H. Engineering biological systems using automated biofoundries. Metab Eng. 2017;42:98–108. doi: 10.1016/j.ymben.2017.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charbit A, Boulain JC, Ryter A, Hofnung M. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J. 1986;5:3029–3037. doi: 10.1002/j.1460-2075.1986.tb04602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chau AH, Walter JM, Gerardin J, Tang C, Lim WA. Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell. 2012;151:320–332. doi: 10.1016/j.cell.2012.08.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen K, Kong J, Zhu J, Ermann N, Predki P, Keyser UF. Digital data storage using DNA nanostructures and solid-state nanopores. Nano Lett. 2019;19:1210–1215. doi: 10.1021/acs.nanolett.8b04715. [DOI] [PubMed] [Google Scholar]
- Chen K, Zhu J, Bošković F, Keyser UF. Nanopore-based DNA hard drives for rewritable and secure data storage. Nano Lett. 2020;20:3754–3760. doi: 10.1021/acs.nanolett.0c00755. [DOI] [PubMed] [Google Scholar]
- Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen P F, Chen C, Nelson JW, Newby GA, Sahin M, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021;184:5635–5652.e29. doi: 10.1016/j.cell.2021.09.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen T, Hongdilokkul N, Liu Z, Adhikary R, Tsuen SS, Romesberg FE. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2′-modified DNA. Nat Chem. 2016;8:556–562. doi: 10.1038/nchem.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W, Han M, Zhou J, Ge Q, Wang P, Zhang X, Zhu S, Song L, Yuan Y. An artificial chromosome for data storage. Natl Sci Rev. 2021;8:nwab028. doi: 10.1093/nsr/nwab028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen WG, Huang G, Li BZ, Yin Y, Yuan YJ. DNA information storage for audio and video files. Sci Sin-Vitae. 2020;50:81–85. doi: 10.1360/SSV-2019-0211. [DOI] [Google Scholar]
- Chen Y, Zhang S, Young EM, Jones TS, Densmore D, Voigt C A. Genetic circuit design automation for yeast. Nat Microbiol. 2020;5:1349–1360. doi: 10.1038/s41564-020-0757-2. [DOI] [PubMed] [Google Scholar]
- Chen Z, Boyken SE, Jia M, Busch F, Flores-Solis D, Bick MJ, Lu P, VanAernum ZL, Sahasrabuddhe A, Langan RA, et al. Programmable design of orthogonal protein heterodimers. Nature. 2019;565:106–111. doi: 10.1038/s41586-018-0802-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z, Elowitz MB. Programmable protein circuit design. Cell. 2021;184:2284–2301. doi: 10.1016/j.cell.2021.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z, Kibler RD, Hunt A, Busch F, Pearl J, Jia M, VanAernum ZL, Wicky BIM, Dods G, Liao H, et al. De novo design of protein logic gates. Science. 2020;368:78–84. doi: 10.1126/science.aay2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherkasov A, Hilpert K, Jenssen H, Fjell CD, Waldbrook M, Mullaly SC, Volkmer R, Hancock REW. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol. 2009;4:65–74. doi: 10.1021/cb800240j. [DOI] [PubMed] [Google Scholar]
- Chica RA, Doucet N, Pelletier JN. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol. 2005;16:378–384. doi: 10.1016/j.copbio.2005.06.004. [DOI] [PubMed] [Google Scholar]
- Cho SI, Lee S, Mok YG, Lim K, Lee J, Lee JM, Chung E, Kim JS. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell. 2022;185:1764–1776.e12. doi: 10.1016/j.cell.2022.03.039. [DOI] [PubMed] [Google Scholar]
- Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, Leith A, Daza RM, Martin B, Shendure J. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022;40:218–226. doi: 10.1038/s41587-021-01025-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou CJ, Jenney FE, Jr., Adams MWW, Kelly RM. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng. 2008;10:394–404. doi: 10.1016/j.ymben.2008.06.007. [DOI] [PubMed] [Google Scholar]
- Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, et al. CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cravens A, Jamil OK, Kong D, Sockolosky JT, Smolke CD. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat Commun. 2021;12:1–2. doi: 10.1038/s41467-021-21876-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–761. doi: 10.1534/genetics.110.120717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. Science. 2012;337:1628. doi: 10.1126/science.1226355. [DOI] [PubMed] [Google Scholar]
- Cheng JY. High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer. Nucleic Acids Res. 2002;30:93e–93. doi: 10.1093/nar/gnf092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Channon K, Bromley EHC, Woolfson DN. Synthetic biology through biomolecular design and engineering. Curr Opin Struct Biol. 2008;18:491–498. doi: 10.1016/j.sbi.2008.06.006. [DOI] [PubMed] [Google Scholar]
- Coley CW, Eyke NS, Jensen KF. Autonomous discovery in the chemical sciences part I: progress. Angew Chem Int Ed. 2020;59:22858–22893. doi: 10.1002/anie.201909987. [DOI] [PubMed] [Google Scholar]
- Coley CW, Eyke NS, Jensen KF. Autonomous discovery in the chemical sciences part II: outlook. Angew Chem Int Ed. 2020;59:23414–23436. doi: 10.1002/anie.201909989. [DOI] [PubMed] [Google Scholar]
- Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner M J, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–1027. doi: 10.1126/science.aaq0180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crone MA, Priestman M, Ciechonska M, Jensen K, Sharp DJ, Anand A, Randell P, Storch M, Freemont PS. A role for Biofoundries in rapid development and validation of automated SARS-CoV-2 clinical diagnostics. Nat Commun. 2020;11:4464. doi: 10.1038/s41467-020-18130-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cui Y, Chen Y, Liu X, Dong S, Tian Y, Qiao Y, Mitra R, Han J, Li C, Han X, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 2021;11:1340–1350. doi: 10.1021/acscatal.0c05126. [DOI] [Google Scholar]
- Cui Y, Wang Y, Tian W, Bu Y, Li T, Cui X, Zhu T, Li R, Wu B. Development of a versatile and efficient C-N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nat Catal. 2021;4:364–373. doi: 10.1038/s41929-021-00604-2. [DOI] [Google Scholar]
- Dai J, Boeke JD, Luo Z, Jiang S, Cai Y. Sc3.0: revamping and minimizing the yeast genome. Genome Biol. 2020;21:205. doi: 10.1186/s13059-020-02130-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J. Microvenus. Art J. 1996;55:70–74. doi: 10.1080/00043249.1996.10791743. [DOI] [Google Scholar]
- de la Torre D. Rewriting the genome of Escherichia coli. Cambridge: University of Cambridge; 2020. [Google Scholar]
- Dehouck Y, Kwasigroch JM, Gilis D, Rooman M. Popmusic 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC BioInf. 2011;12:151–162. doi: 10.1186/1471-2105-12-151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol. 2014;3:97–106. doi: 10.1021/sb4001992. [DOI] [PubMed] [Google Scholar]
- de Rond T, Gao J, Zargar A, de Raad M, Cunha J, Northen TR, Keasling JD. A high-throughput mass spectrometric enzyme activity assay enabling the discovery of cytochrome P450 biocatalysts. Angew Chem Int Ed. 2019;58:10114–10119. doi: 10.1002/anie.201901782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng X, Chen L, Hei M, Liu T, Feng Y, Yang GY. Structure-guided reshaping of the acyl binding pocket of ‘TesA thioesterase enhances octanoic acid production in E. coli. Metab Eng. 2020;61:24–32. doi: 10.1016/j.ymben.2020.04.010. [DOI] [PubMed] [Google Scholar]
- Deng ZX. Synthetic biology takes advantage of the golden age, building to know, building to use (in Chinese) Life Sci. 2019;31:323–324. [Google Scholar]
- Dharmadi Y, Patel K, Shapland E, Hollis D, Slaby T, Klinkner N, Dean J, Chandran SS. High-throughput, cost-effective verification of structural DNA assembly. Nucleic Acids Res. 2014;42:e22. doi: 10.1093/nar/gkt1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Divine R, Dang HV, Ueda G, Fallas JA, Vulovic I, Sheffler W, Saini S, Zhao YT, Raj IX, Morawski PA, et al. Designed proteins assemble antibodies into modular nanocages. Science. 2021;372:eabd9994. doi: 10.1126/science.abd9994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong Y, Sun F, Ping Z, Ouyang Q, Qian L. DNA storage: research landscape and future prospects. Natl Sci Rev. 2020;7:1092–1107. doi: 10.1093/nsr/nwaa007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dormitzer PR, Suphaphiphat P, Gibson DG, Wentworth DE, Stockwell TB, Algire MA, Alperovich N, Barro M, Brown D M, Craig S, et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Transl Med. 2013;5:185ra68. doi: 10.1126/scitranslmed.3006368. [DOI] [PubMed] [Google Scholar]
- Dudley QM, Cai YM, Kallam K, Debreyne H, Carrasco Lopez JA, Patron NJ. Biofoundry-assisted expression and characterization of plant proteins. Synth Biol. 2021;6:ysab029. doi: 10.1093/synbio/ysab029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom D L, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature. 2011;477:471–476. doi: 10.1038/nature10403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstein M. Enzymatic DNA synthesis enters new phase. Nat Biotechnol. 2020;38:1113–1115. doi: 10.1038/s41587-020-0695-9. [DOI] [PubMed] [Google Scholar]
- Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403:335–338. doi: 10.1038/35002125. [DOI] [PubMed] [Google Scholar]
- Elowitz M, Lim WA. Build life to understand it. Nature. 2010;468:889–890. doi: 10.1038/468889a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelowski E, Schneider A, Franke M, Xu H, Clemen R, Lang A, Baran P, Binsch C, Knebel B, Al-Hasani H, et al. Synthetic cytokine receptors transmit biological signals using artificial ligands. Nat Commun. 2018;9:2034. doi: 10.1038/s41467-018-04454-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engineering Biology Research Consortium (2019). Engineering biology: a Research Roadmap for the Next-Generation Bioeconomy. Retrieved from https://roadmap.ebrc.org. doi: 10.25498/E4159B.
- Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE. 2008;3:e3647. doi: 10.1371/journal.pone.0003647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Pâques F, Lacroix E. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 2003;31:2952–2962. doi: 10.1093/nar/gkg375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U, Hwa T. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature. 2017;551:119–123. doi: 10.1038/nature24299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erlich Y, Zielinski D. DNA Fountain enables a robust and efficient storage architecture. Science. 2017;355:950–954. doi: 10.1126/science.aaj2038. [DOI] [PubMed] [Google Scholar]
- Exley K, Reynolds CR, Suckling L, Chee SM, Tsipa A, Freemont P S, McClymont D, Kitney RI. Utilising datasheets for the informed automated design and build of a synthetic metabolic pathway. J Biol Eng. 2019;13:8. doi: 10.1186/s13036-019-0141-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fallah-Araghi A, Baret JC, Ryckelynck M, Griffiths AD. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab Chip. 2012;12:882–891. doi: 10.1039/c2lc21035e. [DOI] [PubMed] [Google Scholar]
- Fan C, Deng Q, Zhu TF. Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nat Biotechnol. 2021;39:1548–1555. doi: 10.1038/s41587-021-00969-6. [DOI] [PubMed] [Google Scholar]
- Fan Z, Fang L, Wu L, Wang Z, Wang Y, Han C, Liu X. Improved catalytic activity of a novel aspartate kinase by site-directed saturation mutagenesis. Bioprocess Biosyst Eng. 2022;45:541–551. doi: 10.1007/s00449-021-02677-6. [DOI] [PubMed] [Google Scholar]
- Farzaneh T, Freemont PS. Biofoundries are a nucleating hub for industrial translation. Synth Biol. 2021;6:1–6. doi: 10.1093/synbio/ysab013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faulon JL, Faure L. In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering. Curr Opin Chem Biol. 2021;65:85–92. doi: 10.1016/j.cbpa.2021.06.002. [DOI] [PubMed] [Google Scholar]
- Fernandez-Rodriguez J, Voigt CA. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res. 2016;44:6493–6502. doi: 10.1093/nar/gkw537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisicaro P, Boni C. T and NK cell-based immunotherapy in chronic viral hepatitis and hepatocellular carcinoma. Cells. 2022;11:180. doi: 10.3390/cells11020180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fogeron ML, Badillo A, Jirasko V, Gouttenoire J, Paul D, Lancien L, Moradpour D, Bartenschlager R, Meier BH, Penin F, et al. Wheat germ cell-free expression: two detergents with a low critical micelle concentration allow for production of soluble HCV membrane proteins. Protein Expression Purification. 2015;105:39–46. doi: 10.1016/j.pep.2014.10.003. [DOI] [PubMed] [Google Scholar]
- Fredens J, Wang K, de la Torre D, Funke LFH, Robertson WE, Christova Y, Chia T, Schmied WH, Dunkelmann DL, Beránek V, et al. Total synthesis of Escherichia coli with a recoded genome. Nature. 2019;569:514–518. doi: 10.1038/s41586-019-1192-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu L, Zhang J, Si T. Recent advances in high-throughput mass spectrometry that accelerates enzyme engineering for biofuel research. BMC Energy. 2020;2:1. doi: 10.1186/s42500-020-0011-8. [DOI] [Google Scholar]
- Fujisawa T, Fujinaga S, Atomi H. An In Vitro enzyme system for the production of myo-inositol from starch. Appl Environ Microbiol. 2017;83:e00550. doi: 10.1128/AEM.00550-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Müller C, Kensy F, Büchs J. Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng. 2010;107:497–505. doi: 10.1002/bit.22825. [DOI] [PubMed] [Google Scholar]
- Gao C. Genome engineering for crop improvement and future agriculture. Cell. 2021;184:1621–1635. doi: 10.1016/j.cell.2021.01.005. [DOI] [PubMed] [Google Scholar]
- Gao Y, Chen X, Qiao H, Ke Y, Qi H. Low-bias manipulation of DNA oligo pool for robust data storage. ACS Synth Biol. 2020;9:3344–3352. doi: 10.1021/acssynbio.0c00419. [DOI] [PubMed] [Google Scholar]
- Gao XJ, Chong LS, Kim MS, Elowitz MB. Programmable protein circuits in living cells. Science. 2018;361:1252–1258. doi: 10.1126/science.aat5062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403:339–342. doi: 10.1038/35002131. [DOI] [PubMed] [Google Scholar]
- Garamella J, Marshall R, Rustad M, Noireaux V. The all E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol. 2016;5:344–355. doi: 10.1021/acssynbio.5b00296. [DOI] [PubMed] [Google Scholar]
- Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, Liang L, Wang Z, Zeitoun R, Alexander WG, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol. 2017;35:48–55. doi: 10.1038/nbt.3718. [DOI] [PubMed] [Google Scholar]
- Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109:2579–2586. doi: 10.1073/pnas.1208507109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–471. doi: 10.1038/nature24644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, Edwards A, Gehrke JM, Lee SJ, Liquori AJ, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38:892–900. doi: 10.1038/s41587-020-0491-6. [DOI] [PubMed] [Google Scholar]
- Ghosh E, Dwivedi H, Baidya M, Srivastava A, Kumari P, Stepniewski T, Kim HR, Lee MH, van Gastel J, Chaturvedi M, et al. Conformational sensors and domain swapping reveal structural and functional differences between β-arrestin isoforms. Cell Rep. 2019;28:3287–3299.e6. doi: 10.1016/j.celrep.2019.08.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson DG. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res. 2009;37:6984–6990. doi: 10.1093/nar/gkp687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220. doi: 10.1126/science.1151721. [DOI] [PubMed] [Google Scholar]
- Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison Clyde A, I One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA. 2008;105:20404–20409. doi: 10.1073/pnas.0811011106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–56. doi: 10.1126/science.1190719. [DOI] [PubMed] [Google Scholar]
- Gibson DG, Smith HO, Hutchison CA, III, Venter JC, Merryman C. Chemical synthesis of the mouse mitochondrial genome. Nat Methods. 2010;7:901–903. doi: 10.1038/nmeth.1515. [DOI] [PubMed] [Google Scholar]
- Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, III, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–345. doi: 10.1038/nmeth.1318. [DOI] [PubMed] [Google Scholar]
- Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, Hilvert D. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat Chem Biol. 2013;9:494–498. doi: 10.1038/nchembio.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385:493–502. doi: 10.1056/NEJMoa2107454. [DOI] [PubMed] [Google Scholar]
- Glasgow AA, Huang YM, Mandell DJ, Thompson M, Ritterson R, Loshbaugh AL, Pellegrino J, Krivacic C, Pache RA, Barlow K A, et al. Computational design of a modular protein sense-response system. Science. 2019;366:1024–1028. doi: 10.1126/science.aax8780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature. 2013;494:77–80. doi: 10.1038/nature11875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodsell DS. The molecular perspective: restriction endonucleases. Stem Cells. 2002;20:190–191. doi: 10.1634/stemcells.20-2-190. [DOI] [PubMed] [Google Scholar]
- Gowers GOF, Cameron SJS, Perdones-Montero A, Bell D, Chee S M, Kern M, Tew D, Ellis T, Takáts Z. Off-colony screening of biosynthetic libraries by rapid laser-enabled mass spectrometry. ACS Synth Biol. 2019;8:2566–2575. doi: 10.1021/acssynbio.9b00243. [DOI] [PubMed] [Google Scholar]
- Gowers GOF, Chee SM, Bell D, Suckling L, Kern M, Tew D, McClymont DW, Ellis T. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nat Commun. 2020;11:868. doi: 10.1038/s41467-020-14708-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grass RN, Heckel R, Puddu M, Paunescu D, Stark WJ. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew Chem Int Ed. 2015;54:2552–2555. doi: 10.1002/anie.201411378. [DOI] [PubMed] [Google Scholar]
- Gray DC, Mahrus S, Wells JA. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell. 2010;142:637–646. doi: 10.1016/j.cell.2010.07.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gräwe A, Dreyer A, Vornholt T, Barteczko U, Buchholz L, Drews G, Ho UL, Jackowski ME, Kracht M, Lüders J, et al. A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLoS ONE. 2019;14:e0210940. doi: 10.1371/journal.pone.0210940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23:40–55. doi: 10.1038/s41580-021-00407-0. [DOI] [PubMed] [Google Scholar]
- Guo Y, Dong J, Zhou T, Auxillos J, Li T, Zhang W, Wang L, Shen Y, Luo Y, Zheng Y, et al. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Res. 2015;43:e88. doi: 10.1093/nar/gkv464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guterl JK, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, Philipp A, Haack M, Rühmann B, Koltermann A, et al. Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem. 2012;5:2165–2172. doi: 10.1002/cssc.201200365. [DOI] [PubMed] [Google Scholar]
- Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. 2018;560:248–252. doi: 10.1038/s41586-018-0384-8. [DOI] [PubMed] [Google Scholar]
- HamediRad M, Chao R, Weisberg S, Lian J, Sinha S, Zhao H. Towards a fully automated algorithm driven platform for biosystems design. Nat Commun. 2019;10:5150. doi: 10.1038/s41467-019-13189-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasty J, McMillen D, Collins JJ. Engineered gene circuits. Nature. 2002;420:224–230. doi: 10.1038/nature01257. [DOI] [PubMed] [Google Scholar]
- Han MZ, Chen WG, Song LF, Li BZ, Yuan YJ. DNA information storage: bridging biological and digital world. Synth Biol J. 2021;2:309–322. [Google Scholar]
- Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA. 1997;94:4937–4942. doi: 10.1073/pnas.94.10.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362:839–842. doi: 10.1126/science.aav4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heckel R, Mikutis G, Grass RN. A characterization of the DNA data storage channel. Sci Rep. 2019;9:9663. doi: 10.1038/s41598-019-45832-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandez-Lopez RA, Yu W, Cabral KA, Creasey OA, Lopez Pazmino MDP, Tonai Y, De Guzman A, Mäkelä A, Saksela K, Gartner ZJ, et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science. 2021;371:1166–1171. doi: 10.1126/science.abc1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hervé JC, Derangeon M. Gap-junction-mediated cell-to-cell communication. Cell Tissue Res. 2013;352:21–31. doi: 10.1007/s00441-012-1485-6. [DOI] [PubMed] [Google Scholar]
- Hillson N, Caddick M, Cai Y, Carrasco JA, Chang MW, Curach N C, Bell DJ, Le Feuvre R, Friedman DC, Fu X, et al. Building a global alliance of biofoundries. Nat Commun. 2019;10:2040. doi: 10.1038/s41467-019-10079-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillson NJ, Rosengarten RD, Keasling JD. j5 DNA assembly design automation software. ACS Synth Biol. 2012;1:14–21. doi: 10.1021/sb2000116. [DOI] [PubMed] [Google Scholar]
- Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth Biol. 2014;3:398–409. doi: 10.1021/sb400140t. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoque MA, Zhang Y, Li Z, Cui L, Feng Y. Remodeling enzyme active sites by stepwise loop insertion. Methods Enzymol. 2020;643:111–127. doi: 10.1016/bs.mie.2020.07.008. [DOI] [PubMed] [Google Scholar]
- Hori Y, Kantak C, Murray RM, Abate AR. Cell-free extract based optimization of biomolecular circuits with droplet microfluidics. Lab Chip. 2017;17:3037–3042. doi: 10.1039/C7LC00552K. [DOI] [PubMed] [Google Scholar]
- Hu CY, Takahashi MK, Zhang Y, Lucks JB. Engineering a functional small RNA negative autoregulation network with model-guided design. ACS Synth Biol. 2018;7:1507–1518. doi: 10.1021/acssynbio.7b00440. [DOI] [PubMed] [Google Scholar]
- Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H. A backbone-centred energy function of neural networks for protein design. Nature. 2022;602:523–528. doi: 10.1038/s41586-021-04383-5. [DOI] [PubMed] [Google Scholar]
- Huang K, Xiao C, Glass LM, Critchlow CW, Gibson G, Sun J. Machine learning applications for therapeutic tasks with genomics data. Patterns. 2021;2:100328. doi: 10.1016/j.patter.2021.100328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang PS, Boyken SE, Baker D. The coming of age of de novo protein design. Nature. 2016;537:320–327. doi: 10.1038/nature19946. [DOI] [PubMed] [Google Scholar]
- Hughes RA, Ellington AD. Synthetic DNA Synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect Biol. 2017;9:a023812. doi: 10.1101/cshperspect.a023812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes RA, Miklos AE, Ellington AD. Gene synthesis: methods and applications. Methods Enzymol. 2011;498:277–309. doi: 10.1016/B978-0-12-385120-8.00012-7. [DOI] [PubMed] [Google Scholar]
- Hunt JP, Zhao EL, Free TJ, Soltani M, Warr CA, Benedict AB, Takahashi MK, Griffitts JS, Pitt WG, Bundy BC. Towards detection of SARS-CoV-2 RNA in human saliva: a paper-based cell-free toehold switch biosensor with a visual bioluminescent output. New Biotechnol. 2022;66:53–60. doi: 10.1016/j.nbt.2021.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchison CA, III, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351:aad6253. doi: 10.1126/science.aad6253. [DOI] [PubMed] [Google Scholar]
- Im DJ, Jeong SN, Yoo BS, Kim B, Kim DP, Jeong WJ, Kang IS. Digital microfluidic approach for efficient electroporation with high productivity: transgene expression of microalgae without cell wall removal. Anal Chem. 2015;87:6592–6599. doi: 10.1021/acs.analchem.5b00725. [DOI] [PubMed] [Google Scholar]
- Ip K, Yadin R, George KW. High-throughput DNA assembly using yeast homologous recombination. Methods Mol Biol. 2020;2205:79–89. doi: 10.1007/978-1-0716-0908-8_5. [DOI] [PubMed] [Google Scholar]
- Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itaya M, Fujita K, Kuroki A, Tsuge K. Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods. 2008;5:41–43. doi: 10.1038/nmeth1143. [DOI] [PubMed] [Google Scholar]
- Itaya M, Tsuge K, Koizumi M, Fujita K. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA. 2005;102:15971–15976. doi: 10.1073/pnas.0503868102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13:370–383. doi: 10.1038/nrclinonc.2016.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R, Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–1575. doi: 10.1046/j.1365-2958.2002.02839.x. [DOI] [PubMed] [Google Scholar]
- Jaroentomeechai T, Stark JC, Natarajan A, Glasscock CJ, Yates LE, Hsu KJ, Mrksich M, Jewett MC, DeLisa MP. Author Correction: Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat Commun. 2018;9:3396. doi: 10.1038/s41467-018-05620-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang S, Tang Y, Xiang L, Zhu X, Cai Z, Li L, Chen Y, Chen P, Feng Y, Lin X, et al. Efficient de novo assembly and modification of large DNA fragments. Sci China Life Sci. 2022;65:1445–1455. doi: 10.1007/s11427-021-2029-0. [DOI] [PubMed] [Google Scholar]
- Jiang S, Zhao S, Cai Z, Tang Y, Dai J. Synthetic yeast genomes for studying chromosomal features. Curr Opin Syst Biol. 2020;23:1–7. doi: 10.1016/j.coisb.2020.09.001. [DOI] [Google Scholar]
- Jiang S, Si T, Dai J. Whole-genome regulation for yeast metabolic engineering. Small Methods. 2020;4:1900640. doi: 10.1002/smtd.201900640. [DOI] [Google Scholar]
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, ZŽdek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones TS, Oliveira SMD, Myers CJ, Voigt CA, Densmore D. Genetic circuit design automation with Cello 2.0. Nat Protoc. 2022;17:1097–1113. doi: 10.1038/s41596-021-00675-2. [DOI] [PubMed] [Google Scholar]
- Junge F, Haberstock S, Roos C, Stefer S, Proverbio D, Dötsch V, Bernhard F. Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. New Biotechnol. 2011;28:262–271. doi: 10.1016/j.nbt.2010.07.002. [DOI] [PubMed] [Google Scholar]
- Jürgens C, Strom A, Wegener D, Hettwer S, Wilmanns M, Sterner R. Directed evolution of a (βα)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc Natl Acad Sci USA. 2000;97:9925–9930. doi: 10.1073/pnas.160255397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kai L, Schwille P. Cell-free protein synthesis and its perspectives for assembling cells from the bottom-up. Adv Biosyst. 2019;3:e1800322. doi: 10.1002/adbi.201800322. [DOI] [PubMed] [Google Scholar]
- Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang S. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proc Natl Acad Sci USA. 2008;105:15726–15731. doi: 10.1073/pnas.0804766105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kan SBJ, Lewis RD, Chen K, Arnold FH. Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life. Science. 2016;354:1048–1051. doi: 10.1126/science.aah6219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanigowska P, Shen Y, Zheng Y, Rosser S, Cai Y. Smart DNA fabrication using sound waves: applying acoustic dispensing technologies to synthetic biology. SLAS Tech. 2016;21:49–56. doi: 10.1177/2211068215593754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karas BJ, Molparia B, Jablanovic J, Hermann WJ, Lin YC, Dupont CL, Tagwerker C, Yonemoto IT, Noskov VN, Chuang RY, et al. Assembly of eukaryotic algal chromosomes in yeast. J Biol Eng. 2013;7:30. doi: 10.1186/1754-1611-7-30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karim AS, Dudley QM, Juminaga A, Yuan Y, Crowe SA, Heggestad JT, Garg S, Abdalla T, Grubbe WS, Rasor BJ, et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat Chem Biol. 2020;16:912–919. doi: 10.1038/s41589-020-0559-0. [DOI] [PubMed] [Google Scholar]
- Karim AS, Jewett MC. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab Eng. 2016;36:116–126. doi: 10.1016/j.ymben.2016.03.002. [DOI] [PubMed] [Google Scholar]
- Katrekar D, Yen J, Xiang Y, Saha A, Meluzzi D, Savva Y, Mali P. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat Biotechnol. 2022;40:938–945. doi: 10.1038/s41587-021-01171-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kather I, Jakob RP, Dobbek H, Schmid FX. Increased folding stability of TEM-1 β-lactamase by in vitro selection. J Mol Biol. 2008;383:238–251. doi: 10.1016/j.jmb.2008.07.082. [DOI] [PubMed] [Google Scholar]
- Khan S, Hauptman R, Kelly L. Engineering the microbiome to prevent adverse events: challenges and opportunities. Annu Rev Pharmacol Toxicol. 2021;61:159–179. doi: 10.1146/annurev-pharmtox-031620-031509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khorana HG, Buuchi H, Ghosh H, Gupta N, Jacob TM, Kossel H, Morgan R, Narang SA, Ohtsuka E, Wells RD. Polynucleotide synthesis and the genetic code. Cold Spring Harbor Symposia Quantit Biol. 1966;31:39–49. doi: 10.1101/SQB.1966.031.01.010. [DOI] [PubMed] [Google Scholar]
- Kiel C, Yus E, Serrano L. Engineering signal transduction pathways. Cell. 2010;140:33–47. doi: 10.1016/j.cell.2009.12.028. [DOI] [PubMed] [Google Scholar]
- Kim DY, Lee JM, Moon SB, Chin HJ, Park S, Lim Y, Kim D, Koo T, Ko JH, Kim YS. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol. 2022;40:94–102. doi: 10.1038/s41587-021-01009-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim JY, Yoo HW, Lee PG, Lee SG, Seo JH, Kim BG. In vivo protein evolution, next generation protein engineering strategy: from random approach to target-specific approach. Biotechnol Bioproc E. 2019;24:85–94. doi: 10.1007/s12257-018-0394-2. [DOI] [Google Scholar]
- Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156–1160. doi: 10.1073/pnas.93.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitano H. Nobel Turing Challenge: creating the engine for scientific discovery. npj Syst Biol Appl. 2021;7:29. doi: 10.1038/s41540-021-00189-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38:947–953. doi: 10.1038/s41587-020-0462-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koblan LW, Erdos MR, Wilson C, Cabral WA, Levy JM, Xiong ZM, Tavarez UL, Davison LM, Gete YG, Mao X, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature. 2021;589:608–614. doi: 10.1038/s41586-020-03086-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch J, Gantenbein S, Masania K, Stark WJ, Erlich Y, Grass R N. A DNA-of-things storage architecture to create materials with embedded memory. Nat Biotechnol. 2020;38:39–43. doi: 10.1038/s41587-019-0356-z. [DOI] [PubMed] [Google Scholar]
- Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–424. doi: 10.1038/nature17946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. 2017;3:eaao4774. doi: 10.1126/sciadv.aao4774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konno N, Kijima Y, Watano K, Ishiguro S, Ono K, Tanaka M, Mori H, Masuyama N, Pratt D, Ideker T, et al. Deep distributed computing to reconstruct extremely large lineage trees. Nat Biotechnol. 2022;40:566–575. doi: 10.1038/s41587-021-01111-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosuri S, Church GM. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods. 2014;11:499–507. doi: 10.1038/nmeth.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosuri S, Eroshenko N, Leproust EM, Super M, Way J, Li JB, Church GM. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol. 2010;28:1295–1299. doi: 10.1038/nbt.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kotopka BJ, Smolke CD. Model-driven generation of artificial yeast promoters. Nat Commun. 2020;11:2113. doi: 10.1038/s41467-020-15977-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. Int Rev Cell Mol Biol. 2019;348:69–121. doi: 10.1016/bs.ircmb.2019.07.005. [DOI] [PubMed] [Google Scholar]
- Krokan HE, Drabløs F, Slupphaug G. Uracil in DNA—occurrence, consequences and repair. Oncogene. 2002;21:8935–8948. doi: 10.1038/sj.onc.1205996. [DOI] [PubMed] [Google Scholar]
- Kung Y T, Du Y C, Huang W T, Chen C C, Ke L T, Hu S C, Jiang RQ, Chu SQ, Niu CI, Hsu JZ, et al. Total synthesis of crystalline bovine insulin. Sci Sin. 1965;14:1710–1716. [PubMed] [Google Scholar]
- Lapidot Y, De Groot N, Rappoport S, Elat D. Peptidyl transfer RNA VIII. The chemical synthesis of glycine and alanine containing oligopeptidyl transfer RNA. Biochim Biophys Acta (BBA)-Nucleic Acids Protein Synthesis. 1969;190:304–311. doi: 10.1016/0005-2787(69)90081-1. [DOI] [PubMed] [Google Scholar]
- Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–2786. doi: 10.1021/ci200227u. [DOI] [PubMed] [Google Scholar]
- Lau YH, Stirling F, Kuo J, Karrenbelt MAP, Chan YA, Riesselman A, Horton CA, Schäfer E, Lips D, Weinstock MT, et al. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res. 2017;45:6971–6980. doi: 10.1093/nar/gkx415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, Peisert S, Kim J, Simmons BA, Petzold CJ, et al. Machine learning for metabolic engineering: a review. Metab Eng. 2021;63:34–60. doi: 10.1016/j.ymben.2020.10.005. [DOI] [PubMed] [Google Scholar]
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. [DOI] [PubMed] [Google Scholar]
- Lee H, Wiegand DJ, Griswold K, Punthambaker S, Chun H, Kohman RE, Church GM. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nat Commun. 2020;11:5246. doi: 10.1038/s41467-020-18681-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee HH, Kalhor R, Goela N, Bolot J, Church GM. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun. 2019;10:2383. doi: 10.1038/s41467-019-10258-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF, Aprahamian M, Baker D, Barlow KA, Barth P, et al. Macromolecular modeling and design in rosetta: recent methods and frameworks. Nat Methods. 2020;17:665–680. doi: 10.1038/s41592-020-0848-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li G, Dong Y, Reetz MT. Can machine learning revolutionize directed evolution of selective enzymes? Adv Synth Catal. 2019;361:2377–2386. [Google Scholar]
- Li H, d’Anjou M. Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol. 2009;20:678–684. doi: 10.1016/j.copbio.2009.10.009. [DOI] [PubMed] [Google Scholar]
- Li JH, Mutanda I, Wang K, Yang L, Wang J, Wang Y. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nat Commun. 2019;10:4850. doi: 10.1038/s41467-019-12879-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li MV, Shukla D, Rhodes BH, Lall A, Shu J, Moriarity BS, Largaespada DA. HomeRun Vector Assembly System: a flexible and standardized cloning system for assembly of multi-modular DNA constructs. PLoS ONE. 2014;9:e100948. doi: 10.1371/journal.pone.0100948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li MZ, Elledge SJ. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods. 2007;4:251–256. doi: 10.1038/nmeth1010. [DOI] [PubMed] [Google Scholar]
- Li S, Lin D, Zhang Y, Deng M, Chen Y, Lv B, Li B, Lei Y, Wang Y, Zhao L, et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature. 2022;602:455–460. doi: 10.1038/s41586-022-04395-9. [DOI] [PubMed] [Google Scholar]
- Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol. 2011;91:577–589. doi: 10.1007/s00253-011-3280-9. [DOI] [PubMed] [Google Scholar]
- Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39:359–372. doi: 10.1093/nar/gkq704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y, Shi T, Han P, You C. Thermodynamics-driven production of value-addedd-allulose from inexpensive starch by an In Vitro enzymatic synthetic biosystem. ACS Catal. 2021;11:5088–5099. doi: 10.1021/acscatal.0c05718. [DOI] [Google Scholar]
- Liang F, Han M, Romanienko PJ, Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA. 1998;95:5172–5177. doi: 10.1073/pnas.95.9.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang L, Liu R, Garst AD, Lee T, Nogué VSI, Beckham GT, Gill RT. CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab Eng. 2017;41:1–10. doi: 10.1016/j.ymben.2017.02.009. [DOI] [PubMed] [Google Scholar]
- Lim WA, Lee CM, Tang C. Design principles of regulatory networks: searching for the molecular algorithms of the cell. Mol Cell. 2013;49:202–212. doi: 10.1016/j.molcel.2012.12.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindenburg LH, Pantelejevs T, Gielen F, Zuazua-Villar P, Butz M, Rees E, Kaminski CF, Downs JA, Hyvönen M, Hollfelder F. Improved RAD51 binders through motif shuffling based on the modularity of BRC repeats. Proc Natl Acad Sci USA. 2021;118:e2017708118. doi: 10.1073/pnas.2017708118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, et al. Prime genome editing in rice and wheat. Nat Biotechnol. 2020;38:582–585. doi: 10.1038/s41587-020-0455-x. [DOI] [PubMed] [Google Scholar]
- Lin Q, Jin S, Zong Y, Yu H, Zhu Z, Liu G, Kou L, Wang Y, Qiu JL, Li J, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol. 2021;39:923–927. doi: 10.1038/s41587-021-00868-w. [DOI] [PubMed] [Google Scholar]
- Liu CL, Fu XF, Liu L, Ren X, Chau CKL, Li S, Xiang L, Zeng H, Chen G, Tang LH, et al. Sequential establishment of stripe patterns in an expanding cell population. Science. 2011;334:238–241. doi: 10.1126/science.1209042. [DOI] [PubMed] [Google Scholar]
- Liu CL, Fu X, Huang JD. Synthetic biology: a new approach to study biological pattern formation. Quant Biol. 2013;1:246–252. doi: 10.1007/s40484-013-0021-3. [DOI] [Google Scholar]
- Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. 2019;566:218–223. doi: 10.1038/s41586-019-0908-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y, Qiu L, Huang J, Zhao B, Wang Z, Zhu X, Gao Y, Shu Z. Screening for mutants with thermostabe lipase a from Burkholderia sp. Acta Microbiol Sin. 2015;55:748–754. [PubMed] [Google Scholar]
- Liu JK, Chen WH, Ren SX, Zhao GP, Wang J. iBrick: a new standard for iterative assembly of biological parts with homing endonucleases. PLoS ONE. 2014;9:e110852. doi: 10.1371/journal.pone.0110852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu W, Cremer J, Li D, Hwa T, Liu CL. An evolutionarily stable strategy to colonize spatially extended habitats. Nature. 2019;575:664–668. doi: 10.1038/s41586-019-1734-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu H, Diaz DJ, Czarnecki NJ, Zhu C, Kim W, Shroff R, Acosta D J, Alexander BR, Cole HO, Zhang Y, et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature. 2022;604:662–667. doi: 10.1038/s41586-022-04599-z. [DOI] [PubMed] [Google Scholar]
- Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, Zhang Y, Grzybowski AT, Harth S, Lin W, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature. 2019;567:123–126. doi: 10.1038/s41586-019-0978-9. [DOI] [PubMed] [Google Scholar]
- Luo Z, Hoffmann SA, Jiang S, Cai Y, Dai J. Probing eukaryotic genome functions with synthetic chromosomes. Exp Cell Res. 2020;390:111936. doi: 10.1016/j.yexcr.2020.111936. [DOI] [PubMed] [Google Scholar]
- Luo Z, Yang Q, Geng B, Jiang S, Yang S, Li X, Cai Y, Dai J. Whole genome engineering by synthesis. Sci China Life Sci. 2018;61:1515–1527. doi: 10.1007/s11427-018-9403-y. [DOI] [PubMed] [Google Scholar]
- Luo Z, Yu K, Xie S, Monti M, Schindler D, Fang Y, Zhao S, Liang Z, Jiang S, Luan M, et al. Compacting a synthetic yeast chromosome arm. Genome Biol. 2021;22:5. doi: 10.1186/s13059-020-02232-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lutz S. Beyond directed evolution—semi-rational protein engineering and design. Curr Opin Biotechnol. 2010;21:734–743. doi: 10.1016/j.copbio.2010.08.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma D, Li Y, Wu K, Yan Z, Tang AA, Chaudhary S, Ticktin ZM, Alcantar-Fernandez J, Moreno-Camacho JL, Campos-Romero A, et al. Multi-arm RNA junctions encoding molecular logic unconstrained by input sequence for versatile cell-free diagnostics. Nat Biomed Eng. 2022;6:298–309. doi: 10.1038/s41551-022-00857-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma D, Shen L, Wu K, Diehnelt CW, Green AA. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth Biol. 2018;3:ysy018. doi: 10.1093/synbio/ysy018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma F, Chung MT, Yao Y, Nidetz R, Lee LM, Liu AP, Feng Y, Kurabayashi K, Yang GY. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform. Nat Commun. 2018;9:1030–1037. doi: 10.1038/s41467-018-03492-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma W, Trusina A, El-Samad H, Lim WA, Tang C. Defining network topologies that can achieve biochemical adaptation. Cell. 2009;138:760–773. doi: 10.1016/j.cell.2009.06.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Y, Budde MW, Mayalu MN, Zhu J, Lu AC, Murray RM, Elowitz MB. Synthetic mammalian signaling circuits for robust cell population control. Cell. 2022;185:967–979.e12. doi: 10.1016/j.cell.2022.01.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malhotra OP, Ambasht PK, Prabhakar P, Lal AK, Kayastha A M. An assay procedure for determining the rate of an enzyme reaction lacking an optical signal: validity of coupled enzyme assays. Biochem Education. 1996;24:56–59. doi: 10.1016/0307-4412(95)00102-6. [DOI] [Google Scholar]
- Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Corrêa IR, Romesberg FE. A semi-synthetic organism with an expanded genetic alphabet. Nature. 2014;509:385–388. doi: 10.1038/nature13314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–826. doi: 10.1126/science.1232033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322:1843–1845. doi: 10.1126/science.1165771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martella A, Matjusaitis M, Auxillos J, Pollard SM, Cai Y. EMMA: an extensible mammalian modular assembly toolkit for the rapid design and production of diverse expression vectors. ACS Synth Biol. 2017;6:1380–1392. doi: 10.1021/acssynbio.7b00016. [DOI] [PubMed] [Google Scholar]
- Martin RW, Des Soye BJ, Kwon YC, Kay J, Davis RG, Thomas P M, Majewska NI, Chen CX, Marcum RD, Weiss MG, et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun. 2018;9:1203. doi: 10.1038/s41467-018-03469-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthies D, Haberstock S, Joos F, Dötsch V, Vonck J, Bernhard F, Meier T. Cell-free expression and assembly of ATP synthase. J Mol Biol. 2011;413:593–603. doi: 10.1016/j.jmb.2011.08.055. [DOI] [PubMed] [Google Scholar]
- Meiser LC, Antkowiak PL, Koch J, Chen WD, Kohll AX, Stark WJ, Heckel R, Grass RN. Reading and writing digital data in DNA. Nat Protoc. 2020;15:86–101. doi: 10.1038/s41596-019-0244-5. [DOI] [PubMed] [Google Scholar]
- Meiser LC, Nguyen BH, Chen YJ, Nivala J, Strauss K, Ceze L, Grass RN. Synthetic DNA applications in information technology. Nat Commun. 2022;13:352. doi: 10.1038/s41467-021-27846-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meng D, Wei X, Bai X, Zhou W, You C. Artificial in vitro synthetic enzymatic biosystem for the one-pot sustainable biomanufacturing of glucosamine from starch and inorganic ammonia. ACS Catal. 2020;10:13809–13819. doi: 10.1021/acscatal.0c03767. [DOI] [Google Scholar]
- Merkle T, Merz S, Reautschnig P, Blaha A, Li Q, Vogel P, Wettengel J, Li JB, Stafforst T. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol. 2019;37:133–138. doi: 10.1038/s41587-019-0013-6. [DOI] [PubMed] [Google Scholar]
- Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. [DOI] [PubMed] [Google Scholar]
- Miller TE, Beneyton T, Schwander T, Diehl C, Girault M, McLean R, Chotel T, Claus P, Cortina NS, Baret JC, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science. 2020;368:649–654. doi: 10.1126/science.aaz6802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller SM, Wang T, Liu DR. Phage-assisted continuous and non-continuous evolution. Nat Protoc. 2020;15:4101–4127. doi: 10.1038/s41596-020-00410-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang T P, Matuszek Z, Newby GA, Rees HA, Liu DR. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat Biotechnol. 2020;38:471–481. doi: 10.1038/s41587-020-0412-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu FS, Radey MC, Peterson SB, Mootha VK, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–637. doi: 10.1038/s41586-020-2477-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore CL, Papa Iii LJ, Shoulders MD. A processive protein chimera introduces mutations across defined DNA regions in vivo. J Am Chem Soc. 2018;140:11560–11564. doi: 10.1021/jacs.8b04001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore JK, Haber JE. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16:2164–2173. doi: 10.1128/MCB.16.5.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore SJ, MacDonald JT, Wienecke S, Ishwarbhai A, Tsipa A, Aw R, Kylilis N, Bell DJ, McClymont DW, Jensen K, et al. Rapid acquisition and model-based analysis of cell-free transcriptiontranslation reactions from nonmodel bacteria. Proc Natl Acad Sci USA. 2018;115:E4340–E4349. doi: 10.1073/pnas.1715806115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morís-Varas F, Shah A, Aikens J, Nadkarni NP, Rozzell JD, Demirjian DC. Visualization of enzyme-catalyzed reactions using pH indicators: rapid screening of hydrolase libraries and estimation of the enantioselectivity. Bioorg Medicinal Chem. 1999;7:2183–2188. doi: 10.1016/S0968-0896(99)00149-2. [DOI] [PubMed] [Google Scholar]
- Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, Lim WA. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell. 2016;164:780–791. doi: 10.1016/j.cell.2016.01.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science. 2005;308:414–415. doi: 10.1126/science.1108451. [DOI] [PubMed] [Google Scholar]
- Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto C R, Li Y, Sheppard-Tillman H, Porter SN, Yao Y, Mayberry K, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. 2021;595:295–302. doi: 10.1038/s41586-021-03609-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA. Genetic circuit design automation. Science. 2016;352:aac7341. doi: 10.1126/science.aac7341. [DOI] [PubMed] [Google Scholar]
- Nelson JW, Randolph PB, Shen SP, Everette KA, Chen PJ, Anzalone AV, An M, Newby GA, Chen JC, Hsu A, et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol. 2022;40:402–410. doi: 10.1038/s41587-021-01039-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neugebauer ME, Kissman EN, Marchand JA, Pelton JG, Sambold NA, Millar DC, Chang MCY. Reaction pathway engineering converts a radical hydroxylase into a halogenase. Nat Chem Biol. 2021;18:171–179. doi: 10.1038/s41589-021-00944-x. [DOI] [PubMed] [Google Scholar]
- Nirantar SR. Directed evolution methods for enzyme engineering. Molecules. 2021;26:5599–5612. doi: 10.3390/molecules26185599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361:1259–1262. doi: 10.1126/science.aas9129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niu C, Zhu L, Xu X, Li Q. Rational design of thermostability in bacterial 1,3–1,4-β-glucanases through spatial compartmentalization of mutational hotspots. Appl Microbiol Biotechnol. 2016;101:1085–1097. doi: 10.1007/s00253-016-7826-8. [DOI] [PubMed] [Google Scholar]
- Noireaux V, Bar-Ziv R, Libchaber A. Principles of cell-free genetic circuit assembly. Proc Natl Acad Sci USA. 2003;100:12672–12677. doi: 10.1073/pnas.2135496100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberortner E, Evans R, Meng X, Nath S, Plahar H, Simirenko L, Tarver A, Deutsch S, Hillson NJ, Cheng JF. An integrated computer-aided design and manufacturing workflow for synthetic biology. Methods Mol Biol. 2020;2205:3–18. doi: 10.1007/978-1-0716-0908-8_1. [DOI] [PubMed] [Google Scholar]
- Ofran Y, Rost B. Protein-protein interaction hotspots carved into sequences. PLoS Comput Biol. 2007;3:e119. doi: 10.1371/journal.pcbi.0030119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Organick L, Ang SD, Chen YJ, Lopez R, Yekhanin S, Makarychev K, Racz MZ, Kamath G, Gopalan P, Nguyen B, et al. Random access in large-scale DNA data storage. Nat Biotechnol. 2018;36:242–248. doi: 10.1038/nbt.4079. [DOI] [PubMed] [Google Scholar]
- Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano MG, Moosburner M, et al. Design, synthesis, and testing toward a 57-codon genome. Science. 2016;353:819–822. doi: 10.1126/science.aaf3639. [DOI] [PubMed] [Google Scholar]
- Oza JP, Aerni HR, Pirman NL, Barber KW, Ter Haar CM, Rogulina S, Amrofell MB, Isaacs FJ, Rinehart J, Jewett MC. Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat Commun. 2015;6:8168. doi: 10.1038/ncomms9168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Özcan A, Krajeski R, Ioannidi E, Lee B, Gardner A, Makarova KS, Koonin EV, Abudayyeh OO, Gootenberg JS. Programmable RNA targeting with the single-protein CRISPR effector Cas7–11. Nature. 2021;597:720–725. doi: 10.1038/s41586-021-03886-5. [DOI] [PubMed] [Google Scholar]
- Palluk S, Arlow DH, de Rond T, Barthel S, Kang JS, Bector R, Baghdassarian HM, Truong AN, Kim PW, Singh AK, et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol. 2018;36:645–650. doi: 10.1038/nbt.4173. [DOI] [PubMed] [Google Scholar]
- Panganiban B, Qiao B, Jiang T, DelRe C, Obadia MM, Nguyen T D, Smith AAA, Hall A, Sit I, Crosby MG, et al. Random heteropolymers preserve protein function in foreign environments. Science. 2018;359:1239–1243. doi: 10.1126/science.aao0335. [DOI] [PubMed] [Google Scholar]
- Panwar HS, Ojha H, Ghosh P, Raut S, Sahu A. Domain swapping reveals functional modularity present in the decay-accelerating factor (CD55) Immunobiology. 2016;221:1181–1182. doi: 10.1016/j.imbio.2016.06.128. [DOI] [Google Scholar]
- Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ. Paper-based synthetic gene networks. Cell. 2014;159:940–954. doi: 10.1016/j.cell.2014.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee J W, Ferrante T, Ma D, Donghia N, Fan M, et al. Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell. 2016;165:1255–1266. doi: 10.1016/j.cell.2016.04.059. [DOI] [PubMed] [Google Scholar]
- Pardee K, Slomovic S, Nguyen PQ, Lee JW, Donghia N, Burrill D, Ferrante T, McSorley FR, Furuta Y, Vernet A, et al. Portable, on-demand biomolecular manufacturing. Cell. 2016;167:248–259.e12. doi: 10.1016/j.cell.2016.09.013. [DOI] [PubMed] [Google Scholar]
- Park G, Colot HV, Collopy PD, Krystofova S, Crew C, Ringelberg C, Litvinkova L, Altamirano L, Li L, Curilla S, et al. High-throughput production of gene replacement mutants in Neurospora crassa. Methods Mol Biol. 2011;722:179–189. doi: 10.1007/978-1-61779-040-9_13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z, Cress BF, Knott GJ, Jacobsen SE, Banfield JF, Doudna JA. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science. 2020;369:333–337. doi: 10.1126/science.abb1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez JG, Stark JC, Jewett MC. Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harb Perspect Biol. 2016;8:a023853. doi: 10.1101/cshperspect.a023853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ping Z, Chen S, Zhou G, Huang X, Zhu SJ, Zhang H, Lee HH, Lan Z, Cui J, Chen T, et al. Towards practical and robust DNA-based data archiving using the yin-yang codec system. Nat Comput Sci. 2022;2:234–242. doi: 10.1038/s43588-022-00231-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ping Z, Ma D, Huang X, Chen S, Liu L, Guo F, Zhu SJ, Shen Y. Carbon-based archiving: current progress and future prospects of DNA-based data storage. GigaScience. 2019;8:giz075. doi: 10.1093/gigascience/giz075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian S, Clomburg JM, Gonzalez R. Engineering Escherichia coli as a platform for the in vivo synthesis of prenylated aromatics. Biotechnol Bioeng. 2019;116:1116–1127. doi: 10.1002/bit.26932. [DOI] [PubMed] [Google Scholar]
- Qu G, Li A, Acevedo-Rocha CG, Sun Z, Reetz MT. The crucial role of methodology development in directed evolution of selective enzymes. Angew Chem Int Ed. 2020;59:13204–13231. doi: 10.1002/anie.201901491. [DOI] [PubMed] [Google Scholar]
- Qu L, Yi Z, Zhu S, Wang C, Cao Z, Zhou Z, Yuan P, Yu Y, Tian F, Liu Z, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol. 2019;37:1059–1069. doi: 10.1038/s41587-019-0178-z. [DOI] [PubMed] [Google Scholar]
- Quan J, Saaem I, Tang N, Ma S, Negre N, Gong H, White KP, Tian J. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol. 2011;29:449–452. doi: 10.1038/nbt.1847. [DOI] [PubMed] [Google Scholar]
- Quan J, Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE. 2009;4:e6441. doi: 10.1371/journal.pone.0006441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quan J, Tian J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc. 2011;6:242–251. doi: 10.1038/nprot.2010.181. [DOI] [PubMed] [Google Scholar]
- Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 2016;44:e107. doi: 10.1093/nar/gkw226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken S E, Lajoie MJ, Cao L, Chow CM, Miranda MC, et al. De novo design of modular and tunable protein biosensors. Nature. 2021;591:482–487. doi: 10.1038/s41586-021-03258-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–191. doi: 10.1038/nature14299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radivojević T, Costello Z, Workman K, Garcia Martin H. A machine learning Automated Recommendation Tool for synthetic biology. Nat Commun. 2020;11:4879. doi: 10.1038/s41467-020-18008-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajakumar PD, Gowers GOF, Suckling L, Foster A, Ellis T, Kitney RI, McClymont DW, Freemont PS. Rapid prototyping platform for Saccharomyces cerevisiae using computer-aided genetic design enabled by parallel software and workcell platform development. SLAS Tech. 2019;24:291–297. doi: 10.1177/2472630318798304. [DOI] [PubMed] [Google Scholar]
- Ratner M. Celgene wagers on Sutro’s cell-free platform to ramp up bispecifics. Nat Biotechnol. 2014;32:1175. doi: 10.1038/nbt1214-1175. [DOI] [PubMed] [Google Scholar]
- Rayner S, Brignac S, Bumeister R, Belosludtsev Y, Ward T, Grant O, O’Brien K, Evans GA, Garner HR. MerMade: an oligodeoxyribonucleotide synthesizer for high throughput oligonucleotide production in dual 96-well plates. Genome Res. 1998;8:741–747. doi: 10.1101/gr.8.7.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reautschnig P, Wahn N, Wettengel J, Schulz AE, Latifi N, Vogel P, Kang TW, Pfeiffer LS, Zarges C, Naumann U, et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat Biotechnol. 2022;40:759–768. doi: 10.1038/s41587-021-01105-0. [DOI] [PubMed] [Google Scholar]
- Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed. 2005;44:4192–4196. doi: 10.1002/anie.200500767. [DOI] [PubMed] [Google Scholar]
- Reetz MT, Carballeira JD. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc. 2007;2:891–903. doi: 10.1038/nprot.2007.72. [DOI] [PubMed] [Google Scholar]
- Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa W, et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat Mach Intell. 2021;3:324–333. doi: 10.1038/s42256-021-00310-5. [DOI] [Google Scholar]
- Reynolds TS, Courtney CM, Erickson KE, Wolfe LM, Chatterjee A, Nagpal P, Gill RT. ROS mediated selection for increased NADPH availability in Escherichia coli. Biotechnol Bioeng. 2017;114:2685–2689. doi: 10.1002/bit.26385. [DOI] [PubMed] [Google Scholar]
- Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond J S, DiCarlo JE, Lee D, Huang CLV, Chandrasegaran S, Cai Y, et al. Design of a synthetic yeast genome. Science. 2017;355:1040–1044. doi: 10.1126/science.aaf4557. [DOI] [PubMed] [Google Scholar]
- Richter, F., and Baker, D. (2013). Computational protein design for synthetic biology. In: Synthetic Biology. 101–122.
- Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, Wilson C, Koblan LW, Zeng J, Bauer DE, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38:883–891. doi: 10.1038/s41587-020-0453-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rienzo M, Jackson SJ, Chao LK, Leaf T, Schmidt TJ, Navidi AH, Nadler DC, Ohler M, Leavell MD. High-throughput screening for high-efficiency small-molecule biosynthesis. Metab Eng. 2021;63:102–125. doi: 10.1016/j.ymben.2020.09.004. [DOI] [PubMed] [Google Scholar]
- Robinson CJ, Carbonell P, Jervis AJ, Yan C, Hollywood KA, Dunstan MS, Currin A, Swainston N, Spiess R, Taylor S, et al. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metab Eng. 2020;60:168–182. doi: 10.1016/j.ymben.2020.04.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruan Y, Zhang R, Xu Y. Directed evolution of maltogenic amylase from bacillus licheniformis R-53: enhancing activity and thermostability improves bread quality and extends shelf life. Food Chem. 2022;381:132222–132229. doi: 10.1016/j.foodchem.2022.132222. [DOI] [PubMed] [Google Scholar]
- Russ WP, Figliuzzi M, Stocker C, Barrat-Charlaix P, Socolich M, Kast P, Hilvert D, Monasson R, Cocco S, Weigt M, et al. An evolution-based model for designing chorismate mutase enzymes. Science. 2020;369:440–445. doi: 10.1126/science.aba3304. [DOI] [PubMed] [Google Scholar]
- Salehi ASM, Shakalli Tang MJ, Smith MT, Hunt JM, Law RA, Wood DW, Bundy BC. Cell-free protein synthesis approach to biosensing hTRβ-specific endocrine disruptors. Anal Chem. 2017;89:3395–3401. doi: 10.1021/acs.analchem.6b04034. [DOI] [PubMed] [Google Scholar]
- Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018;361:360–365. doi: 10.1126/science.aat2663. [DOI] [PubMed] [Google Scholar]
- Schreuder MP, Brekelmans S, van den Ende H, Klis FM. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast. 1993;9:399–409. doi: 10.1002/yea.320090410. [DOI] [PubMed] [Google Scholar]
- Schwarz KA, Daringer NM, Dolberg TB, Leonard JN. Rewiring human cellular input-output using modular extracellular sensors. Nat Chem Biol. 2017;13:202–209. doi: 10.1038/nchembio.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott M, Hwa T. Bacterial growth laws and their applications. Curr Opin Biotechnol. 2011;22:559–565. doi: 10.1016/j.copbio.2011.04.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekiya T, Takeya T, Brown EL, Belagaje R, Contreras R, Fritz HJ, Gait MJ, Lees RG, Ryan MJ, Khorana HG, et al. Total synthesis of a tyrosine suppressor transfer RNA gene. XVI. Enzymatic joinings to form the total 207-base pair-long DNA. J Biol Chem. 1979;254:5787–5800. doi: 10.1016/S0021-9258(18)50482-8. [DOI] [PubMed] [Google Scholar]
- Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577:706–710. doi: 10.1038/s41586-019-1923-7. [DOI] [PubMed] [Google Scholar]
- Senoussi A, Galas JC, Estevez-Torres A. Programmed mechano-chemical coupling in reaction-diffusion active matter. Sci Adv. 2021;7:eabi9865. doi: 10.1126/sciadv.abi9865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sesterhenn F, Yang C, Bonet J, Cramer JT, Wen X, Wang Y, Chiang CI, Abriata LA, Kucharska I, Castoro G, et al. De novo protein design enables the precise induction of rsv-neutralizing antibodies. Science. 2020;368:eaay5051. doi: 10.1126/science.aay5051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao Y, Lu N, Cai C, Zhou F, Wang S, Zhao Z, Zhao G, Zhou J Q, Xue X, Qin Z. A single circular chromosome yeast. Cell Res. 2019;29:87–89. doi: 10.1038/s41422-018-0110-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao Y, Wang Q, Yu Y, Wang P, Yuan J, Fan X. Modification of protease via click chemistry and its application. J Biol. 2019;36:100–103. [Google Scholar]
- Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang LL, Zhou F, Xiao S, Liu L, Zeng X, et al. Creating a functional single-chromosome yeast. Nature. 2018;560:331–335. doi: 10.1038/s41586-018-0382-x. [DOI] [PubMed] [Google Scholar]
- Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009;37:e16. doi: 10.1093/nar/gkn991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapland EB, Holmes V, Reeves CD, Sorokin E, Durot M, Platt D, Allen C, Dean J, Serber Z, Newman J, et al. Low-cost, high-throughput sequencing of DNA assemblies using a highly multiplexed Nextera process. ACS Synth Biol. 2015;4:860–866. doi: 10.1021/sb500362n. [DOI] [PubMed] [Google Scholar]
- Shelby ML, Gilbile D, Grant TD, Bauer WJ, Segelke B, He W, Evans AC, Crespo N, Fischer P, Pakendorf T, et al. Crystallization of ApoA1 and ApoE4 nanolipoprotein particles and initial XFEL-based structural studies. Crystals. 2020;10:886. doi: 10.3390/cryst10100886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet. 2002;31:64–68. doi: 10.1038/ng881. [DOI] [PubMed] [Google Scholar]
- Shen Y, Wang Y, Chen T, Gao F, Gong J, Abramczyk D, Walker R, Zhao H, Chen S, Liu W, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science. 2017;355:eaaf4791. doi: 10.1126/science.aaf4791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheng J, Huang L, Zhu X, Cai J, Xu Z. Reconstitution of the peptidoglycan cytoplasmic precursor biosynthetic pathway in cell-free system and rapid screening of antisense oligonucleotides for Mur enzymes. Appl Microbiol Biotechnol. 2014;98:1785–1794. doi: 10.1007/s00253-013-5467-8. [DOI] [PubMed] [Google Scholar]
- Shetty RP, Endy D, Knight TF., Jr. Engineering BioBrick vectors from BioBrick parts. J Biol Eng. 2008;2:5. doi: 10.1186/1754-1611-2-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shin J, Noireaux V. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol. 2012;1:29–41. doi: 10.1021/sb200016s. [DOI] [PubMed] [Google Scholar]
- Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, Manglik A, Kruse AC, Marks DS. Protein design and variant prediction using autoregressive generative models. Nat Commun. 2021;12:2403. doi: 10.1038/s41467-021-22732-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shipman SL, Nivala J, Macklis JD, Church GM. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature. 2017;547:345–349. doi: 10.1038/nature23017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shozen N, Iijima I, Hohsaka T. Site-specific incorporation of PEGylated amino acids into proteins using nonnatural amino acid mutagenesis. Bioorg Medicinal Chem Lett. 2009;19:4909–4911. doi: 10.1016/j.bmcl.2009.07.105. [DOI] [PubMed] [Google Scholar]
- Siegal-Gaskins D, Tuza ZA, Kim J, Noireaux V, Murray RM. Gene circuit performance characterization and resource usage in a cell-free “breadboard”. ACS Synth Biol. 2014;3:416–425. doi: 10.1021/sb400203p. [DOI] [PubMed] [Google Scholar]
- Si L, Xu H, Zhou X, Zhang Z, Tian Z, Wang Y, Wu Y, Zhang B, Niu Z, Zhang C, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science. 2016;354:1170–1173. doi: 10.1126/science.aah5869. [DOI] [PubMed] [Google Scholar]
- Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H. Automated multiplex genome-scale engineering in yeast. Nat Commun. 2017;8:15187. doi: 10.1038/ncomms15187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Si T, Li B, Comi TJ, Wu Y, Hu P, Wu Y, Min Y, Mitchell DA, Zhao H, Sweedler JV. Profiling of microbial colonies for high-throughput engineering of multistep enzymatic reactions via optically guided matrix-assisted laser desorption/ionization mass spectrometry. J Am Chem Soc. 2017;139:12466–12473. doi: 10.1021/jacs.7b04641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Si T, Xue P, Choe K, Zhao H, Sweedler J. High-throughput mass spectrometry complements protein engineering. In: Zhao H, Lee SY, Nielsen J, Stephanopouos G, editors. Protein Engineering: Tools and, Applications. Hoboken: Wiley; 2021. pp. 57–79. [Google Scholar]
- Silva DA, Yu S, Ulge UY, Spangler JB, Jude KM, Labão-Almeida C, Ali LR, Quijano-Rubio A, Ruterbusch M, Leung I, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186–191. doi: 10.1038/s41586-018-0830-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. CGT. 2011;11:11–27. doi: 10.2174/156652311794520111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet. 2020;21:151–170. doi: 10.1038/s41576-019-0186-3. [DOI] [PubMed] [Google Scholar]
- Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–1317. doi: 10.1126/science.4001944. [DOI] [PubMed] [Google Scholar]
- Smith HO, Hutchison Clyde A, I, Pfannkoch C, Venter JC. Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA. 2003;100:15440–15445. doi: 10.1073/pnas.2237126100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sockolosky JT, Trotta E, Parisi G, Picton L, Su LL, Le AC, Chhabra A, Silveria SL, George BM, King IC, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037–1042. doi: 10.1126/science.aar3246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer WPC, Crameri A, Ha KD, Brennan TM, Heyneker H L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. 1995;164:49–53. doi: 10.1016/0378-1119(95)00511-4. [DOI] [PubMed] [Google Scholar]
- Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature. 2008;456:516–519. doi: 10.1038/nature07389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suckling L, McFarlane C, Sawyer C, Chambers SP, Kitney RI, McClymont DW, Freemont PS. Miniaturisation of high-throughput plasmid DNA library preparation for next-generation sequencing using multifactorial optimisation. Synth Syst Biotechnol. 2019;4:57–66. doi: 10.1016/j.synbio.2019.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SunSpiral, V., Fredlund, J., Abdulla, H., Boccazzi, P., Poust, S., Cleto, S.d. L.A., Chaikind, B., Vaughan, D., Bruno, K.S., Westfall, P., et al. (2022). HTP genomic engineering platform for improving fungal strains. US, Patent 11242524.
- Tabatabaei SK, Wang B, Athreya NBM, Enghiad B, Hernandez A G, Fields CJ, Leburton JP, Soloveichik D, Zhao H, Milenkovic O. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nat Commun. 2020;11:1742. doi: 10.1038/s41467-020-15588-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi CN, Nguyen BH, Strauss K, Ceze L. Demonstration of end-to-end automation of DNA data storage. Sci Rep. 2019;9:4998. doi: 10.1038/s41598-019-41228-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V, Spring KJ, Al-Khabouri S, Fall CP, Noireaux V, et al. Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth Biol. 2015;4:503–515. doi: 10.1021/sb400206c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi MK, Hayes CA, Chappell J, Sun ZZ, Murray RM, Noireaux V, Lucks JB. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions. Methods. 2015;86:60–72. doi: 10.1016/j.ymeth.2015.05.020. [DOI] [PubMed] [Google Scholar]
- Takahashi MK, Tan X, Dy AJ, Braff D, Akana RT, Furuta Y, Donghia N, Ananthakrishnan A, Collins JJ. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun. 2018;9:3347. doi: 10.1038/s41467-018-05864-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan Y, Zhang Y, Han Y, Liu H, Chen H, Ma F, Withers SG, Feng Y, Yang G. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Sci Adv. 2019;5:eaaw8451. doi: 10.1126/sciadv.aaw8451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan Z, Li X, Shi H, Yin X, Zhu X, Bilal M, Onchari MM. Enhancing the methanol tolerance of candida antarctica lipase b by saturation mutagenesis for biodiesel preparation. 3 Biotech. 2022;12:22. doi: 10.1007/s13205-021-03095-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang T, Fu L, Guo E, Zhang Z, Wang Z, Ma C, Zhang Z, Zhang J, Huang J, Si T. Automation in synthetic biology using biological foundries (in Chinese) Chin Sci Bull. 2021;66:300–309. doi: 10.1360/TB-2020-0498. [DOI] [Google Scholar]
- Tang W, Liu DR. Rewritable multi-eventanalog recording in bacterial and mammalian cells. Science. 2018;360:eaap8992. doi: 10.1126/science.aap8992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thavarajah W, Silverman AD, Verosloff MS, Kelley-Loughnane N, Jewett MC, Lucks JB. Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synth Biol. 2019;9:10–18. doi: 10.1021/acssynbio.9b00347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G. Accurate multiplex gene synthesis from programmable DNA microchips. Nature. 2004;432:1050–1054. doi: 10.1038/nature03151. [DOI] [PubMed] [Google Scholar]
- Tian L, Li M, Patil AJ, Drinkwater BW, Mann S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat Commun. 2019;10:3321. doi: 10.1038/s41467-019-11316-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinafar A, Jaenes K, Pardee K. Synthetic biology goes cellfree. BMC Biol. 2019;17:64. doi: 10.1186/s12915-019-0685-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toda S, McKeithan WL, Hakkinen TJ, Lopez P, Klein OD, Lim WA. Engineering synthetic morphogen systems that can program multicellular patterning. Science. 2020;370:327–331. doi: 10.1126/science.abc0033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong F, Qin Z, Wang H, Jiang Y, Li J, Ming H, Qu G, Xiao Y, Sun Z. Biosynthesis of chiral amino alcohols via an engineered amine dehydrogenase in E. coli. Front Bioeng Biotechnol. 2022;9:778584–778594. doi: 10.3389/fbioe.2021.778584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu R, Zhang Y, Hua E, Bai L, Huang H, Yun K, Wang M. Droplet-based microfluidic platform for high-throughput screening of Streptomyces. Commun Biol. 2021;4:647. doi: 10.1038/s42003-021-02186-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turing AM. The chemical basis of morphogenesis. Phil Trans R Soc Lond B. 1952;237:37–72. doi: 10.1098/rstb.1952.0012. [DOI] [Google Scholar]
- Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435:646–651. doi: 10.1038/nature03556. [DOI] [PubMed] [Google Scholar]
- Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading C A, Chhiba K, Heiss C, Azadi P, Aebi M, DeLisa MP. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol. 2012;8:434–436. doi: 10.1038/nchembio.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valliere MA, Korman TP, Woodall NB, Khitrov GA, Taylor RE, Baker D, Bowie JU. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat Commun. 2019;10:565. doi: 10.1038/s41467-019-08448-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Brempt M, Clauwaert J, Mey F, Stock M, Maertens J, Waegeman W, De Mey M. Predictive design of sigma factor-specific promoters. Nat Commun. 2020;11:5822. doi: 10.1038/s41467-020-19446-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veit A, Akhtar MK, Mizutani T, Jones PR. Constructing and testing the thermodynamic limits of synthetic NAD(P)H:H2 pathways. Microb Biotechnol. 2008;1:382–394. doi: 10.1111/j.1751-7915.2008.00033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venetz JE, Del Medico L, Wölfle A, Schächle P, Bucher Y, Appert D, Tschan F, Flores-Tinoco CE, van Kooten M, Guennoun R, et al. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Proc Natl Acad Sci USA. 2019;116:8070–8079. doi: 10.1073/pnas.1818259116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhoeven KD, Altstadt OC, Savinov SN. Intracellular detection and evolution of site-specific proteases using a genetic selection system. Appl Biochem Biotechnol. 2012;166:1340–1354. doi: 10.1007/s12010-011-9522-6. [DOI] [PubMed] [Google Scholar]
- Venter JC, Glass JI, Hutchison CA, III, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell. 2022;185:2708–2724. doi: 10.1016/j.cell.2022.06.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verosloff M, Chappell J, Perry KL, Thompson JR, Lucks JB. PLANT-Dx: a molecular diagnostic for point-of-use detection of plant pathogens. ACS Synth Biol. 2019;8:902–905. doi: 10.1021/acssynbio.8b00526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voigt CA. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat Commun. 2020;11:6379. doi: 10.1038/s41467-020-20122-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science. 2002;298:1790–1793. doi: 10.1126/science.298.5599.1790. [DOI] [PubMed] [Google Scholar]
- Walsh DI, III, Pavan M, Ortiz L, Wick S, Bobrow J, Guido NJ, Leinicke S, Fu D, Pandit S, Qin L, et al. Standardizing automated DNA assembly: best practices, metrics, and protocols using robots. SLAS Tech. 2019;24:282–290. doi: 10.1177/2472630318825335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368:290–296. doi: 10.1126/science.aba8853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang DB, Zheng KQ, Qiu MS, Liang ZH, Wu RL, Chen CQ, Wang EB, Zhu YS, Shen QX, Yu YH, et al. Total synthesis of yeast alanine transfer ribonucleic acid. Sci Sin Ser B-Chem Biol Agric Med Earth Scis. 1983;26:464–481. [PubMed] [Google Scholar]
- Wang HH, Church GM. Multiplexed genome engineering and genotyping methods: applications for synthetic biology and metabolic engineering. Methods Enzymol. 2011;498:409–426. doi: 10.1016/B978-0-12-385120-8.00018-8. [DOI] [PubMed] [Google Scholar]
- Wang J, He Z, Wang G, Zhang R, Duan J, Gao P, Lei X, Qiu H, Zhang C, Zhang Y, et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat Methods. 2022;19:331–340. doi: 10.1038/s41592-022-01399-1. [DOI] [PubMed] [Google Scholar]
- Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci Adv. 2017;3:e1701290. doi: 10.1126/sciadv.1701290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K, Fredens J, Brunner SF, Kim SH, Chia T, Chin JW. Defining synonymous codon compression schemes by genome recoding. Nature. 2016;539:59–64. doi: 10.1038/nature20124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L, Cao K, Pedroso MM, Wu B, Gao Z, He B, Schenk G. Sequence- and structure-guided improvement of the catalytic performance of a gh11 family xylanase from Bacillus subtilis. J Biol Chem. 2021;297:101262. doi: 10.1016/j.jbc.2021.101262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y, Liu Y, Liu J, Guo Y, Fan L, Ni X, Zheng X, Wang M, Zheng P, Sun J, et al. MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metab Eng. 2018;47:200–210. doi: 10.1016/j.ymben.2018.02.016. [DOI] [PubMed] [Google Scholar]
- Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S. Peptide surfactants for cellfree production of functional G protein-coupled receptors. Proc Natl Acad Sci USA. 2011;108:9049–9054. doi: 10.1073/pnas.1018185108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y, Wang H, Wei L, Li S, Liu L, Wang X. Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Res. 2020;48:6403–6412. doi: 10.1093/nar/gkaa325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y, Wang P, Qin JH. Microfluidic organs-on-a-chip for modeling human infectious diseases. Acc Chem Res. 2021;54:3550–3562. doi: 10.1021/acs.accounts.1c00411. [DOI] [PubMed] [Google Scholar]
- Weber H, Khorana HG. CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J Mol Biol. 1972;72:219–249. doi: 10.1016/0022-2836(72)90147-7. [DOI] [PubMed] [Google Scholar]
- Wei, X., Meng, D., and You, C. (2020). In vitro metabolic engineering: current status and recent progress. In: Systems and Synthetic Metabolic Engineering Systems and Synthetic Metabolic Engineering, 2020 183–206.
- Weidmann J, Schnölzer M, Dawson PE, Hoheisel JD. Copying life: synthesis of an enzymatically active mirror-image DNA-ligase made of D-amino acids. Cell Chem Biol. 2019;26:645–651.e3. doi: 10.1016/j.chembiol.2019.02.008. [DOI] [PubMed] [Google Scholar]
- Welch P, Scopes RK. Studies on cell-free metabolism: ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J Biotechnol. 1985;2:257–273. doi: 10.1016/0168-1656(85)90029-X. [DOI] [Google Scholar]
- Wen KY, Cameron L, Chappell J, Jensen K, Bell DJ, Kelwick R, Kopniczky M, Davies JC, Filloux A, Freemont PS. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS Synth Biol. 2017;6:2293–2301. doi: 10.1021/acssynbio.7b00219. [DOI] [PubMed] [Google Scholar]
- Wilbraham L, Mehr SHM, Cronin L. Digitizing chemistry using the chemical processing unit: from synthesis to discovery. Acc Chem Res. 2021;54:253–262. doi: 10.1021/acs.accounts.0c00674. [DOI] [PubMed] [Google Scholar]
- Williams JZ, Allen GM, Shah D, Sterin IS, Kim KH, Garcia VP, Shavey GE, Yu W, Puig-Saus C, Tsoi J, et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science. 2020;370:1099–1104. doi: 10.1126/science.abc6270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson DS, Keefe AD, Szostak JW. The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci USA. 2001;98:3750–3755. doi: 10.1073/pnas.061028198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science. 2008;322:456–460. doi: 10.1126/science.1160311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu IL, Patterson MA, Carpenter Desai HE, Mehl RA, Giorgi G, Conticello VP. Multiple site-selective insertions of noncanonical amino acids into sequence-repetitive polypeptides. ChemBioChem. 2013;14:968–978. doi: 10.1002/cbic.201300069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu S, Bornscheuer UT. A chemoenzymatic cascade with the potential to feed the world and allow humans to live in space. Eng Microbiol. 2022;2:100006. doi: 10.1016/j.engmic.2021.100006. [DOI] [Google Scholar]
- Wu YR, Zhang M, Zhong M, Hu Z. Synergistic enzymatic saccharification and fermentation of agar for biohydrogen production. Bioresource Tech. 2017;241:369–373. doi: 10.1016/j.biortech.2017.05.117. [DOI] [PubMed] [Google Scholar]
- Wu Z, Zhang Y, Yu H, Pan D, Wang Y, Wang Y, Li F, Liu C, Nan H, Chen W, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol. 2021;17:1132–1138. doi: 10.1038/s41589-021-00868-6. [DOI] [PubMed] [Google Scholar]
- Wuu JJ, Swartz JR. High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim Biophys Acta (BBA)-Biomembranes. 2008;1778:1237–1250. doi: 10.1016/j.bbamem.2008.01.023. [DOI] [PubMed] [Google Scholar]
- Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J. Deep learning for molecular generation. Future Medicinal Chem. 2019;11:567–597. doi: 10.4155/fmc-2018-0358. [DOI] [PubMed] [Google Scholar]
- Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, Nakamura M, Qi LS. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell. 2021;81:4333–4345.e4. doi: 10.1016/j.molcel.2021.08.008. [DOI] [PubMed] [Google Scholar]
- Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, Cao B, Dong X, Bai W, Wang Y, et al. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods. 2021;18:499–506. doi: 10.1038/s41592-021-01124-4. [DOI] [PubMed] [Google Scholar]
- Xue P, Si T, Mishra S, Zhang L, Choe K, Sweedler JV, Zhao H. A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids. Biotechnol Bioeng. 2020;117:2131–2138. doi: 10.1002/bit.27343. [DOI] [PubMed] [Google Scholar]
- Xie Y, An J, Yang G, Wu G, Zhang Y, Cui L, Feng Y. Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem. 2014;289:7994–8006. doi: 10.1074/jbc.M113.536045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie ZX, Li BZ, Mitchell LA, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng BX, Liu HM, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science. 2017;355:eaaf4704. doi: 10.1126/science.aaf4704. [DOI] [PubMed] [Google Scholar]
- Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, Liu H. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability. Nat Commun. 2014;5:5330. doi: 10.1038/ncomms6330. [DOI] [PubMed] [Google Scholar]
- Yang D, Park SY, Park YS, Eun H, Lee SY. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 2020;38:745–765. doi: 10.1016/j.tibtech.2019.11.007. [DOI] [PubMed] [Google Scholar]
- Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. ChemBioChem. 2009;10:2704–2715. doi: 10.1002/cbic.200900384. [DOI] [PubMed] [Google Scholar]
- Yeoh JW, Jayaraman SSO, Tan SGD, Jayaraman P, Holowko M B, Zhang J, Kang CW, Leo HL, Poh CL. A model-driven approach towards rational microbial bioprocess optimization. Biotechnol Bioeng. 2021;118:305–318. doi: 10.1002/bit.27571. [DOI] [PubMed] [Google Scholar]
- Yi Z, Qu L, Tang H, Liu Z, Liu Y, Tian F, Wang C, Zhang X, Feng Z, Yu Y, et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol. 2022;40:946–955. doi: 10.1038/s41587-021-01180-3. [DOI] [PubMed] [Google Scholar]
- Yin G, Garces ED, Yang J, Zhang J, Tran C, Steiner AR, Roos C, Bajad S, Hudak S, Penta K, et al. Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcriptiontranslation system. mAbs. 2012;4:217–225. doi: 10.4161/mabs.4.2.19202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida R. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv Mater. 2010;22:3463–3483. doi: 10.1002/adma.200904075. [DOI] [PubMed] [Google Scholar]
- You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang XZ, Li J, Zhang YHP. Enzymatic transformation of nonfood biomass to starch. Proc Natl Acad Sci USA. 2013;110:7182–7187. doi: 10.1073/pnas.1302420110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- You C, Shi T, Li Y, Han P, Zhou X, Zhang YHP. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol Bioeng. 2017;114:1855–1864. doi: 10.1002/bit.26314. [DOI] [PubMed] [Google Scholar]
- Yu G, Zhang M, Gao L, Zhou Y, Qiao L, Yin J, Wang Y, Zhou J, Ye H. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Mol Ther. 2022;30:341–354. doi: 10.1016/j.ymthe.2021.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaccolo M, Gherardi E. The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 β-lactamase 1 1Edited by A. R. Fersht. J Mol Biol. 1999;285:775–783. doi: 10.1006/jmbi.1998.2262. [DOI] [PubMed] [Google Scholar]
- Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater. 2018;3:257–278. doi: 10.1038/s41578-018-0034-7. [DOI] [Google Scholar]
- Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez-Manríquez A, Abeliuk E, Sánchez BJ, Costello Z, Chen Y, Fero MJ, et al. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat Commun. 2020;11:4880. doi: 10.1038/s41467-020-17910-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J, Chen Y, Fu L, Guo E, Wang B, Dai L, Si T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr Opin Biotechnol. 2021;67:88–98. doi: 10.1016/j.copbio.2021.01.010. [DOI] [PubMed] [Google Scholar]
- Zhang Q, Hresko ME, Picton LK, Su L, Hollander MJ, Nunez-Cruz S, Zhang Z, Assenmacher CA, Sockolosky JT, Garcia KC, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13:eabg6986. doi: 10.1126/scitranslmed.abg6986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, Chen K, Jiang L, Li J, Gao C. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci. 2021;64:1624–1633. doi: 10.1007/s11427-020-1800-5. [DOI] [PubMed] [Google Scholar]
- Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants. 2019;5:480–485. doi: 10.1038/s41477-019-0405-0. [DOI] [PubMed] [Google Scholar]
- Zhang W, Mitchell LA, Bader JS, Boeke JD. Synthetic genomes. Annu Rev Biochem. 2020;89:77–101. doi: 10.1146/annurev-biochem-013118-110704. [DOI] [PubMed] [Google Scholar]
- Zhang W, Zhao G, Luo Z, Lin Y, Wang L, Guo Y, Wang A, Jiang S, Jiang Q, Gong J, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science. 2017;355:eaaf3981. doi: 10.1126/science.aaf3981. [DOI] [PubMed] [Google Scholar]
- Zhang XE. Preface to special issue of synthetic biology (in Chinese) Bull Chin Acad Sci. 2018;33:1132–1134. [Google Scholar]
- Zhang XE. Synthetic biology in China: review and prospects (in Chinese) Sci Sin-Vitae. 2019;49:1543–1572. doi: 10.1360/SSV-2019-0299. [DOI] [Google Scholar]
- Zhang Y-P. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. Energy Sci Eng. 2013;1:27–41. doi: 10.1002/ese3.2. [DOI] [Google Scholar]
- Zhang Y, Minagawa Y, Kizoe H, Miyazaki K, Iino R, Ueno H, Tabata KV, Shimane Y, Noji H. Accurate high-throughput screening based on digital protein synthesis in a massively parallel femtoliter droplet array. Sci Adv. 2019;5:eaav8185. doi: 10.1126/sciadv.aav8185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE, San Jose K, Feldman AW, Turner CR, Romesberg FE. A semi-synthetic organism that stores and retrieves increased genetic information. Nature. 2017;551:644–647. doi: 10.1038/nature24659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang ZB, Wang QY, Ke YX, Liu SY, Ju JQ, Lim WA, Tang C, Wei P. Design of tunable oscillatory dynamics in a synthetic NF-kB signaling circuit. Cell Syst. 2017;5:460–470.e5. doi: 10.1016/j.cels.2017.09.016. [DOI] [PubMed] [Google Scholar]
- Zhao GP. Synthetic biology: unsealing the convergence era of life science research (in Chinese) Bull Chin Acad Sci. 2018;33:1135–1149. [Google Scholar]
- Zhao H, Ding W, Zang J, Yang Y, Liu C, Hu L, Chen Y, Liu G, Fang Y, Yuan Y, et al. Directed-evolution of translation system for efficient unnatural amino acids incorporation and generalizable synthetic auxotroph construction. Nat Commun. 2021;12:7039–7050. doi: 10.1038/s41467-021-27399-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–771. doi: 10.1016/j.cell.2015.09.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng H, Bai Y, Jiang M, Tokuyasu TA, Huang X, Zhong F, Wu Y, Fu X, Kleckner N, Hwa T, et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat Microbiol. 2020;5:995–1001. doi: 10.1038/s41564-020-0717-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhirnov V, Zadegan RM, Sandhu GS, Church GM, Hughes W L. Nucleic acid memory. Nat Mater. 2016;15:366–370. doi: 10.1038/nmat4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou F, Mu X, Nie Y, Xu Y. Enhanced catalytic efficiency and coenzyme affinity of leucine dehydrogenase by comprehensive screening strategy for L-tert-leucine synthesis. Appl Microbiol Biotechnol. 2021;105:3625–3634. doi: 10.1007/s00253-021-11323-w. [DOI] [PubMed] [Google Scholar]
- Zhou J, Huang L, Lian J, Sheng J, Cai J, Xu Z. Reconstruction of the UDP-N-acetylglucosamine biosynthetic pathway in cell-free system. Biotechnol Lett. 2010;32:1481–1486. doi: 10.1007/s10529-010-0315-8. [DOI] [PubMed] [Google Scholar]
- Zhu Y, Yin X, Liu H, Li H, Chen Y, Li L, Xiao A, Ni H. Substitution of his260 residue alters the thermostability of pseudoalteromonas carrageenovora arylsulfatase. Acta Oceanol Sin. 2019;38:75–82. doi: 10.1007/s13131-019-1356-z. [DOI] [Google Scholar]
- Zhu Z, Kin Tam T, Sun F, You C, Percival Zhang YH. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun. 2014;5:3026. doi: 10.1038/ncomms4026. [DOI] [PubMed] [Google Scholar]
- Zong Y, Liu Y, Xue C, Li B, Li X, Wang Y, Li J, Liu G, Huang X, Cao X, et al. An engineered prime editor with enhanced editing efficiency in plants. Nat Biotechnol. 2022;40:1394–1402. doi: 10.1038/s41587-022-01254-w. [DOI] [PubMed] [Google Scholar]
- Zrimec J, Börlin CS, Buric F, Muhammad AS, Chen R, Siewers V, Verendel V, Nielsen J, Töpel M, Zelezniak A. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat Commun. 2020;11:6141. doi: 10.1038/s41467-020-19921-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
