The crystal structure of the caesium salt of dimethyl-N-benzoylamidophosphate is reported and discussed.
Keywords: crystal structure, carbacylamidophosphate, caesium
Abstract
The caesium salt of dimethyl-N-benzoylamidophosphate, namely, aqua[dimethyl (N-benzoylamido-κO)phosphonato-κO]caesium, [Cs(C9H11NO4P)(H2O)] or CsL·H2O, is reported. The compound crystallizes in the monoclinic crystal system in the P21/c space group and forms a mono-periodic polymeric structure due to the bridging function of the dimethyl-N-benzoylamidophosphate anions towards the caesium cations.
1. Chemical context
The carbacylamidophosphates {CAPh, compounds of general formula [RC(O)N(H)P(O)R′2]}, first introduced by Alexandr Kirsanov in the 1960s, have now become an intensively investigated class of ligands (Amirkhanov et al., 2014 ▸). The structures of the alkali metal salts of CAPh anions, important starting reagents for the synthesis of their transition-metal complexes, have been poorly studied to date. The sodium and potassium salts with 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (HCAPh1) contain ligated water molecules and have general formulae Na2CAPh1
2·2H2O and KCAPh1·H2O, respectively (Litsis et al., 2010 ▸, 2016 ▸). The sodium salt of dimethyl-N-benzoylamidophosphate NaCAPh2 (Kariaka et al., 2019 ▸) and the alkali salts of dimethyl-N-trichloracetylamidophosphate NaCAPh3, RbCAPh3 (Trush et al., 2005 ▸) crystallize in a solvent-free form. In all of these compounds the CAPh ligands are coordinated to the metal ions in a bidentate manner (via the oxygen atoms of the phosphoryl and carbonyl groups) with the formation of six-membered chelate metallocycles. In addition, the phosphoryl or the carbonyl oxygen atom or both usually bridge the cations. Caesium salts of CAPhs have not been reported to date and are of interest as possible dopants in oxide film materials for the improvement of their electric and electron functional characteristics (Vikulova et al., 2013 ▸). Because of this, an actual task is the search for caesium compounds satisfying metal–organic chemical vapor deposition requirements. The combination of caesium ions with bulky organic ligands may result in compounds with molecular crystal structures that possess sufficient volatility. Thus, crystal-structure investigations of caesium salts of CAPh anions are of high interest. Herein, we present the crystal structure of the caesium salt of dimethyl-N-benzoylamidophosphate.
2. Structural commentary
Similar to the sodium salt of dimethyl-N-benzoylamidophosphate (Kariaka et al., 2019 ▸) the title compound crystallizes in the monoclinic crystal system in the P21/c space group and forms a 1D-polymeric structure (Fig. 1 ▸).
Figure 1.
Polymeric chain of the title compound extending along the [001] crystallographic direction.
The asymmetric unit contains the Cs+ and CAPh− ions and a water molecule (Fig. 2 ▸ a). The oxygen atoms of the carbonyl and phosphoryl groups of the dimethyl-N-benzoylamidophosphate anions act as μ2-bridges between Cs+ cations (Fig. 1 ▸). Additionally, both of the methoxy groups are bound to the Cs+ and one of them also acts as a μ2-bridge. Thus, one CAPh− anion is bound to four Cs+ cations (Fig. 2 ▸ b), and each Cs+ cation links four ligand anions. Additionally, a water molecule acts as a μ2-bridge between two Cs+ cations.
Figure 2.
Representation of (a) the asymmetric unit of the title compound and (b) the coordination mode of L −.
The Cs+ ion contacts nine oxygen atoms. It is involved in the six-membered Cs1–O1–C1–N1–P1–O2 ring with one ligand by bonding with the oxygen atoms of the carbonyl and phosphoryl groups, in the four-membered Cs1–O2–P1–O4 ring with another CAPh ligand by bonding with the oxygen atoms of the phosphoryl and methoxy groups and in the six-membered Cs1–O1–C1–N1–P1–O3 ring with the third ligand by bonding with the μ2-oxygen atoms of the carbonyl and methoxy groups. In addition, the Cs+ ion contacts with the μ2-O3 atom of the fourth neighboring CAPh as well as with two molecules of water (Fig. 1 ▸). The six-membered chelate Cs1–O1–C1–N1–P1–O2 ring is not planar with the P1, N1 and C1 atoms deviating from the plane created through Cs1, O1 and O2 atoms by 0.471 (3), 1.403 (4) and 1.039 (4) Å, respectively. The O1—C1—N1—P1 and C1—N1—P1—O2 torsion angles are −2.4 (5) and 56.0 (3)° respectively. The six-membered Cs1–O1–C1–N1–P1–O3 ring is also not planar with the P1, N1 and C1 atoms deviating from the plane created through Cs1, O1 and O3 atoms by 0.942 (4), 0.139 (5) and 0.240 (3) Å, respectively. The C1—N1—P1—O3 torsion angle is −69.3 (3)°. The shortest Cs—O distance in the title compound (Table 1 ▸) is 3.072 (2) Å, which is comparable with the sum of the O2− and Cs+ ionic radii (3.07 Å), so the majority of the Cs—O contacts might be considered as a mainly ionic type of bond. The Cs1—O1 distance is the longest (Table 1 ▸) and longer than the typical Cs—O bonds in crystalline solids (Leclaire et al., 2008 ▸).
Table 1. Selected geometric parameters (Å, °).
| Cs1—O1i | 3.086 (2) | Cs1—O5 | 3.112 (3) |
| Cs1—O1 | 3.631 (3) | Cs1—O5iv | 3.418 (4) |
| Cs1—O2ii | 3.206 (3) | P1—O2 | 1.468 (2) |
| Cs1—O2 | 3.072 (2) | P1—N1 | 1.597 (3) |
| Cs1—O3iii | 3.431 (2) | O1—C1 | 1.247 (3) |
| Cs1—O3i | 3.507 (3) | N1—C1 | 1.325 (4) |
| Cs1—O4ii | 3.310 (2) | ||
| O2—Cs1—O1 | 56.40 (6) | P1—O2—Cs1 | 131.74 (14) |
| O2—P1—N1 | 122.26 (14) | C1—N1—P1 | 121.5 (2) |
| C1—O1—Cs1 | 109.9 (2) | O1—C1—N1 | 126.3 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
The average values of the C=O and P=O bond lengths in the title compound are increased as compared with HL [d(C—O)HL = 1.219 (6) Å, d(P—O)HL = 1.461 (4) Å] and the C—N and P—N bond lengths are decreased [d(C—N)HL = 1.393 (7) Å, d(P—N)HL = 1.667 (5) Å; Mizrahi & Modro, 1982 ▸]. Such changes are consistent with the deprotonation of HL.
3. Supramolecular features
Few intermolecular contacts are observed in the crystal structure of the title compound. There are O—H⋯O hydrogen bonds between the water molecule and the carbonyl and phosphoryl oxygen atoms of the dimethyl-N-benzoylamidophosphate anion (Table 2 ▸). In addition, the water molecule participates in a C8—H8C⋯O5 contact with the hydrogen atom of the methoxy group of the CAPh ligand. The H8C⋯O5 distance is 2.56 Å. There are no intermolecular contacts between the CAPh ligands in the crystal structure of the title compound.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O5—H5A⋯O1v | 0.85 (1) | 2.05 (3) | 2.785 (3) | 143 (4) |
| O5—H5B⋯O2iii | 0.86 (1) | 1.87 (1) | 2.721 (4) | 170 (4) |
Symmetry codes: (iii)
; (v)
.
4. Hirshfeld surface analysis and finger print plots
For visualization of the intermolecular interactions in the crystal structure for the asymmetric unit of the title compound, the Hirshfeld surface (Fig. 3 ▸) and its corresponding two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009 ▸) were calculated using CrystalExplorer17 (Turner et al., 2017 ▸).
Figure 3.
The Hirshfeld surface mapped over d norm and two-dimensional fingerprint plots for the H⋯H (42.2%), H⋯O/O⋯H (19.3%), C⋯H/H⋯C (14.3%) and Cs⋯O/O⋯Cs (12.9%) interactions for the asymmetric unit of the title compound
The dark-red spots on the surface, which correspond to the strongest contacts in the crystal structure of the title compound, are observed for the H⋯O/O⋯H hydrogen bonds between hydrogen atoms of the water molecule and the oxygen atoms of the carbonyl and phosphoryl groups of the CAPh. The lighter red spots observed near the Cs+ cation and the methoxy groups correspond to Cs⋯O/O⋯Cs bonds, which are involved in Cs⋯O contacts and H⋯O contacts with the water molecule. There are no red spots on the Hirshfeld surface near the phenyl ring.
The derived fingerprint plots show that H⋯H contacts make the largest contribution to the Hirshfeld surface (42.2%) and the shortest of them are at d i = d e = 1.2 Å. The second largest contribution (19.3%) comes from the H⋯O/O⋯H contacts, which are the shortest in the title compound (d i + d e = 1.75 Å). The C⋯H/H⋯C and Cs⋯O/O⋯Cs interactions make similar contributions to the surface at 14.3% and 12.9%, respectively. The shortest C⋯H/H⋯C contacts are at d i + d e = 2.8 Å. The shortest Cs⋯O/O⋯Cs contacts are at d i + d e = 3.07 Å. Among the interactions making the smallest contribution to the Hirshfeld surface of the title compound are the O⋯O, C⋯C, Cs⋯H and N⋯H interactions.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016 ▸) for alkali metal salts of carbacylamidophosphates yielded ten hits. Six of them are sodium salts, three are potassium salts and one is a rubidium salt. No CAPh-based caesium salts have been reported to date. In all these reported salts, the carbacylamidophosphates are coordinated to the alkali metals in a bidentate chelating manner via the oxygen atoms of the phosphoryl and carbonyl groups. Additionally, in the majority of these salts, the phosphoryl or the carbonyl oxygen atom or both function as μ2-bridges. In the alkali metal salts of CAPhs that contain methoxy groups, one of the latter is involved in contacts with the metal. In alkali metal salts of CAPhs that contain the CCl3 group, the latter can be also involved in the metal binding. Some CAPh-based salts also contain such additional ligands as water molecules, coordinated to the metal in a μ2-bridging manner, or crown ethers.
6. Synthesis and crystallization
CsL·H2O was obtained by a neutralization reaction between HL (0.458 g, 2 mmol) and caesium carbonate (0.326 g, 1 mmol) solutions in aqueous 2-propanol (1:3). Yield: 0.664 g, 88%, m.p. 353 K. IR (KBr): ν max = 3408 [ν(OH)], 1591 [ν(CC)], 1535 [ν(CO)], 1378 [ν(CN)], 1205 [ν(PO)], 1076, 1038, 928 [ν(PN)], 838, 800, 734, 710, 540, 502,466, 452 cm−1. The low-frequency shift of ν(P=O) and ν(C=O) bands in the IR spectrum of CsL·H2O with respect to HL (Δν HL (P=O) ∼37cm−1, Δν HL (C=O) ∼147cm−1] is typical for bidentate coordination of dimethyl-N-benzoylamidophosphate. 1H NMR (DMSO-d 6): δ = 3.24 (s, H2O), 3.54 [d, 6H, (OCH3)2], 7.27 (t, 3H, Ph), 8.04 (d, 2H, Ph). 31P NMR (acetone): δ = 15.2 (s).
7. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. C-bound H atoms were positioned geometrically and refined as riding [C—H = 0.93–0.96 Å, U iso(H) = 1.2–1.5U eq(C). O-bound H atoms were refined with the restraints O5—H5A = O5—H5B = 0.84±0.01 Å and H5A⋯H5B = 1.62±0.02 Å with U iso(H) = 1.5U eq(O).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Cs(C9H11NO4P)(H2O)] |
| M r | 379.08 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 294 |
| a, b, c (Å) | 14.3676 (4), 6.8089 (2), 13.7336 (3) |
| β (°) | 90.549 (2) |
| V (Å3) | 1343.46 (6) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 2.88 |
| Crystal size (mm) | 0.5 × 0.3 × 0.2 |
| Data collection | |
| Diffractometer | Xcalibur, Sapphire3 |
| Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014 ▸) |
| T min, T max | 0.505, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 13393, 3918, 3169 |
| R int | 0.032 |
| (sin θ/λ)max (Å−1) | 0.703 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.033, 0.076, 1.03 |
| No. of reflections | 3918 |
| No. of parameters | 162 |
| No. of restraints | 3 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.52, −0.79 |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022012166/mw2194sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022012166/mw2194Isup2.hkl
CCDC reference: 2232690
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| [Cs(C9H11NO4P)(H2O)] | F(000) = 736 |
| Mr = 379.08 | Dx = 1.874 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 14.3676 (4) Å | Cell parameters from 3272 reflections |
| b = 6.8089 (2) Å | θ = 3.6–28.2° |
| c = 13.7336 (3) Å | µ = 2.88 mm−1 |
| β = 90.549 (2)° | T = 294 K |
| V = 1343.46 (6) Å3 | Block, colourless |
| Z = 4 | 0.5 × 0.3 × 0.2 mm |
Data collection
| Xcalibur, Sapphire3 diffractometer | 3169 reflections with I > 2σ(I) |
| Detector resolution: 16.1827 pixels mm-1 | Rint = 0.032 |
| ω scans | θmax = 30.0°, θmin = 3.3° |
| Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | h = −19→20 |
| Tmin = 0.505, Tmax = 1.000 | k = −9→9 |
| 13393 measured reflections | l = −18→19 |
| 3918 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0307P)2 + 0.4727P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.03 | (Δ/σ)max = 0.001 |
| 3918 reflections | Δρmax = 0.52 e Å−3 |
| 162 parameters | Δρmin = −0.79 e Å−3 |
| 3 restraints |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cs1 | 0.48526 (2) | 0.71528 (3) | 0.62552 (2) | 0.04947 (8) | |
| O5 | 0.4180 (2) | 0.7620 (5) | 0.8390 (2) | 0.0816 (9) | |
| H5A | 0.371 (2) | 0.806 (8) | 0.869 (3) | 0.122* | |
| H5B | 0.4702 (17) | 0.723 (7) | 0.863 (3) | 0.122* | |
| P1 | 0.66854 (5) | 0.81111 (12) | 0.39433 (6) | 0.04547 (18) | |
| O1 | 0.67121 (16) | 0.4475 (4) | 0.50718 (17) | 0.0667 (7) | |
| O2 | 0.57605 (15) | 0.8484 (4) | 0.43493 (16) | 0.0618 (6) | |
| O3 | 0.65141 (15) | 0.6826 (4) | 0.29932 (16) | 0.0597 (6) | |
| O4 | 0.70550 (16) | 1.0147 (4) | 0.3582 (2) | 0.0768 (8) | |
| N1 | 0.75168 (18) | 0.7207 (4) | 0.45799 (19) | 0.0499 (6) | |
| C1 | 0.74267 (19) | 0.5511 (5) | 0.50430 (18) | 0.0438 (6) | |
| C2 | 0.82889 (19) | 0.4816 (4) | 0.55712 (17) | 0.0415 (6) | |
| C3 | 0.8379 (3) | 0.2855 (5) | 0.5831 (2) | 0.0534 (7) | |
| H3 | 0.789853 | 0.198137 | 0.569188 | 0.064* | |
| C4 | 0.9172 (3) | 0.2191 (6) | 0.6290 (3) | 0.0668 (10) | |
| H4 | 0.922916 | 0.087133 | 0.645488 | 0.080* | |
| C5 | 0.9879 (2) | 0.3473 (7) | 0.6507 (3) | 0.0682 (10) | |
| H5 | 1.041536 | 0.302436 | 0.682000 | 0.082* | |
| C6 | 0.9797 (2) | 0.5411 (7) | 0.6262 (2) | 0.0607 (9) | |
| H6 | 1.027423 | 0.628199 | 0.641683 | 0.073* | |
| C7 | 0.90089 (19) | 0.6085 (5) | 0.5786 (2) | 0.0477 (7) | |
| H7 | 0.896380 | 0.740050 | 0.561044 | 0.057* | |
| C8 | 0.7258 (3) | 0.6063 (7) | 0.2424 (3) | 0.0770 (11) | |
| H8A | 0.772305 | 0.550223 | 0.284658 | 0.116* | |
| H8B | 0.752921 | 0.710446 | 0.205037 | 0.116* | |
| H8C | 0.702224 | 0.506856 | 0.199145 | 0.116* | |
| C9 | 0.7984 (2) | 1.0682 (6) | 0.3429 (3) | 0.0672 (9) | |
| H9A | 0.815023 | 1.038514 | 0.276950 | 0.101* | |
| H9B | 0.838067 | 0.996211 | 0.386767 | 0.101* | |
| H9C | 0.805753 | 1.206393 | 0.354371 | 0.101* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cs1 | 0.05209 (12) | 0.05443 (14) | 0.04190 (11) | 0.00312 (8) | 0.00059 (8) | 0.00041 (8) |
| O5 | 0.0608 (16) | 0.129 (3) | 0.0550 (15) | 0.0128 (17) | 0.0018 (13) | −0.0145 (15) |
| P1 | 0.0379 (4) | 0.0511 (5) | 0.0475 (4) | 0.0007 (3) | 0.0042 (3) | 0.0067 (3) |
| O1 | 0.0604 (13) | 0.0699 (17) | 0.0694 (14) | −0.0275 (12) | −0.0167 (11) | 0.0249 (12) |
| O2 | 0.0450 (11) | 0.0797 (17) | 0.0608 (13) | 0.0057 (11) | 0.0116 (10) | −0.0051 (12) |
| O3 | 0.0486 (12) | 0.0814 (18) | 0.0492 (12) | 0.0121 (11) | 0.0043 (10) | −0.0048 (11) |
| O4 | 0.0550 (13) | 0.0640 (17) | 0.111 (2) | −0.0022 (12) | −0.0041 (13) | 0.0376 (15) |
| N1 | 0.0432 (13) | 0.0525 (16) | 0.0539 (14) | −0.0066 (11) | −0.0026 (11) | 0.0116 (11) |
| C1 | 0.0461 (14) | 0.0500 (17) | 0.0353 (13) | −0.0080 (13) | 0.0028 (11) | 0.0029 (12) |
| C2 | 0.0455 (14) | 0.0512 (17) | 0.0279 (11) | −0.0044 (12) | 0.0034 (10) | 0.0001 (11) |
| C3 | 0.065 (2) | 0.0528 (19) | 0.0425 (15) | −0.0022 (15) | 0.0017 (14) | 0.0034 (13) |
| C4 | 0.079 (3) | 0.063 (2) | 0.058 (2) | 0.0165 (19) | 0.0020 (18) | 0.0101 (17) |
| C5 | 0.057 (2) | 0.096 (3) | 0.0516 (18) | 0.018 (2) | −0.0009 (15) | 0.0060 (19) |
| C6 | 0.0455 (17) | 0.087 (3) | 0.0495 (17) | −0.0040 (16) | −0.0013 (13) | −0.0041 (16) |
| C7 | 0.0470 (15) | 0.0526 (19) | 0.0434 (14) | −0.0034 (14) | 0.0025 (12) | −0.0033 (12) |
| C8 | 0.067 (2) | 0.089 (3) | 0.076 (2) | −0.001 (2) | 0.0257 (19) | −0.020 (2) |
| C9 | 0.072 (2) | 0.059 (2) | 0.072 (2) | −0.0156 (18) | 0.0157 (17) | 0.0108 (17) |
Geometric parameters (Å, º)
| Cs1—O1i | 3.086 (2) | C1—C2 | 1.506 (4) |
| Cs1—O1 | 3.631 (3) | C2—C3 | 1.388 (4) |
| Cs1—O2ii | 3.206 (3) | C2—C7 | 1.377 (4) |
| Cs1—O2 | 3.072 (2) | C3—H3 | 0.9300 |
| Cs1—O3iii | 3.431 (2) | C3—C4 | 1.374 (5) |
| Cs1—O3i | 3.507 (3) | C4—H4 | 0.9300 |
| Cs1—O4ii | 3.310 (2) | C4—C5 | 1.369 (6) |
| Cs1—O5 | 3.112 (3) | C5—H5 | 0.9300 |
| Cs1—O5iv | 3.418 (4) | C5—C6 | 1.367 (6) |
| O5—H5A | 0.853 (10) | C6—H6 | 0.9300 |
| O5—H5B | 0.856 (10) | C6—C7 | 1.379 (4) |
| P1—O2 | 1.468 (2) | C7—H7 | 0.9300 |
| P1—O3 | 1.588 (2) | C8—H8A | 0.9600 |
| P1—O4 | 1.567 (3) | C8—H8B | 0.9600 |
| P1—N1 | 1.597 (3) | C8—H8C | 0.9600 |
| O1—C1 | 1.247 (3) | C9—H9A | 0.9600 |
| O3—C8 | 1.428 (4) | C9—H9B | 0.9600 |
| O4—C9 | 1.402 (4) | C9—H9C | 0.9600 |
| N1—C1 | 1.325 (4) | ||
| O1i—Cs1—O5iv | 93.03 (7) | C1—O1—Cs1i | 141.26 (18) |
| O1i—Cs1—O5 | 111.22 (7) | C1—O1—Cs1 | 109.9 (2) |
| O1i—Cs1—O1 | 95.18 (5) | Cs1—O2—Cs1ii | 112.10 (7) |
| O1i—Cs1—O2ii | 89.03 (6) | P1—O2—Cs1 | 131.74 (14) |
| O1i—Cs1—O3iii | 169.01 (6) | P1—O2—Cs1ii | 108.03 (13) |
| O1i—Cs1—O3i | 59.31 (5) | Cs1vi—O3—Cs1i | 88.49 (5) |
| O1i—Cs1—O4ii | 68.92 (7) | P1—O3—Cs1i | 105.47 (10) |
| O2ii—Cs1—O5iv | 169.77 (6) | P1—O3—Cs1vi | 124.13 (11) |
| O2—Cs1—O5 | 155.59 (8) | C8—O3—Cs1i | 107.7 (2) |
| O2—Cs1—O5iv | 102.27 (6) | C8—O3—Cs1vi | 102.3 (2) |
| O2ii—Cs1—O1 | 123.43 (5) | C8—O3—P1 | 122.6 (2) |
| O2—Cs1—O1 | 56.40 (6) | P1—O4—Cs1ii | 100.77 (10) |
| O2—Cs1—O1i | 85.16 (6) | C9—O4—Cs1ii | 131.0 (2) |
| O2—Cs1—O2ii | 67.90 (7) | C9—O4—P1 | 127.1 (2) |
| O2—Cs1—O3iii | 103.57 (6) | C1—N1—P1 | 121.5 (2) |
| O2ii—Cs1—O3iii | 100.36 (6) | O1—C1—N1 | 126.3 (3) |
| O2—Cs1—O3i | 136.23 (6) | O1—C1—C2 | 118.8 (3) |
| O2ii—Cs1—O3i | 129.70 (5) | N1—C1—C2 | 114.9 (2) |
| O2—Cs1—O4ii | 104.60 (6) | C3—C2—C1 | 120.0 (3) |
| O2ii—Cs1—O4ii | 43.69 (6) | C7—C2—C1 | 121.3 (3) |
| O3i—Cs1—O1 | 99.23 (5) | C7—C2—C3 | 118.7 (3) |
| O3iii—Cs1—O1 | 84.44 (5) | C2—C3—H3 | 119.7 |
| O3iii—Cs1—O3i | 109.86 (5) | C4—C3—C2 | 120.6 (3) |
| O4ii—Cs1—O5iv | 145.89 (7) | C4—C3—H3 | 119.7 |
| O4ii—Cs1—O1 | 157.27 (6) | C3—C4—H4 | 120.0 |
| O4ii—Cs1—O3iii | 114.31 (7) | C5—C4—C3 | 120.0 (4) |
| O4ii—Cs1—O3i | 86.73 (6) | C5—C4—H4 | 120.0 |
| O5—Cs1—O5iv | 95.01 (7) | C4—C5—H5 | 120.0 |
| O5iv—Cs1—O1 | 46.41 (6) | C6—C5—C4 | 119.9 (3) |
| O5—Cs1—O1 | 135.19 (7) | C6—C5—H5 | 120.0 |
| O5—Cs1—O2ii | 93.57 (7) | C5—C6—H6 | 119.8 |
| O5iv—Cs1—O3iii | 78.73 (7) | C5—C6—C7 | 120.4 (3) |
| O5—Cs1—O3i | 67.78 (8) | C7—C6—H6 | 119.8 |
| O5—Cs1—O3iii | 62.88 (7) | C2—C7—C6 | 120.3 (3) |
| O5iv—Cs1—O3i | 59.24 (6) | C2—C7—H7 | 119.9 |
| O5—Cs1—O4ii | 67.35 (7) | C6—C7—H7 | 119.9 |
| Cs1—O5—Cs1v | 95.57 (9) | O3—C8—H8A | 109.5 |
| Cs1—O5—H5A | 138 (3) | O3—C8—H8B | 109.5 |
| Cs1v—O5—H5A | 86 (4) | O3—C8—H8C | 109.5 |
| Cs1v—O5—H5B | 82 (4) | H8A—C8—H8B | 109.5 |
| Cs1—O5—H5B | 93 (3) | H8A—C8—H8C | 109.5 |
| H5A—O5—H5B | 129 (3) | H8B—C8—H8C | 109.5 |
| O2—P1—O3 | 105.88 (13) | O4—C9—H9A | 109.5 |
| O2—P1—O4 | 106.13 (15) | O4—C9—H9B | 109.5 |
| O2—P1—N1 | 122.26 (14) | O4—C9—H9C | 109.5 |
| O3—P1—N1 | 110.27 (14) | H9A—C9—H9B | 109.5 |
| O4—P1—O3 | 106.15 (15) | H9A—C9—H9C | 109.5 |
| O4—P1—N1 | 105.09 (13) | H9B—C9—H9C | 109.5 |
| Cs1i—O1—Cs1 | 84.82 (5) | ||
| Cs1—O1—C1—N1 | −62.6 (3) | O4—P1—O3—Cs1i | −165.17 (10) |
| Cs1i—O1—C1—N1 | 44.7 (5) | O4—P1—O3—Cs1vi | −66.28 (16) |
| Cs1—O1—C1—C2 | 117.8 (2) | O4—P1—O3—C8 | 71.3 (3) |
| Cs1i—O1—C1—C2 | −135.0 (3) | O4—P1—N1—C1 | 176.7 (2) |
| P1—N1—C1—O1 | −2.4 (5) | N1—P1—O2—Cs1 | −13.3 (3) |
| P1—N1—C1—C2 | 177.2 (2) | N1—P1—O2—Cs1ii | 131.82 (14) |
| O1—C1—C2—C3 | 18.9 (4) | N1—P1—O3—Cs1vi | −179.60 (12) |
| O1—C1—C2—C7 | −162.7 (3) | N1—P1—O3—Cs1i | 81.52 (12) |
| O2—P1—O3—Cs1i | −52.64 (14) | N1—P1—O3—C8 | −42.0 (3) |
| O2—P1—O3—Cs1vi | 46.24 (18) | N1—P1—O4—Cs1ii | −141.69 (12) |
| O2—P1—O3—C8 | −176.2 (3) | N1—P1—O4—C9 | 27.5 (4) |
| O2—P1—O4—Cs1ii | −10.89 (15) | N1—C1—C2—C3 | −160.8 (3) |
| O2—P1—O4—C9 | 158.3 (3) | N1—C1—C2—C7 | 17.7 (4) |
| O2—P1—N1—C1 | 56.0 (3) | C1—C2—C3—C4 | 178.3 (3) |
| O3—P1—O2—Cs1 | 113.94 (18) | C1—C2—C7—C6 | −179.3 (2) |
| O3—P1—O2—Cs1ii | −100.92 (13) | C2—C3—C4—C5 | 0.7 (5) |
| O3—P1—O4—Cs1ii | 101.47 (12) | C3—C2—C7—C6 | −0.8 (4) |
| O3—P1—O4—C9 | −89.4 (3) | C3—C4—C5—C6 | −0.2 (5) |
| O3—P1—N1—C1 | −69.3 (3) | C4—C5—C6—C7 | −0.8 (5) |
| O4—P1—O2—Cs1ii | 11.62 (16) | C5—C6—C7—C2 | 1.3 (5) |
| O4—P1—O2—Cs1 | −133.52 (18) | C7—C2—C3—C4 | −0.2 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z−1/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O5—H5A···O1v | 0.85 (1) | 2.05 (3) | 2.785 (3) | 143 (4) |
| O5—H5B···O2iii | 0.86 (1) | 1.87 (1) | 2.721 (4) | 170 (4) |
Symmetry codes: (iii) x, −y+3/2, z+1/2; (v) −x+1, y+1/2, −z+3/2.
Funding Statement
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-05).
References
- Agilent (2014). CrysAlis PRO. Agilent Technologies, Abingdon, England.
- Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Kariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682–14692. [DOI] [PubMed]
- Leclaire, A. (2008). J. Solid State Chem. 181, 2338–2345.
- Litsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426–m427. [DOI] [PMC free article] [PubMed]
- Litsis, O. O., Shatrava, I. O., Amirkhanov, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2016). Struct. Chem. 27, 341–355.
- Mizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627–631.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
- Vikulova, E. S., Zherikova, K. V., Kuratieva, N. V., Morozova, N. B. & Igumenov, I. K. (2013). J. Coord. Chem. 66, 2235–2249.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022012166/mw2194sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022012166/mw2194Isup2.hkl
CCDC reference: 2232690
Additional supporting information: crystallographic information; 3D view; checkCIF report



