Skip to main content
IUCrData logoLink to IUCrData
. 2023 Jan 26;8(Pt 1):x230060. doi: 10.1107/S2414314623000603

3-(2-Bromo­eth­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

Walid Guerrab a, Abderrazzak El Moutaouakil Ala Allah a, Abdulsalam Alsubari b,*, Joel T Mague c, Youssef Ramli a
Editor: E R T Tiekinkd
PMCID: PMC9912319  PMID: 36794060

The imidazolidine ring is slightly ruffled while the attached phenyl rings are rotated well out of its mean plane. In the crystal, N—H⋯O hydrogen bonds form inversion dimers, which are connected into layers parallel to (101) by C—H⋯O hydrogen bonds. The layers are connected into a three-dimensional network by additional C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions.

Keywords: crystal structure, imidazolidenedione, hydrogen bond, C—H⋯π(ring) inter­action

Abstract

The imidazolidine ring in the title mol­ecule, C17H15BrN2O2, is slightly ruffled [r.m.s. deviation = 0.0192 Å], while the attached phenyl rings at the C atom at the position between the amine and carbonyl centres are rotated well out of its mean plane [dihedral angles with the imidazolidine ring = 63.60 (8) and 76.4 (1)°]. In the crystal, a three-dimensional network features N—H⋯O and C—H⋯O hydrogen bonds together with C—H⋯π(ring) inter­actions. graphic file with name x-08-x230060-scheme1-3D1.jpg

Structure description

Phenytoine (5,5-di­phenyl­imidazolidine-2,4-dione) is a drug widely prescribed as an anti­convulsant agent and for the treatment of many other diseases, including HIV (Weichet, 1974; Havera & Strycker, 1976; Khodair et al., 1997; Thenmozhiyal et al., 2004). Given the wide range of therapeutic applications for such compounds, and in a continuation of our work in this area (Ramli et al., 2017a ,b ; Akrad et al., 2017; Guerrab et al., 2019, 2020a ,b , 2022a ,b ), the title compound (Fig. 1) was prepared and its crystal structure determined.

Figure 1.

Figure 1

The title mol­ecule showing the atom-labelling scheme and 30% probability ellipsoids.

The C1/C2/N1/C3/N2 ring is planar to within 0.0254 (13) Å (r.m.s. deviation of the fitted atoms = 0.0192 Å) with the atoms alternately disposed above and below the mean plane. The C6–C11 and C12–C17 phenyl rings are inclined at 63.60 (8) and 76.4 (1)°, respectively, to the the above plane. In the crystal, inversion dimers are formed by N2—H2⋯O2 hydrogen bonds (Table 1 and Fig. 2) and are connected into layers parallel to (101) by C4—H4A⋯O1 hydrogen bonds (Table 1 and Fig. 2). These layers are joined into a three-dimensional network by C8—H8⋯O1 hydrogen bonds and C10—H10⋯Cg(C12–C17) inter­actions (Table 1 and Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 1.98 2.862 (3) 174
C4—H4A⋯O1ii 0.97 2.49 3.175 (3) 128
C8—H8⋯O1iii 0.93 2.56 3.387 (3) 148
C10—H10⋯Cg3iv 0.93 2.85 3.771 (5) 173

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

Detail of the inter­molecular inter­actions viewed along the b-axis direction. N—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by blue and black dashed lines, while the C—H⋯π(ring) inter­actions are shown by green dashed lines.

Figure 3.

Figure 3

Packing viewed along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2.

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (500 mg, 1.98 mmol), one equivalent of 1,2-di­bromo­ethane (171.58 ml, 1.98 mmol), in absolute di­methyl­formamide (DMF, 15 ml), was added and the resulting solution heated under reflux for 3 h in the presence of 1.2 equivalents of K2CO3 (331.20 mg, 2.37 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from an ethanol solution to yield colourless blocks (Guerrab et al., 2018).

Refinement

Crystal and refinement details are presented in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C17H15BrN2O2
M r 359.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 13.7083 (5), 8.6500 (3), 14.1183 (5)
β (°) 99.724 (1)
V3) 1650.05 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.50
Crystal size (mm) 0.42 × 0.32 × 0.25
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.46, 0.58
No. of measured, independent and observed [I > 2σ(I)] reflections 30580, 4284, 3056
R int 0.028
(sin θ/λ)max−1) 0.678
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.170, 1.06
No. of reflections 4284
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −0.67

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ) and DIAMOND (Brandenburg & Putz, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623000603/tk4088sup1.cif

x-08-x230060-sup1.cif (922.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623000603/tk4088Isup2.hkl

x-08-x230060-Isup2.hkl (341.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623000603/tk4088Isup3.cml

CCDC reference: 2235944

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, YR; methodology, WG and AA; investigation, WG, AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

full crystallographic data

Crystal data

C17H15BrN2O2 F(000) = 728
Mr = 359.22 Dx = 1.446 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 13.7083 (5) Å Cell parameters from 9961 reflections
b = 8.6500 (3) Å θ = 2.3–27.3°
c = 14.1183 (5) Å µ = 2.50 mm1
β = 99.724 (1)° T = 298 K
V = 1650.05 (10) Å3 Block, colourless
Z = 4 0.42 × 0.32 × 0.25 mm

Data collection

Bruker SMART APEX CCD diffractometer 4284 independent reflections
Radiation source: fine-focus sealed tube 3056 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 8.3333 pixels mm-1 θmax = 28.8°, θmin = 1.9°
φ and ω scans h = −18→17
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −11→11
Tmin = 0.46, Tmax = 0.58 l = −19→19
30580 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: mixed
wR(F2) = 0.170 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0893P)2 + 0.7858P] where P = (Fo2 + 2Fc2)/3
4284 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.82 e Å3
0 restraints Δρmin = −0.67 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.93 - 0.97 Å) while that attached to nitrogen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.89 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.42103 (4) 0.22083 (6) 0.82606 (3) 0.0970 (2)
O1 0.18452 (12) 0.1239 (2) 0.63926 (13) 0.0510 (4)
O2 0.48438 (13) −0.0886 (2) 0.61836 (13) 0.0529 (4)
N1 0.33335 (14) −0.0021 (2) 0.65056 (13) 0.0403 (4)
N2 0.37878 (14) 0.0634 (2) 0.51316 (14) 0.0424 (4)
H2 0.417288 0.072482 0.468641 0.051*
C1 0.28014 (15) 0.1311 (3) 0.50632 (15) 0.0361 (4)
C2 0.25666 (15) 0.0868 (3) 0.60614 (15) 0.0374 (4)
C3 0.40774 (16) −0.0157 (3) 0.59400 (16) 0.0395 (5)
C4 0.3411 (2) −0.0664 (3) 0.74680 (19) 0.0549 (6)
H4A 0.349683 −0.177478 0.743311 0.066*
H4B 0.279528 −0.047609 0.770075 0.066*
C5 0.4249 (3) −0.0010 (5) 0.8179 (2) 0.0752 (9)
H5A 0.487132 −0.031874 0.799497 0.090*
H5B 0.422518 −0.044378 0.880776 0.090*
C6 0.20839 (17) 0.0547 (3) 0.42505 (16) 0.0412 (5)
C7 0.12239 (18) −0.0173 (3) 0.4386 (2) 0.0513 (6)
H7 0.104522 −0.017699 0.499314 0.062*
C8 0.0619 (2) −0.0895 (4) 0.3625 (3) 0.0659 (8)
H8 0.003723 −0.137210 0.372572 0.079*
C9 0.0871 (3) −0.0910 (4) 0.2741 (3) 0.0803 (10)
H9 0.046718 −0.140238 0.223419 0.096*
C10 0.1722 (4) −0.0197 (6) 0.2595 (3) 0.1016 (15)
H10 0.189448 −0.020397 0.198523 0.122*
C11 0.2333 (3) 0.0538 (5) 0.3343 (2) 0.0772 (10)
H11 0.290963 0.102283 0.323391 0.093*
C12 0.28154 (17) 0.3076 (3) 0.49925 (17) 0.0406 (5)
C13 0.3654 (2) 0.3905 (3) 0.5354 (3) 0.0680 (8)
H13 0.422881 0.338705 0.562487 0.082*
C14 0.3647 (3) 0.5504 (4) 0.5316 (3) 0.0851 (11)
H14 0.421780 0.605165 0.556105 0.102*
C15 0.2814 (3) 0.6282 (4) 0.4925 (3) 0.0778 (10)
H15 0.281492 0.735614 0.489416 0.093*
C16 0.1985 (3) 0.5476 (4) 0.4581 (3) 0.0750 (9)
H16 0.141001 0.600601 0.432518 0.090*
C17 0.1975 (2) 0.3870 (3) 0.4603 (2) 0.0598 (7)
H17 0.140013 0.333439 0.435486 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1041 (4) 0.0862 (3) 0.0912 (3) −0.0175 (2) −0.0107 (2) −0.0181 (2)
O1 0.0413 (9) 0.0627 (11) 0.0519 (9) 0.0039 (8) 0.0162 (7) −0.0076 (8)
O2 0.0477 (9) 0.0542 (10) 0.0584 (10) 0.0179 (8) 0.0137 (8) 0.0165 (8)
N1 0.0412 (9) 0.0405 (10) 0.0407 (9) 0.0009 (7) 0.0112 (7) 0.0045 (8)
N2 0.0378 (9) 0.0478 (11) 0.0440 (10) 0.0112 (8) 0.0138 (7) 0.0076 (8)
C1 0.0328 (9) 0.0361 (10) 0.0399 (10) 0.0045 (8) 0.0074 (8) −0.0002 (8)
C2 0.0359 (10) 0.0365 (11) 0.0402 (10) −0.0016 (8) 0.0076 (8) −0.0051 (8)
C3 0.0393 (11) 0.0347 (11) 0.0458 (11) 0.0024 (8) 0.0108 (9) 0.0030 (9)
C4 0.0610 (15) 0.0567 (15) 0.0492 (13) −0.0017 (12) 0.0155 (11) 0.0142 (12)
C5 0.080 (2) 0.088 (3) 0.0543 (16) 0.0110 (17) 0.0019 (15) 0.0095 (16)
C6 0.0456 (11) 0.0348 (11) 0.0421 (11) 0.0037 (9) 0.0038 (9) −0.0017 (9)
C7 0.0402 (11) 0.0536 (14) 0.0587 (14) 0.0015 (10) 0.0038 (10) −0.0107 (12)
C8 0.0479 (14) 0.0576 (17) 0.086 (2) −0.0004 (12) −0.0069 (13) −0.0180 (15)
C9 0.089 (2) 0.072 (2) 0.069 (2) −0.0047 (18) −0.0169 (17) −0.0243 (17)
C10 0.127 (3) 0.131 (4) 0.0463 (17) −0.038 (3) 0.0114 (19) −0.022 (2)
C11 0.095 (2) 0.092 (2) 0.0469 (15) −0.032 (2) 0.0203 (15) −0.0127 (16)
C12 0.0421 (11) 0.0354 (11) 0.0438 (11) 0.0011 (8) 0.0055 (9) −0.0012 (9)
C13 0.0529 (15) 0.0466 (15) 0.095 (2) −0.0047 (12) −0.0158 (14) 0.0038 (14)
C14 0.077 (2) 0.0505 (17) 0.117 (3) −0.0192 (16) −0.015 (2) −0.0067 (18)
C15 0.094 (2) 0.0365 (14) 0.100 (3) −0.0010 (15) 0.007 (2) −0.0063 (15)
C16 0.0706 (19) 0.0417 (15) 0.107 (3) 0.0166 (14) −0.0011 (18) 0.0032 (16)
C17 0.0461 (13) 0.0425 (13) 0.085 (2) 0.0069 (10) −0.0042 (13) −0.0032 (13)

Geometric parameters (Å, º)

Br1—C5 1.923 (4) C7—H7 0.9300
O1—C2 1.207 (3) C8—C9 1.351 (5)
O2—C3 1.223 (3) C8—H8 0.9300
N1—C2 1.366 (3) C9—C10 1.366 (6)
N1—C3 1.402 (3) C9—H9 0.9300
N1—C4 1.455 (3) C10—C11 1.386 (5)
N2—C3 1.333 (3) C10—H10 0.9300
N2—C1 1.461 (3) C11—H11 0.9300
N2—H2 0.8899 C12—C17 1.374 (3)
C1—C6 1.529 (3) C12—C13 1.378 (4)
C1—C12 1.530 (3) C13—C14 1.384 (5)
C1—C2 1.546 (3) C13—H13 0.9300
C4—C5 1.502 (5) C14—C15 1.360 (5)
C4—H4A 0.9700 C14—H14 0.9300
C4—H4B 0.9700 C15—C16 1.352 (5)
C5—H5A 0.9700 C15—H15 0.9300
C5—H5B 0.9700 C16—C17 1.389 (4)
C6—C7 1.375 (4) C16—H16 0.9300
C6—C11 1.381 (4) C17—H17 0.9300
C7—C8 1.390 (4)
C2—N1—C3 111.28 (18) C6—C7—C8 120.6 (3)
C2—N1—C4 125.0 (2) C6—C7—H7 119.7
C3—N1—C4 123.6 (2) C8—C7—H7 119.7
C3—N2—C1 113.63 (18) C9—C8—C7 120.5 (3)
C3—N2—H2 121.6 C9—C8—H8 119.8
C1—N2—H2 124.8 C7—C8—H8 119.8
N2—C1—C6 110.32 (18) C8—C9—C10 119.5 (3)
N2—C1—C12 112.45 (18) C8—C9—H9 120.2
C6—C1—C12 113.30 (17) C10—C9—H9 120.2
N2—C1—C2 99.99 (16) C9—C10—C11 120.9 (3)
C6—C1—C2 111.75 (18) C9—C10—H10 119.5
C12—C1—C2 108.26 (17) C11—C10—H10 119.5
O1—C2—N1 126.1 (2) C6—C11—C10 119.8 (3)
O1—C2—C1 126.7 (2) C6—C11—H11 120.1
N1—C2—C1 107.18 (17) C10—C11—H11 120.1
O2—C3—N2 128.5 (2) C17—C12—C13 118.6 (2)
O2—C3—N1 123.8 (2) C17—C12—C1 120.4 (2)
N2—C3—N1 107.71 (18) C13—C12—C1 120.9 (2)
N1—C4—C5 114.0 (2) C12—C13—C14 120.4 (3)
N1—C4—H4A 108.8 C12—C13—H13 119.8
C5—C4—H4A 108.8 C14—C13—H13 119.8
N1—C4—H4B 108.8 C15—C14—C13 120.7 (3)
C5—C4—H4B 108.8 C15—C14—H14 119.6
H4A—C4—H4B 107.7 C13—C14—H14 119.6
C4—C5—Br1 113.0 (2) C16—C15—C14 119.2 (3)
C4—C5—H5A 109.0 C16—C15—H15 120.4
Br1—C5—H5A 109.0 C14—C15—H15 120.4
C4—C5—H5B 109.0 C15—C16—C17 121.2 (3)
Br1—C5—H5B 109.0 C15—C16—H16 119.4
H5A—C5—H5B 107.8 C17—C16—H16 119.4
C7—C6—C11 118.6 (2) C12—C17—C16 119.9 (3)
C7—C6—C1 123.3 (2) C12—C17—H17 120.1
C11—C6—C1 118.0 (2) C16—C17—H17 120.1
C3—N2—C1—C6 −113.5 (2) N2—C1—C6—C11 −54.9 (3)
C3—N2—C1—C12 119.0 (2) C12—C1—C6—C11 72.1 (3)
C3—N2—C1—C2 4.3 (2) C2—C1—C6—C11 −165.2 (3)
C3—N1—C2—O1 −176.7 (2) C11—C6—C7—C8 0.0 (4)
C4—N1—C2—O1 −0.6 (4) C1—C6—C7—C8 −177.7 (2)
C3—N1—C2—C1 3.1 (2) C6—C7—C8—C9 0.4 (5)
C4—N1—C2—C1 179.1 (2) C7—C8—C9—C10 −0.6 (6)
N2—C1—C2—O1 175.5 (2) C8—C9—C10—C11 0.2 (7)
C6—C1—C2—O1 −67.8 (3) C7—C6—C11—C10 −0.4 (6)
C12—C1—C2—O1 57.7 (3) C1—C6—C11—C10 177.4 (4)
N2—C1—C2—N1 −4.3 (2) C9—C10—C11—C6 0.3 (7)
C6—C1—C2—N1 112.5 (2) N2—C1—C12—C17 157.7 (2)
C12—C1—C2—N1 −122.08 (19) C6—C1—C12—C17 31.7 (3)
C1—N2—C3—O2 177.4 (2) C2—C1—C12—C17 −92.8 (3)
C1—N2—C3—N1 −2.8 (3) N2—C1—C12—C13 −25.2 (3)
C2—N1—C3—O2 179.4 (2) C6—C1—C12—C13 −151.1 (3)
C4—N1—C3—O2 3.3 (4) C2—C1—C12—C13 84.3 (3)
C2—N1—C3—N2 −0.4 (3) C17—C12—C13—C14 −0.5 (5)
C4—N1—C3—N2 −176.5 (2) C1—C12—C13—C14 −177.7 (3)
C2—N1—C4—C5 −113.9 (3) C12—C13—C14—C15 0.1 (7)
C3—N1—C4—C5 61.7 (4) C13—C14—C15—C16 0.8 (7)
N1—C4—C5—Br1 55.0 (3) C14—C15—C16—C17 −1.3 (7)
N2—C1—C6—C7 122.8 (2) C13—C12—C17—C16 0.0 (5)
C12—C1—C6—C7 −110.1 (3) C1—C12—C17—C16 177.2 (3)
C2—C1—C6—C7 12.5 (3) C15—C16—C17—C12 0.9 (6)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C12–C17 benzene ring.

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.89 1.98 2.862 (3) 174
C4—H4A···O1ii 0.97 2.49 3.175 (3) 128
C8—H8···O1iii 0.93 2.56 3.387 (3) 148
C10—H10···Cg3iv 0.93 2.85 3.771 (5) 173

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x, −y, −z+1; (iv) −x+1/2, y−1/2, −z+1/2.

Funding Statement

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

  1. Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022a). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2069865 [DOI] [PubMed]
  5. Guerrab, W., Chung, I. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369–376.
  6. Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022b). J. Biomol. Struct. Dyn. 40, 8765–8782. [DOI] [PubMed]
  7. Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020a). J. Mol. Struct. 1205, 127630.
  8. Guerrab, W., Mague, J. T. & Ramli, Y. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1425–1427.
  9. Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.
  10. Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.
  11. Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567. [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.
  14. Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535. [DOI] [PubMed]
  18. Weichet, B. L. (1974). Czech Patent 151,744-747.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623000603/tk4088sup1.cif

x-08-x230060-sup1.cif (922.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623000603/tk4088Isup2.hkl

x-08-x230060-Isup2.hkl (341.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623000603/tk4088Isup3.cml

CCDC reference: 2235944

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES