Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 17;79(Pt 2):99–102. doi: 10.1107/S2056989023000270

Synthesis and topology analysis of chlorido­triphen­yl(triphenyl phosphate-κO)tin(IV)

Serigne Fallou Pouye a,*,, Sylvain Bernès b,*, Lamine Yaffa c, Waly Diallo c, Ibrahima Cissé a,, Cheikh Abdoul Khadir Diop c, Mamadou Sidibé c, Libasse Diop c
Editor: M Zellerd
PMCID: PMC9912461  PMID: 36793403

In the title compound, a (3,−1) critical point is found on the topology path connecting the (PhO)3P=O and SnPh3Cl moieties, showing that an actual O—Sn covalent bond is formed between the phosphate and the stannane derivatives.

Keywords: crystal structure, stannane, tri­phenyl­phosphate, QTAIM, topology analysis

Abstract

The title SnIV complex, [Sn(C6H5)3Cl(C18H15O4P)], is a formal adduct between triphenyl phosphate (PhO)3P=O and the stannane derivative chlorido­tri­phenyl­tin, SnPh3Cl. The structure refinement reveals that this mol­ecule displays the largest Sn—O bond length for compounds including the X=O→SnPh3Cl fragment (X = P, S, C, or V), 2.6644 (17) Å. However, an AIM topology analysis based on the wavefunction calculated from the refined X-ray structure shows the presence of a bond critical point (3,−1), lying on the inter­basin surface separating the coordinated phosphate O atom and the Sn atom. This study thus shows that an actual polar covalent bond is formed between (PhO)3P=O and SnPh3Cl moieties.

1. Chemical context

An inter­esting feature of tin(IV) is its ability to perform as a hypervalent centre: penta­coordinated tin compounds, like chlorido­(dimethyl sulfoxide)­tri­phenyl­tin, SnPh3(DMSO)Cl (Pouye et al., 2018), are as common as tetra­coordinated tin compounds, for example chlorido­tri­phenyl­tin, SnPh3Cl (Tse et al., 1986; Ng, 1995). This leaves the possibility open to synthesize compounds with inter­mediate valency, between four and five. The title compound is such a compound, which is formally obtained as the adduct of SnPh3Cl and tri­phenyl­phosphate, (PhO)3P=O, for which the X-ray structure is available (Svetich & Caughlan, 1965). While the phosphate group P=O coordinates the Sn centre, more than four electrons in the valence shell of Sn, 4d 105s 25p 2, must be involved in the formation of the bonds around Sn. Herein, we are inter­ested in the nature of the bond between Sn and the phosphate O atom. 1.

2. Structural commentary

The title mol­ecule, SnPh3Cl-(PhO)3P=O, crystallizes in space group P Inline graphic with one mol­ecule in the asymmetric unit (Fig. 1). The P=O group of the phosphate coordinates the Sn centre, trans to the Cl atom, with a P—O—Sn angle of 177.58 (12)°. The five-coordinate Sn centre displays a distorted trigonal–bipyramidal geometry, very different from the tetra­hedral geometry observed for SnPh3Cl, and consistent with dsp 3 hybrid orbitals on the metal centre. Conversely, the phosphate moiety in the title compound features a tetra­hedral geometry close to that of free (PhO)3P=O. The main structural feature is the staggered arrangement of the six phenyl rings, minimizing intra­molecular steric hindrance. The same conformation was previously obtained in the adduct between SnPh3Cl and tri­phenyl­phosphine oxide Ph3P=O (Ng & Kumar Das, 1992) or in the complex chlorido­[chloro­meth­yl(diphen­yl)phosphine oxide]tri­phenyl­tin, SnPh3Cl-Ph2(CH2Cl)P=O (Kapoor et al., 2007).

Figure 1.

Figure 1

Mol­ecular structure of the title compound viewed along the P=O—Sn—Cl axis. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

In the title compound, the Sn—O bond length is 2.6644 (17) Å. A survey of the CSD shows that for X=O→SnPh3Cl fragments where X = P, S, C or V, the X=O—Sn angles range from 119.4 to 176.3°, while Sn—O bond lengths range from 2.29 to 2.64 Å (CSD 5.43 with all updates; Groom et al., 2016). There is no correlation between the bond lengths and angles (R 2 = 0.002 for a linear fit). The largest Sn—O bond in the set of 40 structures retrieved from the CSD is 2.642 Å, for a dinuclear Sn complex (Gholivand et al., 2015) closely related to the title compound. The title complex has thus the largest Sn—O bond length and P=O—Sn angle in this series, which could reflect a bond order less than 1 for the σ bond Sn—O. The situation is quite different, for example, for a non-hindered phosphastanninane, which forms dimers through P=O—Sn bonds, with a short Sn—O bond length of 2.425 Å (Weichmann & Meunier-Piret, 1993).

However, in the title compound, the SnPh3Cl moiety is certainly bound to the phosphate, since the sum of van der Waals radii for Sn and O is 3.69 Å, much larger than the observed Sn—O separation (Bondi, 1964). In other words, SnPh3Cl—(PhO)3P=O can not be described as a co-crystal between SnPh3Cl and (PhO)3P=O. This can be confirmed through the topology analysis of electron density in the complex, and in particular the computation of critical points, in the context of the Bader’s QTAIM theory (quantum theory of atoms in mol­ecules; Bader, 2009). Therefore, starting from the SHELXL refinement (Table 1), a wave function was calculated using ORCA (Neese, 2018), and the structural model further refined with olex2.refine and NoSpherA2 (Bourhis et al., 2015; Kleemiss et al., 2021) within OLEX2 (Dolomanov et al., 2009). The relativistic basis set x2c-SVP and the generalized gradient approximation PBE functional were used. This refined model included isotropic H atoms with free coordinates, and converged to R 1 = 3.26%, a slight improvement over the SHELXL refinement at R 1 = 3.48%.

Table 1. Experimental details.

Crystal data
Chemical formula [Sn(C6H5)3Cl(C18H15O4P)]
M r 711.71
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 295
a, b, c (Å) 10.0455 (4), 12.0370 (5), 13.8304 (6)
α, β, γ (°) 93.552 (4), 93.469 (3), 93.128 (3)
V3) 1663.21 (12)
Z 2
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.50
Crystal size (mm) 0.40 × 0.24 × 0.16
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018)
T min, T max 0.674, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 49761, 9400, 6297
R int 0.032
(sin θ/λ)max−1) 0.697
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.097, 1.00
No. of reflections 9400
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.71

Computer programs: X-AREA (Stoe & Cie, 2018), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), XP in SHELXTL-Plus (Sheldrick, 2008) and publCIF (Westrip, 2010).

A (3,−1) bond critical point is then observed at the midpoint of the atomic pair O1/Sn1, lying on the inter­basin surface separating atoms O1 and Sn1 (Fig. 2). The charge density for this critical point is ρ = 0.024 a.u. (corresponding to 2.552 × 10 10 C m−3), and a topology bond path connects the nuclear critical points (3,−3) placed on O1 and Sn1. The nature of the Sn1—O1 bond can be further characterized by computing the Laplacian of the electron density, Inline graphic , in the vicinity of the bond: in the valence-atomic orbital region between the O and Sn atoms, the bond critical point has a small critical density and a positive Laplacian (Fig. 3). Regions combining Inline graphic and Inline graphic are dominated by closed-shell inter­actions suffering from Pauli repulsions, as in ionic bonds (for an extremely clear and well-written introduction to the valence-bond theory in the AIM context, see Shaik et al., 2015). In the present case, the Sn1—O1 bond can thus be seen as a polar single σ (covalent) bond mainly characterized by electrostatic inter­actions. This description is obviously consistent with the large electronegativity gap between Sn and O, Inline graphic on the Pauling scale. Moreover, the bond polarization is reflected in calculated CHELPG charges (atomic charges fitting the mol­ecular electrostatic potential; Breneman & Wiberg, 1990): +0.597 for Sn1 and −0.543 for O1, as calculated by Multiwfn (Lu & Chen, 2012).

Figure 2.

Figure 2

Contour map of the electron density ρ (brown contour lines) with the gradient vector field of ρ (green flux lines) in the vicinity of the P=O—Sn—Cl group. Bond and nuclear critical points are represented by blue and brown dots, respectively, while the purple bold lines are the bond paths (Bader, 2009) connecting nuclear critical points. The map was calculated and plotted using Multiwfn (Lu & Chen, 2012).

Figure 3.

Figure 3

Contour map of the Laplacian of ρ in the vicinity of the P=O—Sn—Cl group. Solid red lines are isocontours with positive Laplacian (charge depletion regions) and dashed blue lines are isocontours with negative Laplacian (charge accumulation regions). Bond critical points and nuclear critical points are shown as blue and brown dots, respectively. The purple bold lines are the bond paths (Bader, 2009) connecting nuclear critical points in the map. The map was calculated and plotted using Multiwfn (Lu & Chen, 2012).

3. Supra­molecular features

Although six phenyl rings are present in the mol­ecular complex, its conformation does not favour the emergence of π–π inter­actions in the crystal structure. The only relevant inter­molecular inter­actions are weak C—H⋯O contacts. Two neighbouring complexes are connected through weak inter­actions between the oxygen atoms O3 in the (PhO)3P=O moieties, and the hydrogen atoms H30A belonging to neighbouring molecules (d H⋯O = 2.71 Å and θ C—H⋯O = 146.8°; Table 2, entry 1). These inter­actions lead to discrete dimers, forming centrosymmetric Inline graphic (8) ring motifs (Fig. 4). Other similar contacts in the crystal have their C—H⋯O angles below 120° (Table 2, entry 2), and are thus expected to have no contribution to crystal stabilization (Wood et al., 2009).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30A⋯O3i 0.93 2.71 3.526 (4) 147
C30—H30A⋯O2i 0.93 3.13 3.593 (4) 113

Symmetry code: (i) Inline graphic .

Figure 4.

Figure 4

Dimeric cluster in the crystal structure, formed through weak C—H⋯O hydrogen bonds (dashed blue lines).

4. Synthesis and crystallization

This organotin complex was synthesized by reacting Ph3PO4 (1 mmol, 326 mg) on SnPh3Cl (1 mmol, 385 mg) in ethanol. The mixture was refluxed (T = 473 K) under stirring for 1 h. The obtained solution was slightly cloudy, then it was filtered off. The filtrate was slowly evaporated at 300 K for one week, to give colourless crystals suitable for X-ray diffraction.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in calculated positions, with C—H bond lengths of 0.93 Å and U iso(H) = 1.2 U eq(carrier C atom).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023000270/zl4052sup1.cif

e-79-00099-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000270/zl4052Isup2.hkl

e-79-00099-Isup2.hkl (745.9KB, hkl)

CCDC reference: 2235598

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Hugo Vazquez-Lima (ICUAP, Puebla, Mexico) for guidance in the QTAIM inter­pretation.

supplementary crystallographic information

Crystal data

[Sn(C6H5)3Cl(C18H15O4P)] Z = 2
Mr = 711.71 F(000) = 720
Triclinic, P1 Dx = 1.421 Mg m3
a = 10.0455 (4) Å Ag Kα radiation, λ = 0.56083 Å
b = 12.0370 (5) Å Cell parameters from 46721 reflections
c = 13.8304 (6) Å θ = 2.3–25.3°
α = 93.552 (4)° µ = 0.50 mm1
β = 93.469 (3)° T = 295 K
γ = 93.128 (3)° Prism, colourless
V = 1663.21 (12) Å3 0.40 × 0.24 × 0.16 mm

Data collection

Stoe Stadivari diffractometer 9400 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source 6297 reflections with I > 2σ(I)
Graded multilayer mirror monochromator Rint = 0.032
Detector resolution: 5.81 pixels mm-1 θmax = 23.0°, θmin = 2.3°
ω scans h = −12→13
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2018) k = −16→16
Tmin = 0.674, Tmax = 1.000 l = −19→19
49761 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.9327P] where P = (Fo2 + 2Fc2)/3
9400 reflections (Δ/σ)max = 0.001
388 parameters Δρmax = 0.76 e Å3
0 restraints Δρmin = −0.71 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.73207 (2) 0.23155 (2) 0.60158 (2) 0.06119 (8)
Cl1 0.79804 (12) 0.18751 (10) 0.43845 (7) 0.1046 (3)
C1 0.8729 (3) 0.3660 (2) 0.6418 (2) 0.0604 (7)
C2 0.8753 (4) 0.4636 (3) 0.5943 (3) 0.0792 (9)
H2A 0.814217 0.470870 0.542093 0.095*
C3 0.9677 (4) 0.5510 (3) 0.6234 (3) 0.0980 (12)
H3A 0.967353 0.616668 0.591253 0.118*
C4 1.0582 (4) 0.5410 (4) 0.6982 (4) 0.1008 (13)
H4A 1.120050 0.599718 0.717309 0.121*
C5 1.0591 (4) 0.4452 (4) 0.7457 (3) 0.1002 (12)
H5A 1.122164 0.438458 0.796706 0.120*
C6 0.9660 (3) 0.3576 (3) 0.7182 (2) 0.0774 (9)
H6A 0.966543 0.292768 0.751420 0.093*
C7 0.7760 (3) 0.0812 (2) 0.6660 (2) 0.0610 (7)
C8 0.8984 (3) 0.0358 (3) 0.6565 (3) 0.0816 (9)
H8A 0.961034 0.069823 0.619299 0.098*
C9 0.9288 (4) −0.0604 (4) 0.7022 (4) 0.1027 (14)
H9A 1.011318 −0.090327 0.695210 0.123*
C10 0.8386 (5) −0.1106 (3) 0.7568 (4) 0.1053 (14)
H10A 0.860158 −0.173904 0.788342 0.126*
C11 0.7168 (5) −0.0686 (3) 0.7656 (3) 0.0940 (11)
H11A 0.654337 −0.104370 0.801756 0.113*
C12 0.6851 (3) 0.0271 (3) 0.7210 (2) 0.0733 (8)
H12A 0.601730 0.055436 0.728065 0.088*
C13 0.5272 (3) 0.2577 (2) 0.56897 (19) 0.0601 (6)
C14 0.4720 (3) 0.3564 (3) 0.5952 (2) 0.0714 (8)
H14A 0.526938 0.416259 0.622712 0.086*
C15 0.3369 (4) 0.3680 (4) 0.5813 (3) 0.0947 (12)
H15A 0.301226 0.435244 0.599491 0.114*
C16 0.2548 (4) 0.2808 (5) 0.5407 (3) 0.1001 (13)
H16A 0.163297 0.288594 0.532147 0.120*
C17 0.3069 (4) 0.1832 (4) 0.5131 (3) 0.0960 (12)
H17A 0.250940 0.124019 0.485647 0.115*
C18 0.4433 (3) 0.1712 (3) 0.5257 (2) 0.0771 (9)
H18A 0.478618 0.104607 0.504898 0.093*
P1 0.61706 (6) 0.31982 (6) 0.87530 (5) 0.04891 (15)
O1 0.65797 (17) 0.28553 (15) 0.77937 (12) 0.0551 (4)
O2 0.69211 (17) 0.26752 (17) 0.96296 (13) 0.0599 (4)
O3 0.63487 (19) 0.44813 (15) 0.90462 (13) 0.0581 (4)
O4 0.46665 (17) 0.29271 (16) 0.89412 (14) 0.0599 (5)
C19 0.8332 (3) 0.2685 (2) 0.97307 (19) 0.0580 (6)
C20 0.8990 (3) 0.1840 (3) 0.9319 (2) 0.0817 (10)
H20A 0.852379 0.127052 0.893273 0.098*
C21 1.0357 (4) 0.1836 (4) 0.9480 (3) 0.1044 (14)
H21A 1.081703 0.124937 0.922090 0.125*
C22 1.1033 (4) 0.2699 (5) 1.0023 (3) 0.1053 (14)
H22A 1.195691 0.270597 1.012357 0.126*
C23 1.0363 (4) 0.3540 (4) 1.0413 (3) 0.1084 (14)
H23A 1.083077 0.412464 1.078131 0.130*
C24 0.8999 (3) 0.3543 (3) 1.0273 (3) 0.0854 (10)
H24A 0.853900 0.412281 1.054415 0.102*
C25 0.5859 (3) 0.5270 (2) 0.84188 (18) 0.0531 (6)
C26 0.6648 (3) 0.5650 (2) 0.7723 (2) 0.0670 (7)
H26A 0.749342 0.538655 0.765506 0.080*
C27 0.6166 (4) 0.6431 (3) 0.7122 (3) 0.0854 (10)
H27A 0.668221 0.668757 0.663711 0.103*
C28 0.4931 (5) 0.6831 (3) 0.7239 (3) 0.0926 (12)
H28A 0.460557 0.735260 0.683014 0.111*
C29 0.4173 (4) 0.6455 (3) 0.7964 (3) 0.0966 (12)
H29A 0.334446 0.674085 0.805287 0.116*
C30 0.4631 (3) 0.5663 (3) 0.8557 (2) 0.0732 (8)
H30A 0.411566 0.540112 0.904119 0.088*
C31 0.4067 (2) 0.1843 (2) 0.8716 (2) 0.0599 (7)
C32 0.3518 (3) 0.1565 (3) 0.7802 (3) 0.0808 (9)
H32A 0.355169 0.207309 0.732295 0.097*
C33 0.2910 (4) 0.0513 (4) 0.7604 (4) 0.1065 (14)
H33A 0.254556 0.030130 0.698124 0.128*
C34 0.2843 (4) −0.0213 (4) 0.8311 (5) 0.126 (2)
H34A 0.243098 −0.091981 0.817172 0.151*
C35 0.3373 (4) 0.0085 (4) 0.9224 (5) 0.133 (2)
H35A 0.331360 −0.041837 0.970579 0.159*
C36 0.4003 (3) 0.1133 (3) 0.9443 (3) 0.0913 (12)
H36A 0.436863 0.134381 1.006540 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.06419 (12) 0.06082 (13) 0.05806 (12) 0.00085 (9) 0.00682 (8) −0.00058 (8)
Cl1 0.1275 (8) 0.1191 (8) 0.0673 (5) 0.0055 (7) 0.0309 (5) −0.0156 (5)
C1 0.0594 (15) 0.0638 (17) 0.0582 (16) −0.0030 (13) 0.0183 (12) −0.0024 (13)
C2 0.084 (2) 0.083 (2) 0.072 (2) −0.0097 (18) 0.0163 (17) 0.0134 (17)
C3 0.107 (3) 0.084 (3) 0.105 (3) −0.025 (2) 0.030 (2) 0.017 (2)
C4 0.091 (3) 0.095 (3) 0.112 (3) −0.033 (2) 0.024 (2) −0.016 (3)
C5 0.086 (2) 0.116 (3) 0.092 (3) −0.014 (2) −0.009 (2) −0.014 (2)
C6 0.0771 (19) 0.078 (2) 0.075 (2) −0.0028 (17) 0.0031 (16) −0.0006 (17)
C7 0.0608 (15) 0.0557 (16) 0.0642 (17) 0.0002 (12) 0.0015 (13) −0.0097 (13)
C8 0.0617 (17) 0.077 (2) 0.105 (3) 0.0056 (16) −0.0001 (17) −0.0011 (19)
C9 0.076 (2) 0.085 (3) 0.144 (4) 0.019 (2) −0.029 (2) 0.000 (3)
C10 0.124 (4) 0.067 (2) 0.121 (4) 0.008 (2) −0.030 (3) 0.011 (2)
C11 0.129 (3) 0.065 (2) 0.087 (3) −0.014 (2) 0.016 (2) 0.0034 (18)
C12 0.082 (2) 0.0543 (17) 0.083 (2) 0.0007 (15) 0.0145 (17) −0.0064 (15)
C13 0.0697 (16) 0.0635 (17) 0.0458 (14) 0.0025 (13) −0.0029 (12) 0.0015 (12)
C14 0.084 (2) 0.0667 (19) 0.0622 (18) 0.0093 (16) −0.0065 (15) −0.0029 (14)
C15 0.099 (3) 0.108 (3) 0.080 (2) 0.043 (2) −0.003 (2) 0.005 (2)
C16 0.070 (2) 0.153 (4) 0.078 (2) 0.017 (3) −0.0119 (18) 0.016 (3)
C17 0.082 (2) 0.120 (3) 0.080 (2) −0.022 (2) −0.0217 (19) 0.008 (2)
C18 0.089 (2) 0.071 (2) 0.0669 (19) −0.0022 (17) −0.0087 (16) −0.0092 (16)
P1 0.0494 (3) 0.0549 (4) 0.0420 (3) 0.0027 (3) 0.0035 (3) −0.0006 (3)
O1 0.0571 (9) 0.0637 (11) 0.0437 (9) 0.0015 (8) 0.0061 (7) −0.0044 (8)
O2 0.0549 (10) 0.0743 (13) 0.0510 (10) 0.0046 (9) 0.0009 (8) 0.0111 (9)
O3 0.0720 (11) 0.0541 (10) 0.0464 (9) 0.0041 (9) −0.0033 (8) −0.0042 (8)
O4 0.0513 (9) 0.0674 (12) 0.0615 (11) 0.0064 (9) 0.0094 (8) 0.0008 (9)
C19 0.0562 (14) 0.0694 (18) 0.0484 (14) 0.0061 (13) −0.0022 (11) 0.0069 (12)
C20 0.080 (2) 0.093 (2) 0.070 (2) 0.0265 (18) −0.0112 (16) −0.0145 (18)
C21 0.088 (3) 0.128 (4) 0.100 (3) 0.053 (3) 0.000 (2) −0.005 (3)
C22 0.063 (2) 0.155 (4) 0.097 (3) 0.016 (2) −0.011 (2) 0.005 (3)
C23 0.073 (2) 0.128 (4) 0.117 (3) −0.002 (2) −0.020 (2) −0.019 (3)
C24 0.074 (2) 0.091 (2) 0.087 (2) 0.0094 (18) −0.0114 (18) −0.0196 (19)
C25 0.0626 (14) 0.0483 (14) 0.0464 (13) −0.0016 (11) 0.0005 (11) −0.0056 (11)
C26 0.0746 (18) 0.0590 (17) 0.0669 (18) −0.0069 (14) 0.0164 (14) −0.0012 (14)
C27 0.126 (3) 0.0600 (19) 0.070 (2) −0.012 (2) 0.015 (2) 0.0070 (16)
C28 0.126 (3) 0.066 (2) 0.083 (3) 0.004 (2) −0.022 (2) 0.0166 (18)
C29 0.085 (2) 0.096 (3) 0.112 (3) 0.028 (2) −0.001 (2) 0.018 (2)
C30 0.0692 (18) 0.081 (2) 0.071 (2) 0.0089 (16) 0.0116 (15) 0.0089 (16)
C31 0.0414 (12) 0.0672 (17) 0.0730 (18) 0.0040 (12) 0.0091 (12) 0.0137 (14)
C32 0.0707 (19) 0.091 (2) 0.078 (2) −0.0193 (17) 0.0099 (16) 0.0018 (18)
C33 0.078 (2) 0.108 (3) 0.127 (4) −0.028 (2) 0.010 (2) −0.022 (3)
C34 0.069 (2) 0.075 (3) 0.232 (7) −0.010 (2) −0.009 (3) 0.016 (4)
C35 0.071 (2) 0.109 (4) 0.224 (6) −0.005 (2) −0.017 (3) 0.096 (4)
C36 0.0629 (18) 0.107 (3) 0.107 (3) 0.0014 (18) −0.0116 (18) 0.050 (2)

Geometric parameters (Å, º)

Sn1—C1 2.116 (3) P1—O4 1.5690 (18)
Sn1—C7 2.122 (3) P1—O3 1.5701 (19)
Sn1—C13 2.124 (3) P1—O2 1.5718 (19)
Sn1—Cl1 2.4252 (9) O2—C19 1.415 (3)
Sn1—O1 2.6644 (17) O3—C25 1.414 (3)
C1—C6 1.380 (4) O4—C31 1.416 (3)
C1—C2 1.381 (4) C19—C20 1.357 (4)
C2—C3 1.388 (5) C19—C24 1.359 (4)
C2—H2A 0.9300 C20—C21 1.378 (5)
C3—C4 1.351 (6) C20—H20A 0.9300
C3—H3A 0.9300 C21—C22 1.367 (6)
C4—C5 1.362 (6) C21—H21A 0.9300
C4—H4A 0.9300 C22—C23 1.349 (6)
C5—C6 1.389 (5) C22—H22A 0.9300
C5—H5A 0.9300 C23—C24 1.373 (5)
C6—H6A 0.9300 C23—H23A 0.9300
C7—C8 1.382 (4) C24—H24A 0.9300
C7—C12 1.385 (4) C25—C30 1.365 (4)
C8—C9 1.393 (5) C25—C26 1.368 (4)
C8—H8A 0.9300 C26—C27 1.381 (5)
C9—C10 1.355 (6) C26—H26A 0.9300
C9—H9A 0.9300 C27—C28 1.369 (6)
C10—C11 1.359 (6) C27—H27A 0.9300
C10—H10A 0.9300 C28—C29 1.379 (6)
C11—C12 1.382 (5) C28—H28A 0.9300
C11—H11A 0.9300 C29—C30 1.377 (5)
C12—H12A 0.9300 C29—H29A 0.9300
C13—C14 1.376 (4) C30—H30A 0.9300
C13—C18 1.386 (4) C31—C36 1.362 (4)
C14—C15 1.375 (5) C31—C32 1.362 (4)
C14—H14A 0.9300 C32—C33 1.380 (5)
C15—C16 1.368 (6) C32—H32A 0.9300
C15—H15A 0.9300 C33—C34 1.354 (7)
C16—C17 1.355 (6) C33—H33A 0.9300
C16—H16A 0.9300 C34—C35 1.359 (7)
C17—C18 1.387 (5) C34—H34A 0.9300
C17—H17A 0.9300 C35—C36 1.388 (6)
C18—H18A 0.9300 C35—H35A 0.9300
P1—O1 1.4547 (18) C36—H36A 0.9300
C1—Sn1—C7 114.01 (11) O4—P1—O3 102.20 (11)
C1—Sn1—C13 121.56 (11) O1—P1—O2 115.88 (11)
C7—Sn1—C13 116.86 (11) O4—P1—O2 102.24 (10)
C1—Sn1—Cl1 98.73 (8) O3—P1—O2 102.52 (10)
C7—Sn1—Cl1 99.82 (8) P1—O1—Sn1 177.58 (12)
C13—Sn1—Cl1 99.13 (8) C19—O2—P1 121.84 (16)
C6—C1—C2 118.1 (3) C25—O3—P1 120.89 (15)
C6—C1—Sn1 119.7 (2) C31—O4—P1 120.63 (16)
C2—C1—Sn1 122.2 (2) C20—C19—C24 121.3 (3)
C1—C2—C3 120.8 (4) C20—C19—O2 120.6 (3)
C1—C2—H2A 119.6 C24—C19—O2 118.1 (3)
C3—C2—H2A 119.6 C19—C20—C21 119.3 (4)
C4—C3—C2 120.2 (4) C19—C20—H20A 120.3
C4—C3—H3A 119.9 C21—C20—H20A 120.3
C2—C3—H3A 119.9 C22—C21—C20 119.6 (4)
C3—C4—C5 120.2 (4) C22—C21—H21A 120.2
C3—C4—H4A 119.9 C20—C21—H21A 120.2
C5—C4—H4A 119.9 C23—C22—C21 120.2 (4)
C4—C5—C6 120.2 (4) C23—C22—H22A 119.9
C4—C5—H5A 119.9 C21—C22—H22A 119.9
C6—C5—H5A 119.9 C22—C23—C24 120.7 (4)
C1—C6—C5 120.5 (4) C22—C23—H23A 119.7
C1—C6—H6A 119.8 C24—C23—H23A 119.7
C5—C6—H6A 119.8 C19—C24—C23 118.9 (4)
C8—C7—C12 117.8 (3) C19—C24—H24A 120.6
C8—C7—Sn1 120.8 (2) C23—C24—H24A 120.6
C12—C7—Sn1 121.4 (2) C30—C25—C26 122.2 (3)
C7—C8—C9 120.6 (4) C30—C25—O3 118.5 (2)
C7—C8—H8A 119.7 C26—C25—O3 119.2 (3)
C9—C8—H8A 119.7 C25—C26—C27 118.7 (3)
C10—C9—C8 120.3 (4) C25—C26—H26A 120.7
C10—C9—H9A 119.8 C27—C26—H26A 120.7
C8—C9—H9A 119.8 C28—C27—C26 120.3 (3)
C9—C10—C11 120.0 (4) C28—C27—H27A 119.8
C9—C10—H10A 120.0 C26—C27—H27A 119.8
C11—C10—H10A 120.0 C27—C28—C29 119.7 (3)
C10—C11—C12 120.4 (4) C27—C28—H28A 120.2
C10—C11—H11A 119.8 C29—C28—H28A 120.2
C12—C11—H11A 119.8 C30—C29—C28 120.7 (4)
C11—C12—C7 120.8 (3) C30—C29—H29A 119.7
C11—C12—H12A 119.6 C28—C29—H29A 119.7
C7—C12—H12A 119.6 C25—C30—C29 118.4 (3)
C14—C13—C18 118.1 (3) C25—C30—H30A 120.8
C14—C13—Sn1 122.1 (2) C29—C30—H30A 120.8
C18—C13—Sn1 119.7 (2) C36—C31—C32 122.4 (3)
C15—C14—C13 121.0 (3) C36—C31—O4 118.1 (3)
C15—C14—H14A 119.5 C32—C31—O4 119.4 (3)
C13—C14—H14A 119.5 C31—C32—C33 118.5 (4)
C16—C15—C14 120.2 (4) C31—C32—H32A 120.8
C16—C15—H15A 119.9 C33—C32—H32A 120.8
C14—C15—H15A 119.9 C34—C33—C32 120.3 (4)
C17—C16—C15 119.9 (4) C34—C33—H33A 119.9
C17—C16—H16A 120.0 C32—C33—H33A 119.9
C15—C16—H16A 120.0 C33—C34—C35 120.5 (4)
C16—C17—C18 120.3 (4) C33—C34—H34A 119.7
C16—C17—H17A 119.8 C35—C34—H34A 119.7
C18—C17—H17A 119.8 C34—C35—C36 120.5 (4)
C13—C18—C17 120.4 (4) C34—C35—H35A 119.7
C13—C18—H18A 119.8 C36—C35—H35A 119.7
C17—C18—H18A 119.8 C31—C36—C35 117.7 (4)
O1—P1—O4 116.16 (11) C31—C36—H36A 121.1
O1—P1—O3 115.72 (11) C35—C36—H36A 121.1
C6—C1—C2—C3 −0.8 (5) O2—P1—O4—C31 −77.4 (2)
Sn1—C1—C2—C3 179.0 (3) P1—O2—C19—C20 −89.0 (3)
C1—C2—C3—C4 0.9 (6) P1—O2—C19—C24 92.9 (3)
C2—C3—C4—C5 −0.2 (7) C24—C19—C20—C21 2.1 (5)
C3—C4—C5—C6 −0.7 (7) O2—C19—C20—C21 −176.0 (3)
C2—C1—C6—C5 0.0 (5) C19—C20—C21—C22 −2.2 (6)
Sn1—C1—C6—C5 −179.9 (3) C20—C21—C22—C23 1.2 (7)
C4—C5—C6—C1 0.8 (6) C21—C22—C23—C24 0.0 (8)
C12—C7—C8—C9 −0.8 (5) C20—C19—C24—C23 −0.9 (6)
Sn1—C7—C8—C9 177.4 (3) O2—C19—C24—C23 177.2 (3)
C7—C8—C9—C10 −0.2 (6) C22—C23—C24—C19 −0.2 (7)
C8—C9—C10—C11 1.4 (7) P1—O3—C25—C30 95.6 (3)
C9—C10—C11—C12 −1.6 (7) P1—O3—C25—C26 −87.1 (3)
C10—C11—C12—C7 0.6 (6) C30—C25—C26—C27 −2.0 (4)
C8—C7—C12—C11 0.6 (5) O3—C25—C26—C27 −179.2 (3)
Sn1—C7—C12—C11 −177.6 (3) C25—C26—C27—C28 1.3 (5)
C18—C13—C14—C15 1.7 (5) C26—C27—C28—C29 0.5 (6)
Sn1—C13—C14—C15 −174.0 (3) C27—C28—C29—C30 −1.6 (6)
C13—C14—C15—C16 −0.1 (6) C26—C25—C30—C29 0.9 (5)
C14—C15—C16—C17 −0.8 (6) O3—C25—C30—C29 178.1 (3)
C15—C16—C17—C18 −0.1 (6) C28—C29—C30—C25 0.9 (6)
C14—C13—C18—C17 −2.6 (5) P1—O4—C31—C36 96.4 (3)
Sn1—C13—C18—C17 173.3 (3) P1—O4—C31—C32 −86.9 (3)
C16—C17—C18—C13 1.8 (6) C36—C31—C32—C33 −2.0 (5)
O1—P1—O2—C19 49.9 (2) O4—C31—C32—C33 −178.5 (3)
O4—P1—O2—C19 177.3 (2) C31—C32—C33—C34 1.3 (6)
O3—P1—O2—C19 −77.1 (2) C32—C33—C34—C35 −0.1 (7)
O1—P1—O3—C25 50.1 (2) C33—C34—C35—C36 −0.6 (8)
O4—P1—O3—C25 −77.1 (2) C32—C31—C36—C35 1.3 (5)
O2—P1—O3—C25 177.17 (18) O4—C31—C36—C35 177.8 (3)
O1—P1—O4—C31 49.7 (2) C34—C35—C36—C31 0.0 (7)
O3—P1—O4—C31 176.67 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C30—H30A···O3i 0.93 2.71 3.526 (4) 147
C30—H30A···O2i 0.93 3.13 3.593 (4) 113

Symmetry code: (i) −x+1, −y+1, −z+2.

Funding Statement

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

  1. Bader, R. F. W. (2009). J. Phys. Chem. A, 113, 10391–10396. [DOI] [PubMed]
  2. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Breneman, C. M. & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361–373.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Gholivand, K., Gholami, A., Ebrahimi, A. A. V., Abolghasemi, S. T., Esrafili, M. D., Fadaei, F. T. & Schenk, K. J. (2015). RSC Adv. 5, 17482–17492.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Kapoor, R. N., Cervantes-Lee, F. & Pannell, K. H. (2007). J. Mex. Chem. Soc. 51, 122–128.
  9. Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. [DOI] [PMC free article] [PubMed]
  10. Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592. [DOI] [PubMed]
  11. Neese, F. (2018). WIREs Comput. Mol. Sci. 8, e1327.
  12. Ng, S. W. (1995). Acta Cryst. C51, 2292–2293.
  13. Ng, S. W. & Kumar Das, V. G. (1992). Acta Cryst. C48, 1839–1841.
  14. Pouye, S. F., Cissé, I., Diop, L., Ríos-Merino, F. J. & Bernès, S. (2018). Acta Cryst. E74, 163–166. [DOI] [PMC free article] [PubMed]
  15. Shaik, S., Danovich, D., Braida, B., Wu, W. & Hiberty, P. C. (2015). Struct. Bond. 170, 169–211. This book chapter is available from the HAL repository: https://hal.archives-ouvertes.fr/hal-01627700
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.
  20. Svetich, G. W. & Caughlan, C. N. (1965). Acta Cryst. 19, 645–650.
  21. Tse, J. S., Lee, F. L. & Gabe, E. J. (1986). Acta Cryst. C42, 1876–1878.
  22. Weichmann, H. & Meunier-Piret, J. (1993). Organometallics, 12, 4097–4103.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023000270/zl4052sup1.cif

e-79-00099-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000270/zl4052Isup2.hkl

e-79-00099-Isup2.hkl (745.9KB, hkl)

CCDC reference: 2235598

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES