Skip to main content
IUCrData logoLink to IUCrData
. 2023 Jan 31;8(Pt 1):x230065. doi: 10.1107/S2414314623000652

2-[(4-Chloro­phen­yl)imino]-1,2-di­phenyl­ethanone

Nouara Ziani a, Brihi Ouarda b, Soumia Kadri c, Erwann Jeanneau d, Ismail Warad e, Amel Djedouani f,g,*
Editor: W T A Harrisonh
PMCID: PMC9912312  PMID: 36794050

In the title Schiff base, the dihedral angle between the phenyl rings of the benzil unit is 74.14 (5)°.

Keywords: crystal structure, benzil, C—H⋯O hydrogen bonds, Hirshfeld surface analysis

Abstract

The title Schiff base, C20H14ClNO, obtained from the reaction of 4-chloro aniline with benzil, has an approximate T shape. The dihedral angle between the phenyl rings of the benzil unit is 74.14 (15)°. The extended structure features C—H⋯O hydrogen bonds. graphic file with name x-08-x230065-scheme1-3D1.jpg

Structure description

There are only a few reported crystal structures of Schiff bases derived from benzil (Tabbiche et al., 2022; Bouchama et al., 2007; Bai et al., 2006). We recently synthesized the title compound and we now report its crystal structure. The asymmetric unit contains one independent mol­ecule (Fig. 1). The O and the imine N atoms are trans with respect to the C7—C14 bond. The C1–C6 phenyl ring makes dihedral angles of 20.56 (6) and 74.03 (6)°with the C9–C10 and C15–C16 phenyl ring, respectively, of the benzil unit. The dihedral angle between the phenyl rings of the benzil unit is 74.14 (5)°. The C—N iminium bond length [1.268 (3) Å] is comparable to that observed in (E)-1-[4-({4-[(4-meth­oxy­benzyl­idene)amino]­phen­yl}sulfan­yl)phen­yl]ethan-1-one [1.252 (4) Å; Hebbachi et al., 2015]. Atom O1 accepts two long and presumably weak intra­molecular hydrogen bonds with atoms H3 and H9 (Fig. 1), which generate S(6) and S(7) rings motifs, respectively: the former is approximately planar.

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and 50% probability ellipsoids. Dashed lines indicate the intra­molecular hydrogen bonds.

In the crystal, the mol­ecules are aligned head-to-foot along the b-axis direction, forming layers that extend in zigzag parallel to the ac plane. In the extended structure, two weak C—H⋯O hydrogen bonds help to consolidate the packing (Table 1, Fig. 2). The C18—H18⋯O1 hydrogen bonds generate a succession of infinite chains [graph set Inline graphic (7)] while C2—H2⋯O1 hydrogen bonds link the chains into layers, which are formed by a succession of Inline graphic (16) rings, parallel to the bc plane [Fig. 3(a)]. Together, these hydrogen bonds lead to the formation of a three-dimensional network. Aromatic π–π stacking generates inversion dimers featuring the C15–C20 phenyl rings with a centroid–centroid distance of 3.744 (3) Å [Fig. 3(b)]. Along the c-axis direction, weak C—H⋯π(ring) inter­actions occur.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.93 2.67 3.247 (3) 120
C9—H9⋯O1 0.93 2.64 3.231 (3) 122
C2—H2⋯O1i 0.93 2.60 3.360 (3) 139
C19—H19⋯Cg1ii 0.93 2.88 3.689 (3) 146

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

Packing arrangement of the title compound viewed along the c-axis direction. C— H⋯O hydrogen bonds are shown as dashed lines.

Figure 3.

Figure 3

(a) View of part of the crystal structure, showing the formation of a hydrogen-bonded C18—H18⋯O1 chain and (b) the inter­molecular C—H⋯π(ring) and π–π stacking inter­actions bonds (violet and blue dashed lines, respectively) in the ab plane.

A Hirshfeld surface (HS) analysis was performed and the associated two-dimensional fingerprint (FP) plots (Spackman & Jayatilaka, 2009) were generated using Crystal Explorer 3.1 (Turner et al., 2017). Fig. 4 shows the HS mapped over d norm (–0.11 to 1.54 a.u.) and shape-index. The red spots in Fig. 4(a) reflect the formation of C—H⋯O, C—H⋯π and π–π stacking inter­actions. In the shape-index map [Fig. 4(b)], the adjacent red and blue triangle-like patches represent concave regions that indicate C—H⋯π(ring) and π–π stacking inter­actions. The two-dimensional FP plots indicate that the most important contributions to the packing, in descending percentage contribution, are from H⋯C (37.7%), H⋯H (34.6%), H⋯Cl (14.0%), H⋯O (6.1%), H⋯N (4.0%) and C⋯C (1.9%) contacts.

Figure 4.

Figure 4

HS mapped over (a) d norm, showing the C—H⋯O and C—H⋯π inter­actions, and (b) shape-index.

Synthesis and crystallization

To a solution of benzil (2.1 g, 0.01 mmol) and 1 ml of acetic acid in ethanol (20 ml) was added 4-chloro aniline (0.01 mmol) dissolved in ethanol (15 ml). The mixture was stirred for 3 h under reflux. The product was isolated, recrystallized from ethanol solution and then dried in a vacuum to give the title compound (yield 59%; m.p. > 260°C). Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution. IR ν, cm−1: 1594 (C=N, imine), 1660 (C=O), 3064 (aromatic C—H), 1212 (C—N) and 718 (C—Cl).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C20H14ClNO
M r 320.78
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.0982 (12), 8.2447 (11), 19.365 (3)
β (°) 98.592 (12)
V3) 1594.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.20 × 0.17 × 0.12
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini ultra
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.968, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 13558, 4026, 2805
R int 0.045
(sin θ/λ)max−1) 0.700
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.062, 0.186, 1.11
No. of reflections 4026
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.58

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623000652/hb4414sup1.cif

x-08-x230065-sup1.cif (477.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623000652/hb4414Isup2.hkl

x-08-x230065-Isup2.hkl (321KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623000652/hb4414Isup3.cml

CCDC reference: 2237868

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C20H14ClNO F(000) = 668
Mr = 320.78 Dx = 1.337 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.0982 (12) Å Cell parameters from 3987 reflections
b = 8.2447 (11) Å θ = 4.3–29.1°
c = 19.365 (3) Å µ = 0.24 mm1
β = 98.592 (12)° T = 293 K
V = 1594.2 (4) Å3 Block, clear pinkish yellow
Z = 4 0.20 × 0.17 × 0.12 mm

Data collection

Xcalibur, Atlas, Gemini ultra diffractometer 2805 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1 Rint = 0.045
ω scans θmax = 29.9°, θmin = 2.7°
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2018) h = −13→14
Tmin = 0.968, Tmax = 0.974 k = −11→11
13558 measured reflections l = −23→26
4026 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0695P)2 + 1.2547P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.186 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 0.38 e Å3
4026 reflections Δρmin = −0.58 e Å3
209 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0115 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H-atom treatment: Fixed Uiso At 1.2 times of: All C(H) groups 2.a Aromatic/amide H refined with riding coordinates: C2(H2), C3(H3), C5(H5), C6(H6), C9(H9), C10(H10), C11(H11), C12(H12), C13(H13), C16(H16), C17(H17), C18(H18), C19(H19), C20(H20)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8370 (2) 0.8256 (3) 0.40271 (13) 0.0317 (5)
C2 0.7484 (3) 0.9348 (3) 0.42442 (13) 0.0329 (5)
H2 0.773837 0.997474 0.464122 0.040*
C3 0.6214 (3) 0.9505 (3) 0.38673 (13) 0.0318 (5)
H3 0.561128 1.023849 0.401135 0.038*
C4 0.5837 (2) 0.8566 (3) 0.32725 (12) 0.0291 (5)
C5 0.6759 (2) 0.7494 (3) 0.30579 (13) 0.0335 (6)
H5 0.652069 0.688099 0.265528 0.040*
C6 0.8023 (2) 0.7329 (3) 0.34361 (13) 0.0330 (5)
H6 0.863287 0.660176 0.329374 0.040*
C7 0.3486 (2) 0.8532 (3) 0.30665 (13) 0.0289 (5)
C8 0.2203 (2) 0.8607 (3) 0.25828 (13) 0.0322 (5)
C9 0.1038 (3) 0.9201 (4) 0.27901 (15) 0.0402 (6)
H9 0.104682 0.955946 0.324621 0.048*
C10 −0.0139 (3) 0.9263 (4) 0.23202 (17) 0.0480 (8)
H10 −0.091026 0.969215 0.245795 0.058*
C11 −0.0170 (3) 0.8691 (4) 0.16500 (17) 0.0521 (8)
H11 −0.096307 0.872138 0.133672 0.062*
C12 0.0979 (3) 0.8075 (4) 0.14449 (18) 0.0547 (8)
H12 0.095682 0.767683 0.099394 0.066*
C13 0.2163 (3) 0.8044 (4) 0.19061 (15) 0.0458 (7)
H13 0.293727 0.764354 0.176137 0.055*
C14 0.3371 (2) 0.8150 (3) 0.38222 (12) 0.0292 (5)
C15 0.3471 (2) 0.6436 (3) 0.40449 (12) 0.0268 (5)
C16 0.3846 (2) 0.5223 (3) 0.36134 (12) 0.0306 (5)
H16 0.403267 0.548117 0.317048 0.037*
C17 0.3940 (3) 0.3635 (3) 0.38435 (14) 0.0359 (6)
H17 0.420029 0.282786 0.355635 0.043*
C18 0.3652 (3) 0.3243 (3) 0.44943 (14) 0.0377 (6)
H18 0.370854 0.216977 0.464414 0.045*
C19 0.3277 (3) 0.4438 (3) 0.49268 (14) 0.0363 (6)
H19 0.308420 0.416916 0.536746 0.044*
C20 0.3191 (2) 0.6030 (3) 0.47047 (12) 0.0311 (5)
H20 0.294378 0.683342 0.499741 0.037*
Cl1 0.99595 (7) 0.80122 (10) 0.45011 (4) 0.0468 (3)
N1 0.4585 (2) 0.8715 (3) 0.28342 (10) 0.0312 (5)
O1 0.31698 (19) 0.9261 (2) 0.42112 (10) 0.0386 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0287 (12) 0.0394 (13) 0.0268 (12) −0.0027 (10) 0.0034 (9) 0.0037 (10)
C2 0.0341 (13) 0.0343 (13) 0.0306 (12) −0.0052 (11) 0.0054 (10) −0.0028 (10)
C3 0.0315 (12) 0.0310 (12) 0.0339 (13) 0.0012 (10) 0.0081 (10) −0.0001 (10)
C4 0.0277 (12) 0.0333 (12) 0.0261 (11) −0.0009 (10) 0.0036 (9) 0.0052 (9)
C5 0.0303 (12) 0.0443 (14) 0.0262 (12) 0.0002 (11) 0.0047 (10) −0.0041 (10)
C6 0.0273 (12) 0.0423 (14) 0.0299 (12) 0.0022 (11) 0.0063 (10) −0.0026 (10)
C7 0.0305 (12) 0.0253 (11) 0.0310 (12) 0.0026 (10) 0.0051 (10) 0.0018 (9)
C8 0.0312 (12) 0.0317 (12) 0.0329 (13) −0.0005 (10) 0.0019 (10) 0.0048 (10)
C9 0.0323 (13) 0.0520 (16) 0.0369 (14) 0.0013 (12) 0.0077 (11) 0.0126 (12)
C10 0.0293 (13) 0.0615 (19) 0.0535 (18) 0.0031 (13) 0.0069 (13) 0.0206 (15)
C11 0.0379 (16) 0.0588 (19) 0.0537 (19) −0.0061 (14) −0.0123 (14) 0.0087 (15)
C12 0.0476 (18) 0.064 (2) 0.0466 (18) 0.0059 (15) −0.0120 (14) −0.0122 (15)
C13 0.0417 (16) 0.0536 (17) 0.0396 (16) 0.0099 (13) −0.0026 (12) −0.0083 (13)
C14 0.0240 (11) 0.0337 (12) 0.0298 (12) 0.0020 (10) 0.0040 (9) −0.0024 (9)
C15 0.0231 (11) 0.0344 (12) 0.0222 (11) −0.0005 (9) 0.0007 (8) −0.0010 (9)
C16 0.0338 (13) 0.0320 (12) 0.0253 (11) −0.0010 (10) 0.0022 (9) 0.0002 (9)
C17 0.0425 (15) 0.0315 (12) 0.0318 (13) 0.0036 (11) −0.0007 (11) −0.0031 (10)
C18 0.0384 (14) 0.0354 (13) 0.0372 (14) −0.0040 (11) −0.0010 (11) 0.0063 (11)
C19 0.0353 (13) 0.0434 (15) 0.0296 (13) −0.0062 (11) 0.0036 (10) 0.0081 (10)
C20 0.0302 (12) 0.0364 (13) 0.0274 (12) −0.0008 (10) 0.0060 (10) −0.0010 (9)
Cl1 0.0312 (4) 0.0681 (5) 0.0381 (4) 0.0023 (3) −0.0047 (3) −0.0040 (3)
N1 0.0274 (10) 0.0365 (11) 0.0290 (10) 0.0012 (9) 0.0022 (8) 0.0043 (8)
O1 0.0460 (11) 0.0336 (9) 0.0378 (10) 0.0018 (8) 0.0115 (8) −0.0051 (8)

Geometric parameters (Å, º)

C1—C6 1.377 (4) C10—H10 0.9300
C1—C2 1.379 (4) C11—C12 1.378 (5)
C1—Cl1 1.737 (3) C11—H11 0.9300
C2—C3 1.384 (3) C12—C13 1.382 (4)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.393 (3) C13—H13 0.9300
C3—H3 0.9300 C14—O1 1.222 (3)
C4—C5 1.392 (4) C14—C15 1.477 (3)
C4—N1 1.419 (3) C15—C20 1.390 (3)
C5—C6 1.380 (3) C15—C16 1.391 (3)
C5—H5 0.9300 C16—C17 1.382 (4)
C6—H6 0.9300 C16—H16 0.9300
C7—N1 1.268 (3) C17—C18 1.374 (4)
C7—C8 1.482 (3) C17—H17 0.9300
C7—C14 1.518 (3) C18—C19 1.382 (4)
C8—C13 1.385 (4) C18—H18 0.9300
C8—C9 1.388 (4) C19—C20 1.380 (4)
C9—C10 1.385 (4) C19—H19 0.9300
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.377 (5)
C6—C1—C2 121.3 (2) C10—C11—H11 120.1
C6—C1—Cl1 118.4 (2) C12—C11—H11 120.1
C2—C1—Cl1 120.3 (2) C11—C12—C13 120.3 (3)
C1—C2—C3 119.5 (2) C11—C12—H12 119.8
C1—C2—H2 120.2 C13—C12—H12 119.8
C3—C2—H2 120.2 C12—C13—C8 120.4 (3)
C2—C3—C4 120.1 (2) C12—C13—H13 119.8
C2—C3—H3 120.0 C8—C13—H13 119.8
C4—C3—H3 120.0 O1—C14—C15 123.2 (2)
C5—C4—C3 119.2 (2) O1—C14—C7 118.9 (2)
C5—C4—N1 116.9 (2) C15—C14—C7 117.9 (2)
C3—C4—N1 123.7 (2) C20—C15—C16 119.3 (2)
C6—C5—C4 120.7 (2) C20—C15—C14 119.0 (2)
C6—C5—H5 119.6 C16—C15—C14 121.7 (2)
C4—C5—H5 119.6 C17—C16—C15 119.9 (2)
C1—C6—C5 119.1 (2) C17—C16—H16 120.0
C1—C6—H6 120.4 C15—C16—H16 120.0
C5—C6—H6 120.4 C18—C17—C16 120.3 (2)
N1—C7—C8 120.0 (2) C18—C17—H17 119.8
N1—C7—C14 124.3 (2) C16—C17—H17 119.8
C8—C7—C14 115.6 (2) C17—C18—C19 120.2 (2)
C13—C8—C9 119.1 (2) C17—C18—H18 119.9
C13—C8—C7 118.9 (2) C19—C18—H18 119.9
C9—C8—C7 122.0 (2) C20—C19—C18 120.0 (2)
C10—C9—C8 120.3 (3) C20—C19—H19 120.0
C10—C9—H9 119.9 C18—C19—H19 120.0
C8—C9—H9 119.9 C19—C20—C15 120.2 (2)
C11—C10—C9 120.2 (3) C19—C20—H20 119.9
C11—C10—H10 119.9 C15—C20—H20 119.9
C9—C10—H10 119.9 C7—N1—C4 121.8 (2)
C10—C11—C12 119.8 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···O1 0.93 2.67 3.247 (3) 120
C9—H9···O1 0.93 2.64 3.231 (3) 122
C2—H2···O1i 0.93 2.60 3.360 (3) 139
C19—H19···Cg1ii 0.93 2.88 3.689 (3) 146

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Funding Statement

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate for Scientific Research and Technological Development and Setif 1 University for financial support.

References

  1. Bai, Y., Liu, J., Dang, D.-B. & Duan, C.-Y. (2006). Acta Cryst. E62, m1805–m1807.
  2. Bouchama, A., Bendaâs, A., Bouacida, S., Yahiaoui, M., Benard-Rocherulle, P. & Djedouani, A. (2007). Acta Cryst. E63, o1990–o1992.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Hebbachi, R., Djedouani, A., Kadri, S., Mousser, H. & Mousser, A. (2015). Acta Cryst. E71, o109–o110. [DOI] [PMC free article] [PubMed]
  5. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  6. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  7. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  8. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  9. Tabbiche, A., Bouchama, A., Chafai, N., Zaidi, F., Chiter, C., Yahiaoui, M. & Abiza, A. (2022). J. Mol. Struct. 1261, 132865–132879. [DOI] [PMC free article] [PubMed]
  10. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314623000652/hb4414sup1.cif

x-08-x230065-sup1.cif (477.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623000652/hb4414Isup2.hkl

x-08-x230065-Isup2.hkl (321KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623000652/hb4414Isup3.cml

CCDC reference: 2237868

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES