Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 10;79(Pt 2):79–84. doi: 10.1107/S2056989023000166

Synthesis and structures of dinuclear palladium complexes with 1,3-benzimidazolidine-2-thione and 1,3-imidazoline-2-thione

Tarlok S Lobana a,*, Bandana Thakur a, Rajni Aggarwal a, Ray J Butcher b, Matthias Zeller c, Jerry P Jasinski d,
Editor: J Ellenae
PMCID: PMC9912462  PMID: 36793404

The synthesis and structures of dinuclear palladium complexes with 1,3-benzimidazolidine-2-thione and 1,3-imidazoline-2-thione are reported.

Keywords: crystal structure, dinuclear palladium complexes, benzimidazolidine- 2-thione complexes, imidazoline-2-thione complexes

Abstract

The synthesis and structures of dinuclear palladium complexes with 1,3-benz­imidazolidine-2-thione (bzimtH) and 1,3-imidazoline-2-thione (imtH) are reported, namely, bis­(μ-1H-benzimidazole-2-thiol­ato)-κ2 N 3:S2 S:N 3-bis­[cyanido(tri­phenyl­phosphine-κP)palladium(II)], [Pd2(C7H5N2S)2(CN)2(C18H15P)2] or [Pd2(μ-N,S-bzimtH)2(CN)2(PPh3)2] (1), and bis­(μ-1H-imidazole-2-thiol­ato)-κ2 N 3:S2 S:N 3-bis­[cyanido(tri­phenyl­phosphine-κP)palladium(II)] aceto­nitrile 0.58-solvate, [Pd2(C3H3N2S)2(CN)2(C18H15P)2]·0.58C2H3N or [Pd2(μ-N,S-imtH)2(CN)2(PPh3)2]·0.58C2H3N (2). The compound [Pd2(μ-N,S-bzimtH)2(CN)2(PPh3)2] is located on a crystallographic twofold axis while [Pd2(μ-N,S-imtH)2(CN)2(PPh3)2]. 0.58(C2H3N) contains two partially occupied aceto­nitrile solvent mol­ecules with occupancies of 0.25 and 0.33. In both of these compounds, the anionic bzimtH and imtH ligands coordinate through N,S-donor atoms in a bridging mode, covering four coordination sites of two metal centers and other two sites are occupied by two PPh3 ligand mol­ecules. Finally, the remaining two sites of two metal centers are occupied by cyano groups, abstracted by the metals from the solvent during reaction. In the packing of the 1,3-benzimidazolidine- 2-thione and 1,3-imidazoline-2-thione complexes, there are intra­molecular π–π inter­actions involving the thione moiety as well as an N—H⋯N hydrogen bond linking the thione and cyano ligands. In addition, in 2, as well as the π–π inter­action involving the thione moieties, there is an additional π–π inter­action involving one of the thione moieties and an adjacent phenyl ring from the tri­phenyl­phosphine ligand. There are also C—H⋯N inter­actions between the imidazoline rings and the aceto­nitrile N atoms.

1. Chemical context

The coordination chemistry of N,S-donor heterocyclic-2-thione ligands has been in focus for the past four decades, describing synthetic methods, bonding and structures of metal complexes (Raper, 1985, 1994, 1996, 1997; García-Vázquez et al., 1999; Akrivos, 2001), analytical chemistry (Koch, 2001), charge-transfer complexes (Serpe et al., 2008) and anion receptors (Bondy & Loeb, 2003). A recent survey revealed that the reactions of heterocyclic-2-thio­nes with group 10–12 metals (Ni–Pt, Cu–Au, Zn–Hg; Lobana, 2021) have led not only to the formation of a variety coordination compounds, but have also displayed other aspects of chemical reactivity. For instance, some reactions of heterocyclic thio­nes involved copper-mediated activation, and rupture of C—S (thione) bonds followed by their transformations to other forms of thio-ligands, bonded to the copper metal. Further, there has been an upsurge in explorations of the bio-activity and bio-safe potential of coordination compounds, as anti­microbial and anti­cancer agents (Lobana, 2021). 1.

The chemistry of palladium is inter­esting because of the coordination flexibility and catalytic role of this metal in several reactions (Kostas & Steele, 2020; Lobana, 2021). In the literature, pyridine-2-thione (pytH) with palladium(II) has been reported to form dinuclear complexes, namely, [Pd2(μ-N,S-pyt)4] (Umakoshi et al., 1990), [Pd2(μ-N,S-pyt)(μ-S-pyt)(κ1:S-pyt)2(μ-P,P-dppm)] and [Pd2(μ-κ2:N,S-pyt)32:P,P-dppm)]Cl (Mendía et al., 2006), [Pd2Cl2(μ-N,S-pyt)2(PMe3)2] (Yamamoto et al., 1991), [Pd2Cl2(μ-N,S-pymt)2(PMe3)2] (Yap & Jensen, 1992). Benz-1,3-imidazoline-2-thioe (bzimtH2) has formed one dimer, [PdII 2(μ-κ2:N,S-bzimt)21-S-bzimt)(PPh3)3]Cl·2H2O (Lobana et al. 2017). In this manuscript, some reactions of this metal with a few heterocyclic-2-thione ligands (bzimtH2 and imtH2) are described.

2. Structural commentary

The reaction of PdCl2(PPh3)2 with bzimtH2 in a 1:2 molar ratio in the presence of Et3N base was designed to form [Pd(κ1 S-bzimtH)2(PPh3)2] after removal of both halogens as [Et3NH]+Cl. However, the X-ray crystal structure of the product revealed the formation of the unexpected dinuclear compound [Pd2(μ-N,S-bzimtH)2(CN)2(PPh3)2] (1). Another thio-ligand, imtH2 yielded a similar dinuclear compound, [Pd2(μ-N,S-imtH)2-(CN)2(PPh3)2] (2). In both these compounds, the anionic bzimtH and imtH ligands coordinate through N,S donor atoms in a bridging mode, covering four coordination sites of two metal centers, and other two sites are occupied by two PPh3 ligand mol­ecules. Finally, the remaining two sites of two metal centers are occupied by cyano groups, abstracted by the metals from the solvent during reaction.

Compound 1 crystallizes in the monoclinic space group C2/c, and compound 2 in the monoclinic space group, P21/c. Selected bond distances and bond angles are given in Tables 1 and 2, respectively. The mol­ecular structure of compound 1 is shown in Fig. 1, while that of compound 2 is shown in Fig. 2 (leaving out the aceto­nitrile solvent mol­ecules). Considering first the structure of compound 1, here only half of the mol­ecule is unique as the mol­ecule lies on a crystallographic twofold axis. In 1, the Pd metal atom is bonded to one P, one S, one N and one C atoms with the respective bond distances as follows: Pd—P = 2.2861 (6), Pd—S = 2.3547 (6), Pd—N = 2.0545 (17), and Pd—C = 1.959 (2) Å. The trans bond angles, P—Pd—S and N—Pd—C, of 172.26 (2) and 178.31 (8)°, as well as the cis bond angles in the range 84.93 (6)–94.24 (5)°, reveal the distorted square-planar geometry of each metal center. One of the major factors in the conformation adopted by the mol­ecule is the strong π–π inter­action between the thione moieties [CgCg, 3.1905 (12) Å], as seen in Fig. 1. In addition, there is also a π–π inter­action between the thione moieties and an adjacent phenyl ring from the tri­phenyl­phosphine ligand [CgCg = 3.3560 (9) Å with a slippage of 1.408 Å].

Table 1. Selected geometric parameters (Å, °) for 1 .

C1—S1 1.728 (2) N1—Pd1 2.0545 (17)
N3—C8 1.127 (3) P1—Pd1 2.2861 (6)
C8—Pd1 1.959 (2) Pd1—S1i 2.3547 (6)
       
C8—Pd1—N1 178.31 (8) C8—Pd1—S1i 84.93 (6)
C8—Pd1—P1 87.53 (6) N1—Pd1—S1i 94.24 (5)
N1—Pd1—P1 93.34 (5) P1—Pd1—S1i 172.26 (2)

Symmetry code: (i) Inline graphic .

Table 2. Selected geometric parameters (Å, °) for 2 .

Pd1—C1 1.957 (2) Pd2—P2 2.2984 (5)
Pd1—N11 2.0346 (17) Pd2—S1 2.3542 (5)
Pd1—P1 2.2914 (5) S1—C11 1.734 (2)
Pd1—S2 2.3541 (5) S2—C21 1.733 (2)
Pd2—C2 1.943 (2) N1—C1 1.143 (3)
Pd2—N21 2.0345 (17) N2—C2 1.148 (3)
       
C1—Pd1—N11 179.31 (8) C2—Pd2—N21 178.38 (8)
C1—Pd1—P1 87.19 (6) C2—Pd2—P2 89.18 (7)
N11—Pd1—P1 92.80 (4) N21—Pd2—P2 92.44 (5)
C1—Pd1—S2 87.99 (6) C2—Pd2—S1 86.54 (7)
N11—Pd1—S2 92.06 (5) N21—Pd2—S1 91.84 (5)
P1—Pd1—S2 173.855 (19) P2—Pd2—S1 174.489 (19)

Figure 1.

Figure 1

Diagram of 1 showing the atom labeling for unique atoms (the mol­ecule lies of a twofold axis; symmetry operation to generate the rest of the mol­ecule is −x, y, Inline graphic  − z) and the strong intra­molecular π–π inter­actions involving both the thione rings and adjacent phenyl rings from the tri­phenyl­phosphine ligand. Atomic displacement parameters are at the 30% probability level.

Figure 2.

Figure 2

Diagram of 2 showing the atom labeling and the strong intra­molecular π–π inter­actions involving both the thione rings and adjacent phenyl rings from the tri­phenyl­phosphine ligand. Atomic displacement parameters are at the 30% probability level.

The coordination pattern of compound 2 is similar to that of 1. Nevertheless, there are minor differences in the bond distances and angles pertaining to the two metal centers of compound 2 (Fig. 2). Thus, the respective Pd—P, Pd—S, Pd—N and Pd—C bond distances of 2 are 2.2914 (5), 2.3541 (5), 2.0345 (17) and 1.957 (2) Å (Pd1 metal center), and 2.2984 (5), 2.3542 (5), 2.0345 (17) and 1.943 (2) Å (Pd2 metal center). For both metal centers, the trans bond angles [P—Pd—S and N—Pd—C = 173.86 (2)–179.31 (8)°] and the adjacent bond angles [86.54 (7)– 92.80 (4)°] are similar to those of compound 1. These bond angles again reveal the distorted square-planar geometry of each metal center of compound 2. The various bond distances described above are normal and none unusual. Compound 1 has carbon–sulfur (C—S) bond distance of 1.728 (2), while in compound 2 it is 1.734 (2) Å. These distances are in between single (1.81 Å) and double-bond (1.68 Å) C—S distances (Huheey et al., 1993). It shows a weakening of the C—S bond as a result of S to Pd coordination. The C≡N distance of the coordinated cyano group is 1.127 (3) in compound 1 and 1.143 (3) /1.148 (3) Å in compound 2. These distances are less than the expected C=N double bond (1.28 Å) and are close to the C≡N triple bond distance (1.15 Å; Huheey et al., 1993). The structure of 2 contains partially occupied aceto­nitrile solvent mol­ecules with occupancies of 0.33 and 0.25. As in the case of 1, in 2 one of the major factors in the conformation adopted by the mol­ecule is the strong π–π inter­action between the thione moieties [CgCg = 3.3559 (12) Å], as seen in Fig. 2. In addition, there is also a π–π inter­action between each of the thione moieties and an adjacent phenyl ring from the tri­phenyl­phosphine ligand [CgCg distances of 3.3065 (8) Å and 3.3218 (8), respectively, with a slippage for the latter of 1.154 Å].

The IR spectrum of the bzimtH2 ligand showed a ν(N—H) band at 3113 (m), and in compound 1, this band appeared at a lower energy, 3055 (m) cm−1. The ligand showed a diagnostic ν(C=S) band at 1179 cm−1, which shifted to ν(C=S), 1033(s) cm−1, owing to the change of neutral bzimtH2 ligand to the bzimtH anionic form, coordinating through N,S donor atoms. The PPh3 ligand showed its characteristic ν(P—CPh) band at 1097(s) cm−1 in compound 1. A band at 1734 cm−1 was assigned to the coordinated cyano group. The IR spectroscopic bands of compound 2 are similarly assigned: ν(N—H), 3050 (m), ν(C=S), 1020 (m), ν(P—CPh), 1105 (s) and ν(C≡N), 1740(s) cm−1.

In conclusion, the chemistry of heterocyclic-2-thio­nes remains enigmatic, probably due to the angular flexibility at sulfur, and also due to the short bite angle of the N,S-donor set in case it chelates with the formation of four-membered rings. This leads to a greater tendency of these thio-ligands in anionic forms to adopt bridging modes, noted as for example in dinuclear complexes (Raper, 1997; Lobana, 2021). Benz-1,3-imidazoline-2-thione (bzimtH2) has formed an N,S-bonded symmetrically bridged dinuclear compound, and so is the case with 1,3-imidazolidine-2-thione, and these are analogous to literature reports (Yamamoto et al., 1991; Yap & Jensen, 1992).

3. Supra­molecular features

In the packing of 1 and 2 there are similar trends in both hydrogen-bond patterns and intra­molecular inter­actions. In both structures, there are strong intra­molecular π–π inter­actions involving the thione moiety and adjacent phenyl rings from the tri­phenyl­phosphine ligand as discussed above. Both 1 and 2 have a similar hydrogen-bonding pattern (numerical details in Tables 3 and 4), as shown in Figs. 3 and 4. In each, the N—H group of the thione moiety forms an inter­molecular hydrogen bond with an adjacent N atom from the coordinated cyanide anion and these form Inline graphic (7) chains (Etter et al., 1990) in the [110] and [ Inline graphic 10] directions. In addition, in 2 there are also C—H⋯N inter­actions between the imidazoline rings and the partially occupied aceto­nitrile N atoms and this is shown in Fig. 5.

Table 3. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3ii 0.80 (3) 2.00 (3) 2.796 (3) 177 (3)

Symmetry code: (ii) Inline graphic .

Table 4. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯N2i 0.88 1.90 2.770 (3) 169
N22—H22A⋯N1ii 0.88 1.92 2.760 (3) 160
C12—H13A⋯N1S 0.95 2.35 3.261 (7) 161
C22—H23A⋯N1T 0.95 2.29 3.081 (12) 141

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 3.

Figure 3

Diagram showing the packing for 1 showing the two inter­molecular Inline graphic (7) N—H⋯N hydrogen-bonded chains in the [110] and [ Inline graphic 10] directions. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry operation to generate the rest of the mol­ecule is −x, y, Inline graphic  − z.

Figure 4.

Figure 4

Diagram showing the packing for 2 showing the two inter­molecular Inline graphic (7) N—H⋯N hydrogen bonding chains in the [110] and [ Inline graphic 10] directions. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Figure 5.

Figure 5

Diagram for 2 showing the packing viewed along the a-axis direction. N—H⋯N hydrogen bonds and C—H⋯N inter­actions involving the aceto­nitrile mol­ecules are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database for complexes of palladium with either 1, 3-benzimidazolidine- 2-thione or 1,3-imidazoline-2-thione returned nine hits for the former (BEYRUV and BEYWAG, Sandhu et al., 2018; PONKOT, PONKUZ, PONLAG, PONLEK and PONLIO, Talismanova et al., 2008; SANMOK, Talismanova et al., 2004; SAQPEI, Lobana et al., 2017) and three hits for the latter (APIYII, Ahmad et al., 2010; BEYVUZ, Sandhu et al., 2018; HAWYEJ, Kahn et al., 1993, SAQPIM, Lobana et al., 2017).

5. Synthesis and crystallization

The starting materials, namely palladium(II) chloride, tri­phenyl­phosphine (PPh3), 1,3-benzimidazoline-2-thione (bzimtH2), 1,3-imidazoline-2-thione (imtH2), and tri­ethyl­amine were procured from Aldrich. The solvents (aceto­nitrile, ethanol, methanol and di­chloro­methane) were of HPLC grade and were stored over mol­ecular sieves. The precursor, PdCl2(PPh3)2, was prepared by a literature procedure (Steffen & Palenik, 1976). The melting points were determined with a Gallenkamp electrically heated apparatus using the dried samples in capillary tubes. The analysis for carbon, hydrogen and nitro­gen were performed by using CHNS-O analyzer Flash- EA-1112 series. The IR spectra of the compounds were recorded on FTIR–SHIMADZU 8400 Fourier transform spectrophotometer in the range of 4000–400 cm−1 using KBr pellets.

Preparation of the precursor, [PdCl2(PPh3)2]

Palladium(II) chloride (0.050 g, 0.282 mmol) was dissolved in hot aceto­nitrile (25 mL) in a 50 mL round-bottom flask, and to it was added tri­phenyl­phosphine (0.148 g, 0.564 mol). The contents were refluxed for 1 h and the yellow complex formed was filtered and dried in vacuo, m.p. 551-553 K

Preparation of 1

To a solution of PdCl2(PPh3)2 (0.030 g, 0.043 mmol) in 10 mL of CH3CN, was added solid bzimtH2 (0.013 g, 0.086 mmol) followed by the addition of Et3N base (0.5 mL). The solution became yellowish orange and was refluxed for 6 h. The orange compound was formed on refluxing. It was separated and dissolved in a solution of methanol (4 mL) and di­chloro­methane (1 mL) in a culture tube. A slow evaporation of the reaction mixture over a period of one month, resulted in the formation of orange crystals of compound 1. Yield: 0.015 g; 65%; m.p. 511–513 K. Analysis found: C, 57.71; H, 3.84; N, 7.50; C52H40N6P2Pd2S2 (1087.8) requires: C, 57.40; H, 3.70; N, 7.72%. IR Data (KBr, cm−1): ν(N—H), 3055 (m); ν(C–H), 2950 (m), 2920 (s), 2852 (m); ν(C≡N), 1734 (s), ν(C—C) + δ(N—H) + δ(C—H), 1635 (m), 1440 (s), 1380 (m); ν(P—CPh), 1097 (s); ν(C=S), 1033 (s). Ligand IR Data: ν(N—H), 3113 (m), ν(C—H), 3078 (m); 2981 (s); ν(C≡N) 1513 (s), δ(N—H), 1467 (s), 1381 (m); ν(C=S), 1179 (s). The compound is partially soluble in di­chloro­methane, but soluble in methanol and chloro­form.

Preparation of 2

To the solution of PdCl2(PPh3)2 (0.040 g, 0.060 mmol) in 10 mL of CH3CN, was added solid imtH2 (0.012 g, 0.120 mmol) followed by the addition of Et3N base (0.5 mL). The solution became yellowish orange and was refluxed for 6 h. The orange compound was formed on refluxing and was separated. It was dissolved in a solution of methanol (4 mL) and di­chloro­methane (1 mL) in a culture tube. Slow evaporation of the reaction mixture over a period of one month formed yellowish-orange crystals of compound 2. Yield: 0.020 g; 69%; m.p. 485–488 K. Analysis found: C, 53.21; H, 3.92; N, 8.48; C44H36N6P2Pd2S2·0.58(CH3CN) (1011.5) requires: C, 53.58; H, 3.73; N, 8.36%. IR bands (KBr, cm-1): ν(N—H), 3050 (m); ν(C—H), 3081 (s), 3005 (m), 2968 (m), 2938 (m); ν(C≡N), 1740 (s), d(N—H) + ν(C≡N) + δ(C—H), 1581 (s), 1479 (s), 1401(s); ν(C=S), 1020 (m); ν(P—CPh), 1105 (s); Ligand IR data: ν(N—H), 3130 (s), ν(C—H), 2983 (m); 2876 (s); ν(C≡N) 1586 (s), δ(N—H), 1478 (s), 1266 (m); ν(C=S), 1120 (m). The compound is soluble in methanol, chloro­form and partially in di­chloro­methane.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. Hydrogen atoms were fixed geometrically (C—H = 0.93–0.98 Å) with their U iso(H) = 1.2U eq(C). The structure of 2 contains partially occupied aceto­nitrile solvent mol­ecules with occupancies of 0.33 and 0.25.

Table 5. Experimental details.

  1 2
Crystal data
Chemical formula [Pd2(C7H5N2S)2(CN)2(C18H15P)2] [Pd2(C3H3N2S)2(CN)2(C18H15P)2]·0.58C2H3N
M r 1087.76 1011.46
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 100 110
a, b, c (Å) 13.6026 (12), 13.9719 (12), 25.097 (2) 12.7916 (2), 14.6718 (3), 25.3760 (4)
β (°) 97.417 (1) 101.3491 (15)
V3) 4729.8 (7) 4669.34 (14)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.96 0.97
Crystal size (mm) 0.26 × 0.15 × 0.09 0.44 × 0.38 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD Oxford Diffraction Gemini R (Mo)
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)
T min, T max 0.811, 0.917 0.962, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23706, 5857, 5308 15546, 15546, 10002
R int 0.024 0.031
(sin θ/λ)max−1) 0.667 0.761
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.065, 1.12 0.035, 0.078, 0.95
No. of reflections 5857 15546
No. of parameters 294 561
No. of restraints 0 39
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.89 0.98, −1.20

Computer programs: APEX2 and SAINT (Bruker, 2007), CrysAlis RED and CrysAlis CCD (Oxford Diffraction, 2009), SHELXS and SHELXTL (Sheldrick, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), and ShelXle (Hübschle et al., 2011).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989023000166/ex2063sup1.cif

e-79-00079-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989023000166/ex20631sup2.hkl

e-79-00079-1sup2.hkl (466.1KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989023000166/ex20632sup3.hkl

e-79-00079-2sup3.hkl (1.2MB, hkl)

CCDC references: 2234599, 2234598

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TSL thanks the Guru Nanak Dev University for an Honorary Professorship. General research facilities for students (BT and RA) at the university are gratefully acknowledged.

supplementary crystallographic information

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Crystal data

[Pd2(C7H5N2S)2(CN)2(C18H15P)2] F(000) = 2192
Mr = 1087.76 Dx = 1.528 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 13.6026 (12) Å Cell parameters from 9977 reflections
b = 13.9719 (12) Å θ = 2.2–31.8°
c = 25.097 (2) Å µ = 0.96 mm1
β = 97.417 (1)° T = 100 K
V = 4729.8 (7) Å3 Block, orange
Z = 4 0.26 × 0.15 × 0.09 mm

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Data collection

Bruker SMART APEX CCD diffractometer 5857 independent reflections
Radiation source: fine-focus sealed tube 5308 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω scans θmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −18→18
Tmin = 0.811, Tmax = 0.917 k = −18→18
23706 measured reflections l = −33→33

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: mixed
wR(F2) = 0.065 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0241P)2 + 9.9394P] where P = (Fo2 + 2Fc2)/3
5857 reflections (Δ/σ)max < 0.001
294 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.89 e Å3

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.07279 (15) 0.26650 (15) 0.30035 (8) 0.0167 (4)
C2 −0.02067 (16) 0.41441 (16) 0.31826 (8) 0.0204 (4)
N3 0.20989 (15) −0.05673 (15) 0.29010 (8) 0.0296 (4)
C3 −0.00951 (19) 0.51282 (17) 0.32406 (10) 0.0285 (5)
H3 −0.065219 0.554027 0.323359 0.034*
C4 0.0864 (2) 0.54824 (18) 0.33093 (10) 0.0333 (6)
H4 0.096907 0.615208 0.334994 0.040*
C5 0.16821 (19) 0.48698 (18) 0.33198 (9) 0.0290 (5)
H5 0.233000 0.513645 0.336220 0.035*
C6 0.15735 (17) 0.38872 (16) 0.32701 (8) 0.0223 (4)
H6 0.213217 0.347564 0.328414 0.027*
C7 0.06114 (16) 0.35283 (15) 0.31987 (8) 0.0184 (4)
C8 0.17115 (16) 0.01314 (17) 0.29575 (9) 0.0224 (4)
C9 −0.02560 (16) 0.14880 (15) 0.41389 (8) 0.0192 (4)
C10 −0.12021 (17) 0.11322 (17) 0.41677 (9) 0.0245 (5)
H10 −0.135247 0.048473 0.407466 0.029*
C11 −0.19289 (18) 0.1723 (2) 0.43325 (10) 0.0319 (5)
H11 −0.257352 0.147566 0.435347 0.038*
C12 −0.1718 (2) 0.26638 (19) 0.44654 (10) 0.0323 (6)
H12 −0.222246 0.307008 0.456694 0.039*
C13 −0.0770 (2) 0.30173 (18) 0.44508 (10) 0.0303 (5)
H13 −0.061902 0.366039 0.455393 0.036*
C14 −0.00422 (18) 0.24371 (17) 0.42866 (9) 0.0244 (5)
H14 0.060499 0.268435 0.427421 0.029*
C15 0.17398 (16) 0.07885 (16) 0.43693 (9) 0.0221 (4)
C16 0.26896 (17) 0.06387 (18) 0.42373 (10) 0.0289 (5)
H16 0.279017 0.056685 0.387184 0.035*
C17 0.34938 (19) 0.05938 (19) 0.46410 (12) 0.0361 (6)
H17 0.414124 0.048636 0.454978 0.043*
C18 0.3355 (2) 0.07046 (19) 0.51719 (11) 0.0373 (6)
H18 0.390378 0.065693 0.544619 0.045*
C19 0.2424 (2) 0.0884 (2) 0.53042 (10) 0.0374 (6)
H19 0.233304 0.098140 0.566924 0.045*
C20 0.16164 (19) 0.0923 (2) 0.49069 (9) 0.0318 (5)
H20 0.097369 0.104236 0.500179 0.038*
C21 0.02075 (16) −0.04251 (15) 0.38040 (9) 0.0205 (4)
C22 0.04218 (19) −0.10869 (17) 0.42181 (9) 0.0274 (5)
H22 0.083356 −0.091135 0.453803 0.033*
C23 0.0030 (2) −0.20054 (18) 0.41604 (11) 0.0367 (6)
H23 0.017564 −0.245817 0.444194 0.044*
C24 −0.0571 (2) −0.22642 (18) 0.36955 (11) 0.0351 (6)
H24 −0.084438 −0.289039 0.366194 0.042*
C25 −0.07770 (18) −0.16150 (18) 0.32787 (10) 0.0293 (5)
H25 −0.118226 −0.179735 0.295793 0.035*
C26 −0.03879 (16) −0.06974 (16) 0.33325 (9) 0.0239 (5)
H26 −0.052690 −0.025117 0.304710 0.029*
N1 0.02621 (12) 0.26021 (12) 0.30959 (7) 0.0160 (3)
N2 −0.10313 (14) 0.35712 (13) 0.30663 (7) 0.0200 (4)
H2 −0.157 (2) 0.3796 (18) 0.3021 (11) 0.024*
P1 0.06743 (4) 0.07947 (4) 0.38495 (2) 0.01712 (11)
Pd1 0.10174 (2) 0.13416 (2) 0.30350 (2) 0.01536 (5)
S1 −0.15249 (4) 0.17333 (4) 0.28003 (2) 0.01886 (11)

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0176 (10) 0.0189 (10) 0.0133 (9) 0.0014 (8) 0.0016 (7) −0.0006 (7)
C2 0.0239 (11) 0.0209 (11) 0.0158 (10) −0.0007 (8) 0.0009 (8) −0.0011 (8)
N3 0.0284 (10) 0.0308 (11) 0.0294 (11) 0.0092 (9) 0.0022 (8) 0.0032 (9)
C3 0.0346 (13) 0.0214 (11) 0.0289 (12) 0.0029 (10) 0.0026 (10) −0.0027 (9)
C4 0.0457 (15) 0.0225 (12) 0.0308 (13) −0.0079 (11) 0.0011 (11) −0.0064 (10)
C5 0.0305 (13) 0.0318 (13) 0.0236 (11) −0.0118 (10) −0.0005 (9) −0.0013 (10)
C6 0.0215 (10) 0.0272 (11) 0.0175 (10) −0.0029 (9) −0.0006 (8) −0.0007 (8)
C7 0.0213 (10) 0.0207 (10) 0.0128 (9) −0.0013 (8) 0.0011 (7) −0.0001 (7)
C8 0.0187 (10) 0.0307 (12) 0.0179 (10) 0.0036 (9) 0.0026 (8) 0.0011 (9)
C9 0.0214 (10) 0.0225 (11) 0.0140 (9) 0.0036 (8) 0.0032 (8) 0.0004 (8)
C10 0.0246 (11) 0.0285 (12) 0.0208 (10) −0.0005 (9) 0.0053 (8) −0.0025 (9)
C11 0.0218 (11) 0.0448 (15) 0.0302 (13) 0.0023 (11) 0.0076 (9) −0.0033 (11)
C12 0.0343 (14) 0.0378 (14) 0.0264 (12) 0.0136 (11) 0.0103 (10) −0.0011 (10)
C13 0.0422 (14) 0.0262 (12) 0.0246 (12) 0.0047 (11) 0.0117 (10) −0.0031 (9)
C14 0.0277 (12) 0.0257 (11) 0.0208 (11) −0.0007 (9) 0.0074 (9) −0.0006 (9)
C15 0.0217 (10) 0.0221 (11) 0.0213 (11) −0.0006 (8) −0.0016 (8) 0.0029 (8)
C16 0.0231 (11) 0.0321 (13) 0.0304 (12) 0.0034 (10) −0.0012 (9) −0.0043 (10)
C17 0.0240 (12) 0.0332 (14) 0.0480 (16) 0.0037 (10) −0.0075 (11) −0.0064 (12)
C18 0.0366 (14) 0.0310 (13) 0.0385 (15) −0.0026 (11) −0.0174 (11) 0.0020 (11)
C19 0.0425 (15) 0.0458 (16) 0.0214 (12) −0.0073 (13) −0.0058 (11) 0.0062 (11)
C20 0.0277 (12) 0.0449 (15) 0.0217 (11) −0.0019 (11) −0.0003 (9) 0.0048 (11)
C21 0.0207 (10) 0.0186 (10) 0.0231 (11) 0.0032 (8) 0.0062 (8) 0.0013 (8)
C22 0.0370 (13) 0.0237 (11) 0.0220 (11) 0.0045 (10) 0.0062 (10) 0.0021 (9)
C23 0.0587 (18) 0.0229 (12) 0.0297 (13) 0.0036 (12) 0.0106 (12) 0.0055 (10)
C24 0.0473 (16) 0.0206 (12) 0.0399 (15) −0.0035 (11) 0.0154 (12) −0.0047 (10)
C25 0.0275 (12) 0.0268 (12) 0.0338 (13) −0.0018 (10) 0.0049 (10) −0.0062 (10)
C26 0.0230 (11) 0.0229 (11) 0.0252 (11) 0.0015 (9) 0.0009 (9) 0.0001 (9)
N1 0.0154 (8) 0.0176 (8) 0.0150 (8) −0.0001 (6) 0.0018 (6) −0.0001 (6)
N2 0.0181 (9) 0.0213 (9) 0.0204 (9) 0.0049 (7) 0.0020 (7) −0.0011 (7)
P1 0.0167 (2) 0.0192 (3) 0.0156 (2) 0.0018 (2) 0.00211 (19) 0.00103 (19)
Pd1 0.01371 (8) 0.01746 (8) 0.01506 (8) 0.00304 (6) 0.00240 (5) 0.00079 (6)
S1 0.0167 (2) 0.0223 (3) 0.0181 (2) −0.00317 (19) 0.00424 (18) −0.00229 (19)

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Geometric parameters (Å, º)

C1—N1 1.339 (3) C15—C16 1.390 (3)
C1—N2 1.347 (3) C15—C20 1.394 (3)
C1—S1 1.728 (2) C15—P1 1.820 (2)
C2—N2 1.378 (3) C16—C17 1.393 (3)
C2—C3 1.389 (3) C16—H16 0.9500
C2—C7 1.403 (3) C17—C18 1.378 (4)
N3—C8 1.127 (3) C17—H17 0.9500
C3—C4 1.385 (4) C18—C19 1.374 (4)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.401 (4) C19—C20 1.386 (3)
C4—H4 0.9500 C19—H19 0.9500
C5—C6 1.385 (3) C20—H20 0.9500
C5—H5 0.9500 C21—C22 1.394 (3)
C6—C7 1.391 (3) C21—C26 1.398 (3)
C6—H6 0.9500 C21—P1 1.817 (2)
C7—N1 1.391 (3) C22—C23 1.390 (4)
C8—Pd1 1.959 (2) C22—H22 0.9500
C9—C10 1.390 (3) C23—C24 1.384 (4)
C9—C14 1.397 (3) C23—H23 0.9500
C9—P1 1.818 (2) C24—C25 1.386 (4)
C10—C11 1.391 (3) C24—H24 0.9500
C10—H10 0.9500 C25—C26 1.387 (3)
C11—C12 1.378 (4) C25—H25 0.9500
C11—H11 0.9500 C26—H26 0.9500
C12—C13 1.387 (4) N1—Pd1 2.0545 (17)
C12—H12 0.9500 N2—H2 0.80 (3)
C13—C14 1.382 (3) P1—Pd1 2.2861 (6)
C13—H13 0.9500 Pd1—S1i 2.3547 (6)
C14—H14 0.9500
N1—C1—N2 110.96 (18) C16—C17—H17 119.8
N1—C1—S1 125.44 (16) C19—C18—C17 120.0 (2)
N2—C1—S1 123.53 (16) C19—C18—H18 120.0
N2—C2—C3 132.2 (2) C17—C18—H18 120.0
N2—C2—C7 105.70 (19) C18—C19—C20 120.2 (3)
C3—C2—C7 121.9 (2) C18—C19—H19 119.9
C4—C3—C2 117.1 (2) C20—C19—H19 119.9
C4—C3—H3 121.5 C19—C20—C15 120.5 (2)
C2—C3—H3 121.5 C19—C20—H20 119.7
C3—C4—C5 121.1 (2) C15—C20—H20 119.7
C3—C4—H4 119.4 C22—C21—C26 119.6 (2)
C5—C4—H4 119.4 C22—C21—P1 122.52 (18)
C6—C5—C4 121.9 (2) C26—C21—P1 117.92 (16)
C6—C5—H5 119.0 C23—C22—C21 119.6 (2)
C4—C5—H5 119.0 C23—C22—H22 120.2
C5—C6—C7 117.2 (2) C21—C22—H22 120.2
C5—C6—H6 121.4 C24—C23—C22 120.4 (2)
C7—C6—H6 121.4 C24—C23—H23 119.8
N1—C7—C6 130.7 (2) C22—C23—H23 119.8
N1—C7—C2 108.33 (18) C23—C24—C25 120.4 (2)
C6—C7—C2 120.8 (2) C23—C24—H24 119.8
N3—C8—Pd1 178.4 (2) C25—C24—H24 119.8
C10—C9—C14 119.2 (2) C24—C25—C26 119.6 (2)
C10—C9—P1 121.81 (17) C24—C25—H25 120.2
C14—C9—P1 118.68 (17) C26—C25—H25 120.2
C9—C10—C11 120.1 (2) C25—C26—C21 120.4 (2)
C9—C10—H10 119.9 C25—C26—H26 119.8
C11—C10—H10 119.9 C21—C26—H26 119.8
C12—C11—C10 120.3 (2) C1—N1—C7 106.42 (17)
C12—C11—H11 119.8 C1—N1—Pd1 123.00 (14)
C10—C11—H11 119.8 C7—N1—Pd1 130.47 (14)
C11—C12—C13 119.9 (2) C1—N2—C2 108.50 (18)
C11—C12—H12 120.0 C1—N2—H2 130.2 (19)
C13—C12—H12 120.0 C2—N2—H2 121.1 (19)
C14—C13—C12 120.2 (2) C21—P1—C9 105.62 (10)
C14—C13—H13 119.9 C21—P1—C15 106.27 (10)
C12—C13—H13 119.9 C9—P1—C15 104.31 (10)
C13—C14—C9 120.2 (2) C21—P1—Pd1 111.54 (7)
C13—C14—H14 119.9 C9—P1—Pd1 114.34 (7)
C9—C14—H14 119.9 C15—P1—Pd1 114.00 (7)
C16—C15—C20 118.9 (2) C8—Pd1—N1 178.31 (8)
C16—C15—P1 120.56 (17) C8—Pd1—P1 87.53 (6)
C20—C15—P1 120.58 (18) N1—Pd1—P1 93.34 (5)
C15—C16—C17 120.0 (2) C8—Pd1—S1i 84.93 (6)
C15—C16—H16 120.0 N1—Pd1—S1i 94.24 (5)
C17—C16—H16 120.0 P1—Pd1—S1i 172.26 (2)
C18—C17—C16 120.4 (3) C1—S1—Pd1i 101.12 (7)
C18—C17—H17 119.8
N2—C2—C3—C4 −174.0 (2) P1—C21—C26—C25 −179.03 (18)
C7—C2—C3—C4 0.8 (3) N2—C1—N1—C7 −2.9 (2)
C2—C3—C4—C5 −0.1 (4) S1—C1—N1—C7 174.31 (15)
C3—C4—C5—C6 −0.9 (4) N2—C1—N1—Pd1 −179.43 (13)
C4—C5—C6—C7 1.2 (3) S1—C1—N1—Pd1 −2.2 (2)
C5—C6—C7—N1 174.3 (2) C6—C7—N1—C1 −173.3 (2)
C5—C6—C7—C2 −0.5 (3) C2—C7—N1—C1 2.0 (2)
N2—C2—C7—N1 −0.4 (2) C6—C7—N1—Pd1 2.9 (3)
C3—C2—C7—N1 −176.4 (2) C2—C7—N1—Pd1 178.18 (14)
N2—C2—C7—C6 175.44 (19) N1—C1—N2—C2 2.7 (2)
C3—C2—C7—C6 −0.5 (3) S1—C1—N2—C2 −174.57 (15)
C14—C9—C10—C11 1.2 (3) C3—C2—N2—C1 174.0 (2)
P1—C9—C10—C11 −172.37 (18) C7—C2—N2—C1 −1.3 (2)
C9—C10—C11—C12 0.3 (4) C22—C21—P1—C9 −90.0 (2)
C10—C11—C12—C13 −2.0 (4) C26—C21—P1—C9 90.01 (18)
C11—C12—C13—C14 2.1 (4) C22—C21—P1—C15 20.4 (2)
C12—C13—C14—C9 −0.6 (4) C26—C21—P1—C15 −159.57 (17)
C10—C9—C14—C13 −1.0 (3) C22—C21—P1—Pd1 145.20 (17)
P1—C9—C14—C13 172.69 (18) C26—C21—P1—Pd1 −34.77 (19)
C20—C15—C16—C17 2.1 (4) C10—C9—P1—C21 −14.5 (2)
P1—C15—C16—C17 −177.2 (2) C14—C9—P1—C21 171.94 (17)
C15—C16—C17—C18 −0.5 (4) C10—C9—P1—C15 −126.31 (19)
C16—C17—C18—C19 −1.6 (4) C14—C9—P1—C15 60.13 (19)
C17—C18—C19—C20 2.1 (4) C10—C9—P1—Pd1 108.52 (18)
C18—C19—C20—C15 −0.5 (4) C14—C9—P1—Pd1 −65.04 (18)
C16—C15—C20—C19 −1.6 (4) C16—C15—P1—C21 92.0 (2)
P1—C15—C20—C19 177.7 (2) C20—C15—P1—C21 −87.2 (2)
C26—C21—C22—C23 −0.9 (3) C16—C15—P1—C9 −156.63 (19)
P1—C21—C22—C23 179.13 (19) C20—C15—P1—C9 24.1 (2)
C21—C22—C23—C24 −0.1 (4) C16—C15—P1—Pd1 −31.2 (2)
C22—C23—C24—C25 1.0 (4) C20—C15—P1—Pd1 149.50 (18)
C23—C24—C25—C26 −0.9 (4) N1—C1—S1—Pd1i −61.89 (18)
C24—C25—C26—C21 −0.1 (4) N2—C1—S1—Pd1i 114.98 (17)
C22—C21—C26—C25 1.0 (3)

Symmetry code: (i) −x, y, −z+1/2.

Bis(µ-1H-benzimidazole-2-thiolato)-κ2N3:S2S:N3-bis[cyanido(triphenylphosphine-κP)palladium(II)] (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N3ii 0.80 (3) 2.00 (3) 2.796 (3) 177 (3)

Symmetry code: (ii) x−1/2, y+1/2, z.

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Crystal data

[Pd2(C3H3N2S)2(CN)2(C18H15P)2]·0.58C2H3N F(000) = 2035
Mr = 1011.46 Dx = 1.439 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.7916 (2) Å Cell parameters from 15979 reflections
b = 14.6718 (3) Å θ = 4.7–32.7°
c = 25.3760 (4) Å µ = 0.97 mm1
β = 101.3491 (15)° T = 110 K
V = 4669.34 (14) Å3 Plate, yellow
Z = 4 0.44 × 0.38 × 0.18 mm

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Data collection

Oxford Diffraction Gemini R (Mo) diffractometer 15546 independent reflections
Graphite monochromator 10002 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1 Rint = 0.031
ω scans θmax = 32.8°, θmin = 4.7°
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009) h = −18→18
Tmin = 0.962, Tmax = 1.000 k = −17→22
15546 measured reflections l = −34→36

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3
15546 reflections (Δ/σ)max = 0.002
561 parameters Δρmax = 0.98 e Å3
39 restraints Δρmin = −1.20 e Å3

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pd1 0.35095 (2) 0.87099 (2) 0.30663 (2) 0.02356 (4)
Pd2 0.14320 (2) 0.88485 (2) 0.19323 (2) 0.02559 (4)
S1 0.08912 (4) 0.94151 (4) 0.27044 (2) 0.03170 (12)
S2 0.41813 (4) 0.90816 (4) 0.22938 (2) 0.03362 (12)
P1 0.30170 (4) 0.82559 (4) 0.38464 (2) 0.02500 (11)
P2 0.17961 (4) 0.82426 (4) 0.11528 (2) 0.03002 (12)
N1 0.43502 (18) 0.67452 (15) 0.29819 (7) 0.0548 (6)
N2 0.0059 (2) 0.71602 (18) 0.20621 (8) 0.0727 (8)
N11 0.29215 (13) 0.99892 (11) 0.31143 (6) 0.0272 (4)
N12 0.17481 (16) 1.10817 (13) 0.30467 (7) 0.0410 (5)
H12A 0.113398 1.137168 0.298069 0.049*
N21 0.23236 (13) 0.99792 (12) 0.18750 (6) 0.0284 (4)
N22 0.37399 (16) 1.08292 (14) 0.19348 (6) 0.0416 (5)
H22A 0.441192 1.100160 0.199723 0.050*
C1 0.40581 (17) 0.74749 (16) 0.30153 (7) 0.0363 (5)
C2 0.05709 (19) 0.77821 (17) 0.20056 (7) 0.0412 (6)
C11 0.18880 (16) 1.01847 (15) 0.29650 (7) 0.0291 (5)
C12 0.2718 (2) 1.14654 (17) 0.32489 (8) 0.0480 (7)
H13A 0.285290 1.208633 0.334479 0.058*
C13 0.3447 (2) 1.07915 (16) 0.32859 (8) 0.0385 (5)
H14A 0.419358 1.085725 0.340892 0.046*
C21 0.33859 (16) 0.99883 (15) 0.20226 (7) 0.0311 (5)
C22 0.2886 (2) 1.13701 (17) 0.17333 (9) 0.0484 (7)
H23A 0.290465 1.199438 0.163621 0.058*
C23 0.20113 (19) 1.08439 (16) 0.16993 (8) 0.0381 (5)
H24A 0.129679 1.103756 0.157463 0.046*
C1A 0.24085 (17) 0.71348 (15) 0.37962 (7) 0.0324 (5)
C2A 0.16469 (19) 0.69425 (17) 0.33331 (8) 0.0424 (6)
H2AA 0.148149 0.738927 0.305829 0.051*
C3A 0.1134 (2) 0.61103 (19) 0.32715 (9) 0.0575 (8)
H3AA 0.060788 0.599083 0.295887 0.069*
C4A 0.1386 (3) 0.54504 (19) 0.36657 (10) 0.0654 (9)
H4AA 0.102770 0.487976 0.362623 0.079*
C5A 0.2166 (2) 0.56257 (18) 0.41211 (9) 0.0563 (8)
H5AA 0.235385 0.516640 0.438678 0.068*
C6A 0.26698 (19) 0.64645 (16) 0.41884 (8) 0.0383 (5)
H6AA 0.319336 0.658288 0.450210 0.046*
C1B 0.41603 (16) 0.82116 (14) 0.44038 (7) 0.0295 (4)
C2B 0.51745 (18) 0.80590 (18) 0.43012 (8) 0.0442 (6)
H2BA 0.527274 0.798236 0.394240 0.053*
C3B 0.6042 (2) 0.8019 (2) 0.47257 (9) 0.0557 (8)
H3BA 0.673349 0.790636 0.465621 0.067*
C4B 0.5911 (2) 0.81419 (18) 0.52455 (9) 0.0457 (6)
H4BA 0.651230 0.811916 0.553268 0.055*
C5B 0.4920 (2) 0.82962 (18) 0.53501 (8) 0.0454 (6)
H5BA 0.483094 0.838279 0.570956 0.054*
C6B 0.40439 (18) 0.83263 (17) 0.49303 (7) 0.0398 (6)
H6BA 0.335423 0.842714 0.500531 0.048*
C1C 0.20732 (16) 0.89953 (15) 0.40931 (7) 0.0286 (4)
C2C 0.23993 (18) 0.98632 (16) 0.42808 (8) 0.0363 (5)
H2CA 0.311953 1.004513 0.430333 0.044*
C3C 0.1672 (2) 1.04648 (18) 0.44355 (8) 0.0457 (6)
H3CA 0.189705 1.105585 0.456258 0.055*
C4C 0.0636 (2) 1.0207 (2) 0.44049 (9) 0.0533 (7)
H4CA 0.013952 1.062039 0.450704 0.064*
C5C 0.0311 (2) 0.9349 (2) 0.42266 (11) 0.0607 (8)
H5CA −0.040582 0.916511 0.421319 0.073*
C6C 0.10260 (19) 0.87539 (18) 0.40664 (9) 0.0446 (6)
H6CA 0.078935 0.816741 0.393571 0.054*
C1D 0.28204 (18) 0.88581 (15) 0.08915 (7) 0.0335 (5)
C2D 0.25910 (19) 0.97236 (17) 0.06660 (8) 0.0403 (6)
H2DA 0.188431 0.995509 0.061180 0.048*
C3D 0.3395 (2) 1.02420 (19) 0.05223 (8) 0.0494 (7)
H3DA 0.323656 1.083075 0.037180 0.059*
C4D 0.4415 (2) 0.9915 (2) 0.05946 (9) 0.0533 (7)
H4DA 0.496407 1.027784 0.049892 0.064*
C5D 0.4644 (2) 0.9055 (2) 0.08075 (11) 0.0566 (7)
H5DA 0.534715 0.881930 0.084976 0.068*
C6D 0.3844 (2) 0.85306 (18) 0.09605 (9) 0.0453 (6)
H6DA 0.400780 0.794418 0.111328 0.054*
C1E 0.06406 (17) 0.82453 (15) 0.05978 (7) 0.0334 (5)
C2E 0.07759 (19) 0.82814 (18) 0.00681 (8) 0.0446 (6)
H2EA 0.147239 0.832430 −0.000792 0.054*
C3E −0.0108 (2) 0.82547 (19) −0.03519 (8) 0.0497 (7)
H3EA −0.001292 0.828234 −0.071351 0.060*
C4E −0.1110 (2) 0.81890 (18) −0.02460 (8) 0.0459 (6)
H4EA −0.170923 0.816583 −0.053380 0.055*
C5E −0.12546 (19) 0.81559 (18) 0.02794 (8) 0.0446 (6)
H5EA −0.195388 0.811418 0.035189 0.054*
C6E −0.03805 (18) 0.81836 (16) 0.07012 (8) 0.0375 (5)
H6EA −0.048286 0.816009 0.106170 0.045*
C1F 0.22604 (18) 0.70707 (15) 0.12111 (7) 0.0351 (5)
C2F 0.20602 (18) 0.64505 (16) 0.07863 (8) 0.0379 (5)
H2FA 0.162463 0.662691 0.045431 0.045*
C3F 0.2487 (2) 0.55839 (18) 0.08427 (9) 0.0477 (6)
H3FA 0.233104 0.516470 0.055249 0.057*
C4F 0.3142 (2) 0.53223 (18) 0.13203 (10) 0.0546 (7)
H4FA 0.345070 0.473104 0.135597 0.066*
C5F 0.3342 (2) 0.59283 (19) 0.17436 (10) 0.0614 (8)
H5FA 0.378526 0.575078 0.207321 0.074*
C6F 0.2903 (2) 0.67900 (18) 0.16923 (9) 0.0513 (7)
H6FA 0.303984 0.719733 0.198891 0.062*
N1S 0.2657 (6) 1.3556 (5) 0.3677 (3) 0.0700 (15) 0.33
C1S 0.2748 (8) 1.4030 (6) 0.3321 (4) 0.0744 (14) 0.33
C2S 0.2930 (8) 1.4590 (7) 0.2900 (4) 0.0818 (15) 0.33
H2S1 0.334222 1.512578 0.304829 0.123* 0.33
H2S2 0.224550 1.478602 0.268390 0.123* 0.33
H2S3 0.332939 1.424861 0.267223 0.123* 0.33
N1T 0.1809 (10) 1.3230 (8) 0.1440 (5) 0.0995 (19) 0.25
C1T 0.1767 (12) 1.3567 (10) 0.1851 (5) 0.0967 (18) 0.25
C2T 0.1924 (12) 1.4067 (10) 0.2333 (5) 0.0912 (17) 0.25
H2T1 0.268941 1.410818 0.248353 0.137* 0.25
H2T2 0.156359 1.375999 0.259002 0.137* 0.25
H2T3 0.163014 1.468107 0.226043 0.137* 0.25

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02286 (7) 0.03057 (9) 0.01702 (7) 0.00603 (6) 0.00335 (5) 0.00011 (6)
Pd2 0.02643 (8) 0.03380 (9) 0.01603 (7) −0.00787 (7) 0.00293 (5) 0.00017 (6)
S1 0.0255 (3) 0.0476 (4) 0.0223 (2) 0.0063 (2) 0.00533 (18) 0.0017 (2)
S2 0.0291 (3) 0.0485 (4) 0.0253 (2) −0.0039 (3) 0.01024 (19) −0.0011 (2)
P1 0.0293 (3) 0.0286 (3) 0.0164 (2) 0.0046 (2) 0.00299 (18) 0.00043 (19)
P2 0.0365 (3) 0.0359 (3) 0.0171 (2) −0.0075 (3) 0.00384 (19) −0.0021 (2)
N1 0.0692 (15) 0.0542 (14) 0.0369 (11) 0.0373 (12) 0.0003 (9) −0.0038 (10)
N2 0.0887 (18) 0.0875 (19) 0.0348 (11) −0.0607 (16) −0.0051 (11) 0.0123 (11)
N11 0.0345 (9) 0.0289 (9) 0.0172 (7) 0.0039 (8) 0.0028 (6) −0.0003 (6)
N12 0.0564 (13) 0.0378 (11) 0.0256 (9) 0.0245 (10) 0.0002 (8) −0.0022 (8)
N21 0.0337 (9) 0.0324 (10) 0.0183 (7) −0.0077 (8) 0.0034 (6) 0.0014 (7)
N22 0.0480 (12) 0.0498 (13) 0.0247 (9) −0.0249 (10) 0.0017 (8) 0.0027 (8)
C1 0.0385 (12) 0.0475 (14) 0.0213 (10) 0.0216 (11) 0.0018 (8) −0.0009 (9)
C2 0.0484 (14) 0.0545 (16) 0.0182 (9) −0.0221 (12) 0.0001 (9) 0.0018 (9)
C11 0.0373 (11) 0.0330 (12) 0.0166 (8) 0.0129 (10) 0.0039 (7) 0.0013 (8)
C12 0.0769 (19) 0.0327 (13) 0.0291 (11) 0.0036 (13) −0.0023 (11) −0.0074 (10)
C13 0.0486 (14) 0.0383 (13) 0.0247 (10) −0.0040 (11) −0.0020 (9) −0.0030 (9)
C21 0.0383 (12) 0.0382 (12) 0.0171 (9) −0.0130 (10) 0.0058 (8) −0.0007 (8)
C22 0.0741 (19) 0.0377 (14) 0.0299 (12) −0.0152 (14) 0.0015 (11) 0.0070 (10)
C23 0.0488 (14) 0.0380 (13) 0.0252 (10) −0.0022 (11) 0.0021 (9) 0.0061 (9)
C1A 0.0416 (12) 0.0319 (12) 0.0231 (9) 0.0003 (10) 0.0055 (8) 0.0001 (8)
C2A 0.0558 (15) 0.0428 (14) 0.0249 (10) −0.0114 (12) −0.0013 (9) 0.0040 (9)
C3A 0.077 (2) 0.0572 (18) 0.0314 (12) −0.0266 (16) −0.0046 (12) 0.0011 (11)
C4A 0.104 (2) 0.0472 (17) 0.0410 (14) −0.0374 (17) 0.0040 (14) −0.0005 (12)
C5A 0.092 (2) 0.0407 (15) 0.0342 (13) −0.0140 (15) 0.0065 (13) 0.0072 (11)
C6A 0.0557 (15) 0.0338 (13) 0.0240 (10) −0.0039 (11) 0.0043 (9) 0.0022 (9)
C1B 0.0363 (11) 0.0294 (11) 0.0202 (9) 0.0032 (9) −0.0011 (8) 0.0016 (8)
C2B 0.0401 (13) 0.0606 (17) 0.0287 (11) 0.0152 (12) −0.0010 (9) −0.0082 (11)
C3B 0.0399 (14) 0.081 (2) 0.0400 (13) 0.0209 (14) −0.0074 (10) −0.0121 (13)
C4B 0.0489 (15) 0.0501 (16) 0.0305 (12) 0.0024 (13) −0.0105 (10) −0.0006 (10)
C5B 0.0552 (15) 0.0591 (17) 0.0191 (10) −0.0084 (13) 0.0007 (9) 0.0023 (10)
C6B 0.0401 (13) 0.0564 (16) 0.0220 (10) 0.0003 (12) 0.0042 (8) 0.0013 (10)
C1C 0.0318 (10) 0.0367 (12) 0.0180 (9) 0.0049 (9) 0.0066 (7) 0.0008 (8)
C2C 0.0412 (12) 0.0409 (14) 0.0296 (10) 0.0073 (11) 0.0138 (9) −0.0022 (9)
C3C 0.0614 (17) 0.0448 (15) 0.0342 (12) 0.0128 (13) 0.0175 (11) −0.0029 (10)
C4C 0.0507 (16) 0.071 (2) 0.0425 (14) 0.0266 (15) 0.0195 (11) −0.0012 (13)
C5C 0.0335 (14) 0.090 (3) 0.0632 (17) 0.0040 (15) 0.0216 (12) −0.0104 (16)
C6C 0.0374 (13) 0.0560 (17) 0.0429 (13) −0.0036 (12) 0.0139 (10) −0.0054 (11)
C1D 0.0412 (12) 0.0432 (14) 0.0174 (9) −0.0092 (10) 0.0088 (8) −0.0040 (8)
C2D 0.0445 (13) 0.0522 (15) 0.0243 (10) −0.0115 (12) 0.0070 (9) 0.0041 (10)
C3D 0.0653 (17) 0.0568 (17) 0.0289 (11) −0.0141 (15) 0.0158 (11) 0.0059 (11)
C4D 0.0581 (17) 0.070 (2) 0.0386 (13) −0.0245 (15) 0.0250 (11) −0.0068 (12)
C5D 0.0507 (16) 0.066 (2) 0.0603 (17) −0.0054 (15) 0.0290 (13) −0.0093 (15)
C6D 0.0494 (15) 0.0484 (16) 0.0423 (13) −0.0043 (13) 0.0193 (11) −0.0062 (11)
C1E 0.0427 (12) 0.0358 (13) 0.0198 (9) −0.0067 (10) 0.0015 (8) −0.0032 (8)
C2E 0.0484 (14) 0.0616 (17) 0.0230 (10) −0.0045 (13) 0.0049 (9) −0.0039 (10)
C3E 0.0586 (16) 0.0666 (19) 0.0203 (10) −0.0040 (15) −0.0013 (10) −0.0051 (10)
C4E 0.0530 (15) 0.0497 (16) 0.0278 (11) −0.0079 (13) −0.0098 (10) −0.0034 (10)
C5E 0.0435 (13) 0.0538 (16) 0.0327 (12) −0.0080 (12) −0.0021 (10) 0.0043 (11)
C6E 0.0448 (13) 0.0431 (14) 0.0227 (10) −0.0098 (11) 0.0018 (9) 0.0014 (9)
C1F 0.0431 (13) 0.0376 (13) 0.0242 (10) −0.0076 (10) 0.0059 (8) −0.0015 (9)
C2F 0.0463 (13) 0.0431 (14) 0.0248 (10) −0.0099 (11) 0.0084 (9) −0.0027 (9)
C3F 0.0661 (17) 0.0425 (15) 0.0375 (13) −0.0076 (13) 0.0171 (11) −0.0096 (11)
C4F 0.078 (2) 0.0376 (15) 0.0483 (15) 0.0073 (14) 0.0135 (13) 0.0001 (12)
C5F 0.088 (2) 0.0457 (17) 0.0427 (15) 0.0098 (16) −0.0065 (14) 0.0002 (12)
C6F 0.0735 (18) 0.0430 (16) 0.0313 (12) 0.0033 (14) −0.0045 (11) −0.0044 (10)
N1S 0.084 (3) 0.040 (3) 0.098 (4) 0.014 (3) 0.049 (3) −0.006 (2)
C1S 0.089 (3) 0.046 (3) 0.101 (4) 0.015 (3) 0.051 (3) −0.002 (2)
C2S 0.098 (3) 0.055 (3) 0.105 (4) 0.016 (3) 0.051 (3) 0.004 (2)
N1T 0.113 (4) 0.071 (4) 0.119 (5) 0.021 (4) 0.033 (4) −0.004 (3)
C1T 0.109 (4) 0.069 (4) 0.118 (4) 0.020 (3) 0.037 (4) 0.000 (3)
C2T 0.104 (4) 0.065 (3) 0.114 (4) 0.017 (3) 0.044 (3) 0.004 (3)

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Geometric parameters (Å, º)

Pd1—C1 1.957 (2) C6B—H6BA 0.9500
Pd1—N11 2.0346 (17) C1C—C6C 1.374 (3)
Pd1—P1 2.2914 (5) C1C—C2C 1.394 (3)
Pd1—S2 2.3541 (5) C2C—C3C 1.394 (3)
Pd2—C2 1.943 (2) C2C—H2CA 0.9500
Pd2—N21 2.0345 (17) C3C—C4C 1.366 (3)
Pd2—P2 2.2984 (5) C3C—H3CA 0.9500
Pd2—S1 2.3542 (5) C4C—C5C 1.373 (4)
S1—C11 1.734 (2) C4C—H4CA 0.9500
S2—C21 1.733 (2) C5C—C6C 1.383 (3)
P1—C1A 1.813 (2) C5C—H5CA 0.9500
P1—C1C 1.823 (2) C6C—H6CA 0.9500
P1—C1B 1.8247 (18) C1D—C6D 1.373 (3)
P2—C1F 1.815 (2) C1D—C2D 1.400 (3)
P2—C1D 1.820 (2) C2D—C3D 1.384 (3)
P2—C1E 1.830 (2) C2D—H2DA 0.9500
N1—C1 1.143 (3) C3D—C4D 1.369 (4)
N2—C2 1.148 (3) C3D—H3DA 0.9500
N11—C11 1.333 (2) C4D—C5D 1.381 (4)
N11—C13 1.382 (3) C4D—H4DA 0.9500
N12—C11 1.350 (3) C5D—C6D 1.395 (3)
N12—C12 1.367 (3) C5D—H5DA 0.9500
N12—H12A 0.8800 C6D—H6DA 0.9500
N21—C21 1.337 (3) C1E—C6E 1.385 (3)
N21—C23 1.377 (3) C1E—C2E 1.390 (3)
N22—C21 1.348 (3) C2E—C3E 1.394 (3)
N22—C22 1.365 (3) C2E—H2EA 0.9500
N22—H22A 0.8800 C3E—C4E 1.363 (3)
C12—C13 1.349 (3) C3E—H3EA 0.9500
C12—H13A 0.9500 C4E—C5E 1.383 (3)
C13—H14A 0.9500 C4E—H4EA 0.9500
C22—C23 1.348 (3) C5E—C6E 1.388 (3)
C22—H23A 0.9500 C5E—H5EA 0.9500
C23—H24A 0.9500 C6E—H6EA 0.9500
C1A—C6A 1.392 (3) C1F—C6F 1.393 (3)
C1A—C2A 1.400 (3) C1F—C2F 1.395 (3)
C2A—C3A 1.381 (3) C2F—C3F 1.380 (3)
C2A—H2AA 0.9500 C2F—H2FA 0.9500
C3A—C4A 1.384 (3) C3F—C4F 1.385 (3)
C3A—H3AA 0.9500 C3F—H3FA 0.9500
C4A—C5A 1.395 (3) C4F—C5F 1.379 (3)
C4A—H4AA 0.9500 C4F—H4FA 0.9500
C5A—C6A 1.384 (3) C5F—C6F 1.379 (4)
C5A—H5AA 0.9500 C5F—H5FA 0.9500
C6A—H6AA 0.9500 C6F—H6FA 0.9500
C1B—C6B 1.383 (3) N1S—C1S 1.163 (10)
C1B—C2B 1.391 (3) C1S—C2S 1.405 (11)
C2B—C3B 1.387 (3) C2S—H2S1 0.9800
C2B—H2BA 0.9500 C2S—H2S2 0.9800
C3B—C4B 1.374 (3) C2S—H2S3 0.9800
C3B—H3BA 0.9500 N1T—C1T 1.167 (10)
C4B—C5B 1.364 (3) C1T—C2T 1.405 (11)
C4B—H4BA 0.9500 C2T—H2T1 0.9800
C5B—C6B 1.387 (3) C2T—H2T2 0.9800
C5B—H5BA 0.9500 C2T—H2T3 0.9800
C1—Pd1—N11 179.31 (8) C6B—C5B—H5BA 120.1
C1—Pd1—P1 87.19 (6) C1B—C6B—C5B 120.9 (2)
N11—Pd1—P1 92.80 (4) C1B—C6B—H6BA 119.6
C1—Pd1—S2 87.99 (6) C5B—C6B—H6BA 119.6
N11—Pd1—S2 92.06 (5) C6C—C1C—C2C 118.4 (2)
P1—Pd1—S2 173.855 (19) C6C—C1C—P1 122.32 (18)
C2—Pd2—N21 178.38 (8) C2C—C1C—P1 119.14 (16)
C2—Pd2—P2 89.18 (7) C3C—C2C—C1C 120.2 (2)
N21—Pd2—P2 92.44 (5) C3C—C2C—H2CA 119.9
C2—Pd2—S1 86.54 (7) C1C—C2C—H2CA 119.9
N21—Pd2—S1 91.84 (5) C4C—C3C—C2C 120.2 (2)
P2—Pd2—S1 174.489 (19) C4C—C3C—H3CA 119.9
C11—S1—Pd2 103.47 (7) C2C—C3C—H3CA 119.9
C21—S2—Pd1 103.09 (7) C3C—C4C—C5C 120.0 (2)
C1A—P1—C1C 105.05 (10) C3C—C4C—H4CA 120.0
C1A—P1—C1B 106.83 (9) C5C—C4C—H4CA 120.0
C1C—P1—C1B 103.83 (9) C4C—C5C—C6C 120.1 (3)
C1A—P1—Pd1 112.97 (6) C4C—C5C—H5CA 120.0
C1C—P1—Pd1 115.90 (6) C6C—C5C—H5CA 120.0
C1B—P1—Pd1 111.44 (7) C1C—C6C—C5C 121.2 (2)
C1F—P2—C1D 104.60 (11) C1C—C6C—H6CA 119.4
C1F—P2—C1E 105.46 (10) C5C—C6C—H6CA 119.4
C1D—P2—C1E 104.41 (9) C6D—C1D—C2D 119.2 (2)
C1F—P2—Pd2 114.49 (7) C6D—C1D—P2 121.09 (18)
C1D—P2—Pd2 113.82 (7) C2D—C1D—P2 119.39 (18)
C1E—P2—Pd2 113.06 (7) C3D—C2D—C1D 119.9 (2)
C11—N11—C13 107.43 (18) C3D—C2D—H2DA 120.0
C11—N11—Pd1 122.63 (14) C1D—C2D—H2DA 120.0
C13—N11—Pd1 129.94 (15) C4D—C3D—C2D 120.7 (3)
C11—N12—C12 108.74 (19) C4D—C3D—H3DA 119.7
C11—N12—H12A 125.6 C2D—C3D—H3DA 119.7
C12—N12—H12A 125.6 C3D—C4D—C5D 119.7 (3)
C21—N21—C23 107.19 (18) C3D—C4D—H4DA 120.1
C21—N21—Pd2 122.77 (15) C5D—C4D—H4DA 120.1
C23—N21—Pd2 130.03 (15) C4D—C5D—C6D 120.2 (3)
C21—N22—C22 108.90 (19) C4D—C5D—H5DA 119.9
C21—N22—H22A 125.6 C6D—C5D—H5DA 119.9
C22—N22—H22A 125.6 C1D—C6D—C5D 120.3 (3)
N1—C1—Pd1 178.1 (2) C1D—C6D—H6DA 119.8
N2—C2—Pd2 178.2 (2) C5D—C6D—H6DA 119.8
N11—C11—N12 108.68 (19) C6E—C1E—C2E 119.17 (18)
N11—C11—S1 125.60 (16) C6E—C1E—P2 120.21 (14)
N12—C11—S1 125.72 (16) C2E—C1E—P2 120.60 (17)
C13—C12—N12 106.7 (2) C1E—C2E—C3E 120.1 (2)
C13—C12—H13A 126.6 C1E—C2E—H2EA 119.9
N12—C12—H13A 126.6 C3E—C2E—H2EA 119.9
C12—C13—N11 108.4 (2) C4E—C3E—C2E 120.3 (2)
C12—C13—H14A 125.8 C4E—C3E—H3EA 119.9
N11—C13—H14A 125.8 C2E—C3E—H3EA 119.9
N21—C21—N22 108.60 (19) C3E—C4E—C5E 120.2 (2)
N21—C21—S2 126.07 (16) C3E—C4E—H4EA 119.9
N22—C21—S2 125.32 (17) C5E—C4E—H4EA 119.9
C23—C22—N22 106.5 (2) C4E—C5E—C6E 120.1 (2)
C23—C22—H23A 126.8 C4E—C5E—H5EA 119.9
N22—C22—H23A 126.8 C6E—C5E—H5EA 119.9
C22—C23—N21 108.8 (2) C1E—C6E—C5E 120.17 (19)
C22—C23—H24A 125.6 C1E—C6E—H6EA 119.9
N21—C23—H24A 125.6 C5E—C6E—H6EA 119.9
C6A—C1A—C2A 119.2 (2) C6F—C1F—C2F 118.1 (2)
C6A—C1A—P1 123.45 (16) C6F—C1F—P2 118.58 (17)
C2A—C1A—P1 117.38 (16) C2F—C1F—P2 123.18 (16)
C3A—C2A—C1A 120.7 (2) C3F—C2F—C1F 120.8 (2)
C3A—C2A—H2AA 119.7 C3F—C2F—H2FA 119.6
C1A—C2A—H2AA 119.7 C1F—C2F—H2FA 119.6
C2A—C3A—C4A 119.9 (2) C2F—C3F—C4F 120.3 (2)
C2A—C3A—H3AA 120.0 C2F—C3F—H3FA 119.8
C4A—C3A—H3AA 120.0 C4F—C3F—H3FA 119.8
C3A—C4A—C5A 119.8 (2) C5F—C4F—C3F 119.4 (3)
C3A—C4A—H4AA 120.1 C5F—C4F—H4FA 120.3
C5A—C4A—H4AA 120.1 C3F—C4F—H4FA 120.3
C6A—C5A—C4A 120.4 (2) C4F—C5F—C6F 120.5 (2)
C6A—C5A—H5AA 119.8 C4F—C5F—H5FA 119.7
C4A—C5A—H5AA 119.8 C6F—C5F—H5FA 119.7
C5A—C6A—C1A 120.0 (2) C5F—C6F—C1F 120.8 (2)
C5A—C6A—H6AA 120.0 C5F—C6F—H6FA 119.6
C1A—C6A—H6AA 120.0 C1F—C6F—H6FA 119.6
C6B—C1B—C2B 118.82 (17) N1S—C1S—C2S 176.2 (11)
C6B—C1B—P1 121.48 (16) C1S—C2S—H2S1 109.5
C2B—C1B—P1 119.70 (14) C1S—C2S—H2S2 109.5
C3B—C2B—C1B 119.6 (2) H2S1—C2S—H2S2 109.5
C3B—C2B—H2BA 120.2 C1S—C2S—H2S3 109.5
C1B—C2B—H2BA 120.2 H2S1—C2S—H2S3 109.5
C4B—C3B—C2B 120.7 (2) H2S2—C2S—H2S3 109.5
C4B—C3B—H3BA 119.7 N1T—C1T—C2T 167.3 (16)
C2B—C3B—H3BA 119.7 C1T—C2T—H2T1 109.5
C5B—C4B—C3B 120.1 (2) C1T—C2T—H2T2 109.5
C5B—C4B—H4BA 119.9 H2T1—C2T—H2T2 109.5
C3B—C4B—H4BA 119.9 C1T—C2T—H2T3 109.5
C4B—C5B—C6B 119.8 (2) H2T1—C2T—H2T3 109.5
C4B—C5B—H5BA 120.1 H2T2—C2T—H2T3 109.5
C13—N11—C11—N12 −1.0 (2) Pd1—P1—C1C—C6C 107.61 (17)
Pd1—N11—C11—N12 179.69 (12) C1A—P1—C1C—C2C 166.82 (15)
C13—N11—C11—S1 178.50 (14) C1B—P1—C1C—C2C 54.80 (17)
Pd1—N11—C11—S1 −0.8 (2) Pd1—P1—C1C—C2C −67.74 (16)
C12—N12—C11—N11 0.5 (2) C6C—C1C—C2C—C3C −0.1 (3)
C12—N12—C11—S1 −179.08 (15) P1—C1C—C2C—C3C 175.43 (15)
Pd2—S1—C11—N11 −58.55 (17) C1C—C2C—C3C—C4C 0.1 (3)
Pd2—S1—C11—N12 120.92 (16) C2C—C3C—C4C—C5C 0.7 (4)
C11—N12—C12—C13 0.3 (2) C3C—C4C—C5C—C6C −1.5 (4)
N12—C12—C13—N11 −1.0 (2) C2C—C1C—C6C—C5C −0.7 (3)
C11—N11—C13—C12 1.3 (2) P1—C1C—C6C—C5C −176.07 (19)
Pd1—N11—C13—C12 −179.55 (14) C4C—C5C—C6C—C1C 1.5 (4)
C23—N21—C21—N22 −1.0 (2) C1F—P2—C1D—C6D −23.41 (19)
Pd2—N21—C21—N22 179.80 (12) C1E—P2—C1D—C6D −133.98 (18)
C23—N21—C21—S2 177.87 (14) Pd2—P2—C1D—C6D 102.27 (17)
Pd2—N21—C21—S2 −1.3 (2) C1F—P2—C1D—C2D 163.28 (16)
C22—N22—C21—N21 0.7 (2) C1E—P2—C1D—C2D 52.72 (18)
C22—N22—C21—S2 −178.16 (16) Pd2—P2—C1D—C2D −71.03 (17)
Pd1—S2—C21—N21 −57.77 (17) C6D—C1D—C2D—C3D −0.8 (3)
Pd1—S2—C21—N22 120.92 (16) P2—C1D—C2D—C3D 172.62 (16)
C21—N22—C22—C23 −0.1 (2) C1D—C2D—C3D—C4D 0.4 (3)
N22—C22—C23—N21 −0.5 (2) C2D—C3D—C4D—C5D 0.8 (4)
C21—N21—C23—C22 0.9 (2) C3D—C4D—C5D—C6D −1.6 (4)
Pd2—N21—C23—C22 −179.96 (14) C2D—C1D—C6D—C5D 0.0 (3)
C1C—P1—C1A—C6A −98.1 (2) P2—C1D—C6D—C5D −173.35 (18)
C1B—P1—C1A—C6A 11.7 (2) C4D—C5D—C6D—C1D 1.2 (4)
Pd1—P1—C1A—C6A 134.63 (18) C1F—P2—C1E—C6E 96.5 (2)
C1C—P1—C1A—C2A 82.64 (19) C1D—P2—C1E—C6E −153.57 (19)
C1B—P1—C1A—C2A −167.49 (17) Pd2—P2—C1E—C6E −29.3 (2)
Pd1—P1—C1A—C2A −44.6 (2) C1F—P2—C1E—C2E −81.6 (2)
C6A—C1A—C2A—C3A 2.1 (4) C1D—P2—C1E—C2E 28.4 (2)
P1—C1A—C2A—C3A −178.7 (2) Pd2—P2—C1E—C2E 152.62 (17)
C1A—C2A—C3A—C4A −1.2 (4) C6E—C1E—C2E—C3E −0.1 (4)
C2A—C3A—C4A—C5A −0.7 (5) P2—C1E—C2E—C3E 178.0 (2)
C3A—C4A—C5A—C6A 1.8 (5) C1E—C2E—C3E—C4E −0.3 (4)
C4A—C5A—C6A—C1A −0.9 (4) C2E—C3E—C4E—C5E 0.5 (4)
C2A—C1A—C6A—C5A −1.0 (4) C3E—C4E—C5E—C6E −0.4 (4)
P1—C1A—C6A—C5A 179.8 (2) C2E—C1E—C6E—C5E 0.2 (3)
C1A—P1—C1B—C6B −83.0 (2) P2—C1E—C6E—C5E −177.91 (18)
C1C—P1—C1B—C6B 27.7 (2) C4E—C5E—C6E—C1E 0.1 (4)
Pd1—P1—C1B—C6B 153.15 (17) C1D—P2—C1F—C6F 90.2 (2)
C1A—P1—C1B—C2B 97.0 (2) C1E—P2—C1F—C6F −160.00 (19)
C1C—P1—C1B—C2B −152.31 (19) Pd2—P2—C1F—C6F −35.1 (2)
Pd1—P1—C1B—C2B −26.9 (2) C1D—P2—C1F—C2F −85.8 (2)
C6B—C1B—C2B—C3B 0.4 (4) C1E—P2—C1F—C2F 24.1 (2)
P1—C1B—C2B—C3B −179.6 (2) Pd2—P2—C1F—C2F 148.98 (17)
C1B—C2B—C3B—C4B −0.9 (4) C6F—C1F—C2F—C3F 0.0 (4)
C2B—C3B—C4B—C5B 0.6 (4) P2—C1F—C2F—C3F 175.98 (19)
C3B—C4B—C5B—C6B 0.2 (4) C1F—C2F—C3F—C4F −1.4 (4)
C2B—C1B—C6B—C5B 0.4 (4) C2F—C3F—C4F—C5F 1.6 (4)
P1—C1B—C6B—C5B −179.63 (19) C3F—C4F—C5F—C6F −0.5 (5)
C4B—C5B—C6B—C1B −0.7 (4) C4F—C5F—C6F—C1F −0.8 (5)
C1A—P1—C1C—C6C −17.83 (19) C2F—C1F—C6F—C5F 1.1 (4)
C1B—P1—C1C—C6C −129.86 (18) P2—C1F—C6F—C5F −175.1 (2)

\ Bis(µ-1H-imidazole-2-thiolato)-κ2N3:S;\ κ2S:N3-bis[cyanido(triphenylphosphine-κP)\ palladium(II)] acetonitrile 0.58-solvate (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N12—H12A···N2i 0.88 1.90 2.770 (3) 169
N22—H22A···N1ii 0.88 1.92 2.760 (3) 160
C12—H13A···N1S 0.95 2.35 3.261 (7) 161
C22—H23A···N1T 0.95 2.29 3.081 (12) 141

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Funding Statement

JPJ acknowledges the NSF–MRI program (Grant No. CHE-1039027) for funds to purchase an X-ray diffractometer. MZ acknowledges the NSF Grant CHE 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University for funds to purchase an X-ray diffractometer.

References

  1. Ahmad, S., Rüffer, T., Lang, H., Nadeem, S., Tirmizi, S. A., Saleem, M. & Anwar, A. (2010). Russ. J. Coord. Chem. 36, 520–524.
  2. Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.
  3. Bondy, C. R. & Loeb, S. J. (2003). Coord. Chem. Rev. 240, 77–99.
  4. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193–195, 691–745.
  7. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  8. Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. New York: Harper Collins College Publishers.
  9. Kahn, E. S., Rheingold, A. L. & Shupack, S. I. (1993). J. Crystallogr. Spectrosc. Res. 23, 697–710.
  10. Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.
  11. Kostas, I. D. & Steele, B. R. (2020). Catalysts 10, 1107; doi: 10.3390/catal10101107.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.
  14. Lobana, T. S., Sandhu, A. K., Mahajan, R. K., Hundal, G., Gupta, S. K., Butcher, R. J. & Castineiras, A. (2017). Polyhedron, 127, 25–35.
  15. Mendía, A., Cerrada, E., Arnáiz, F. J. & Laguna, M. (2006). Dalton Trans. pp. 609–616. [DOI] [PubMed]
  16. Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD , and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  17. Raper, E. S. (1985). Coord. Chem. Rev. 61, 115–184.
  18. Raper, E. S. (1994). Coord. Chem. Rev. 129, 91–156.
  19. Raper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.
  20. Raper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.
  21. Sandhu, A. K., Lobana, T. S., Sran, B. S., Hundal, G. & Jasinski, J. P. (2018). J. Organomet. Chem. 861, 112–124.
  22. Serpe, A., Artizzu, F., Mercuri, M. L., Pilia, L. & Deplano, P. (2008). Coord. Chem. Rev. 252, 1200–1212.
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Steffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2432–2439.
  27. Talismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Charushin, V. N., Kotovskaya, S. K., Ananikov, V. P., Eremenko, I. L. & Moiseeva, I. I. (2008). Russ. Chem. Bull. 57, 47–55.
  28. Talismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Oprunenko, Y. F., Eremenko, I. L. & Moiseev, I. I. (2004). Russ. Chem. Bull. 53, 1507–1510.
  29. Umakoshi, K., Ichimura, A., Kinoshita, I. & Ooi, S. (1990). Inorg. Chem. 29, 4005–4010.
  30. Yamamoto, J. H., Yoshida, W. & Jensen, C. M. (1991). Inorg. Chem. 30, 1353–1357.
  31. Yap, G. P. A. & Jensen, C. M. (1992). Inorg. Chem. 31, 4823–4828.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989023000166/ex2063sup1.cif

e-79-00079-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989023000166/ex20631sup2.hkl

e-79-00079-1sup2.hkl (466.1KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989023000166/ex20632sup3.hkl

e-79-00079-2sup3.hkl (1.2MB, hkl)

CCDC references: 2234599, 2234598

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES