Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 26;79(Pt 2):116–119. doi: 10.1107/S2056989023000555

Syntheses and structures of ammonium transition-metal dialuminium tris­(phosphate) dihydrates (NH4)MAl4(PO4)3·2H2O (M = Mn and Ni)

Makoto Tokuda a,*, Keita Tanaka a, Kazumasa Sugiyama a
Editor: W T A Harrisonb
PMCID: PMC9912463  PMID: 36793401

The aluminophosphate frameworks of the title compounds, (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni), consist of a three-dimensional array of vertex-sharing tetra­hedral PO4 and trigonal–bipyramidal AlO5 moieties, which delineate [001] twelve-membered channels in which the ammonium NH4 + and transition-metal cations (M = Mn2+ and Ni2+) reside as charge compensators for the anionic aluminophosphate framework.

Keywords: single-crystal diffraction, crystal structure, aluminophosphate

Abstract

The structures of ammonium manganese(II) dialuminium tris­(phosphate) dihydrate, (NH4)MnAl2(PO4)3·2H2O, and ammonium nickel(II) dialuminium tris­(phosphate) dihydrate, (NH4)NiAl2(PO4)3·2H2O, were determined using single-crystal diffraction data. The structures of title compounds are isotypic to cobalt aluminophosphate, (NH4)CoAl2(PO4)3·2H2O (LMU-3) [Panz et al. (1998). Inorg. Chim. Acta, 269, 73–82], in which a three-dimensional network of vertex-sharing AlO5 and PO4 moieties delineate twelve-membered channels in which ammonium, NH4 +, and transition-metal cations (M = Mn2+ and Ni2+) reside as charge compensators for the anionic [Al2(PO4)3]3– aluminophosphate framework. In both structures, the N atom of the ammonium cation, the transition-metal ion and one of the P atoms lie on crystallographic twofold axes.

1. Chemical context

The mixed-metal phosphate composed of tetra­hedral, bipyramidal and octa­hedral building units with chemical formula KNiAl2(PO4)3·2H2O was firstly reported by Meyer & Haushalter (1994). Isotypic structures were found in the alumino-, ferri- and gallophosphates; (NH4)CoAl2(PO4)3·2H2O (Panz et al. 1998), KMnAl2(PO4)3·2H2O (Kiriukhina et al. 2020), CsFe3(PO4)3·2H2O (Lii & Huang 1995), (NH4)CoGa2(PO4)3·2H2O (Chippindale et al. 1996), (NH4)MnGa2(PO4)3·2H2O (Chippindale et al. 1998), (NH4)NiGa2(PO4)3·2H2O (Bieniok et al. 2008) and KNiGa2(PO4)3·2H2O (Chippindale et al. 2009).

Herein, we report the syntheses and structures of (NH4)MAl2(PO4)3·2H2O [M = Mn in (I) and Ni in (II)] using a hydro­thermal technique and structural analysis by single-crystal X-ray diffraction. These compounds are isotypic to (NH4)CoAl2 (PO4)3·2H2O (LMU-3), crystallizing from a hydro­thermal synthesis (Panz et al., 1998).

2. Structural commentary

The aluminophosphate framework of the title compounds with the chemical formula (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni) is composed of [PO4] tetra­hedra and [AlO5] trigonal-bipyramids. Fig. 1(a) shows the [Al2(PO4)3] layers, which are built up from four- and eight-membered rings connected via Al—O—P bonds. These layers stack along the a-axis direction, with the [P2O4] tetra­hedra (atom P2 lies on a crystallographic twofold axis) bridging between them, leading to the formation of a three-dimensional network encapsulating twelve-membered channels propagating in the [001] direction. The ammonium and transition-metal cations are respectively located in and on these channels, compensating the negative charge of the aluminophosphate framework [Fig. 1(b)].

Figure 1.

Figure 1

(a) Two-dimensional layer formed by four- and eight-membered rings in the bc plane and (b) the three-dimensional channels formed by twelve-membered rings in the aluminophosphate framework of Al2 M(NH4)(PO4)3·2H2O (M = Mn and Ni) illustrated using VESTA (Momma & Izumi, 2011).

There are two axial and three equatorial Al—O bonds within the [AlO5] trigonal bipyramids (Table 1). The axial Al—O bond distances for M = Mn are 1.8886 (19) and 1.9320 (18) Å and those for Ni are 1.8818 (14) and 1.9271 (14) Å, and the equatorial ones are in the ranges 1.7847 (19)–1.8080 (18) Å (Mn) and 1.7731 (14)–1.7979 (14) Å (Ni), thus the average axial Al—O bond distances are larger than the equatorial ones. Previous studies on [AlO5] trigonal bipyramids in LMU-3, KNiAl2(PO4)3·2H2O, KMnAl2(PO4)3·2H2O and (NH4)3Al2(PO4)3 (Panz et al., 1998; Meyer & Haushalter 1994; Kiriukhina et al., 2020; Medina et al. 2004) showed similar geometrical features with longer axial Al—O bonds distances.

Table 1. Selected bond lengths (Å) in (NH4)MAl2(PO4)3·2H2O [M = Mn (I) and Ni (II)].

  (I) (II)
PO4 tetra­hedra    
P1—O6iv 1.5152 (19) 1.5180 (14)
P1—O2 1.5342 (19) 1.5361 (14)
P1—O3 1.5350 (18) 1.5371 (13)
P1—O1 1.5493 (18) 1.5502 (13)
P2—O5 1.5294 (18) 1.5253 (13)
P2—O4 1.5420 (18) 1.5444 (13)
     
AlO5 trigonal bipyramid    
Al—O2ii 1.7847 (19) 1.7731 (14)
Al—O1 1.8013 (19) 1.7908 (14)
Al—O5iv 1.8080 (18) 1.7979 (14)
Al—O3iv 1.8886 (19) 1.8818 (14)
Al—O4 1.9320 (18) 1.9271 (14)
     
MnO6 octa­hedra    
M—O6 2.0799 (19) 2.0052 (13)
M—O7 2.1990 (20) 2.0799 (15)
M—O4 2.2805 (18) 2.1512 (13)
O4⋯O4i 2.407 (5) 2.387 (4)
O6⋯O7 2.950 (3) 2.785 (2)
O6⋯O7i 2.962 (4) 2.844 (3)
O4⋯O6 3.192 (3) 3.065 (2)
O4⋯O7 3.254 (3) 3.089 (2)
O4⋯O7i 3.291 (3) 3.094 (3)
O6⋯O6i 3.372 (5) 3.132 (4)

Symmetry codes: (i) −x, y, −z +  Inline graphic ; (ii) −x +  Inline graphic , y −  Inline graphic , −z +  Inline graphic ; (iv) x, −y + 1, z −  Inline graphic ; (vi) −x +  Inline graphic , y +  Inline graphic , −z + 1.

The transition-metal cations, which lie on crystallographic twofold axes, are octa­hedrally coordinated by two oxygen atoms of water mol­ecules and four oxygen atoms of the framework (Fig. 2). The mean M—O bond distances for the Mn and Ni compounds are 2.186 Å and 2.079 Å, respectively, which are consistent with the ionic radii of VIMn2+ (0.83 Å) and VINi2+ (0.69 Å; Shannon 1976). The MO6 octa­hedron shares an edge O4⋯O4 with the adjacent [P2O4] tetra­hedron. The length of the shared-edge O4⋯O4 is the shortest among the twelve edges of octa­hedrally coordinated transition-metal cations in accordance with the P5+M 2+ cation repulsion (Pauling, 1929, 1960).

Figure 2.

Figure 2

Positions of the MO6 [M = Mn (I) and Ni (II)] octa­hedra in the twelve-membered-ring channel of the aluminophosphate framework. Displacement ellipsoids are presented at the 80% probability level. [Symmetry codes: (i) −x, y, −z +  Inline graphic ; (ii) −x +  Inline graphic , y −  Inline graphic , −z +  Inline graphic ; (iii) x −  Inline graphic , y −  Inline graphic , z; (iv) x, −y + 1, z −  Inline graphic ; (v) −x, −y + 1, −z + 1.]

The positions of the hydrogen atoms in the water mol­ecule, H71 and H72, could be determined by analysing the residual peaks in the difference-Fourier maps. The oxygen atom O7 of the water mol­ecule is coordinated to the transition-metal ions, and hydrogen atoms of H71 and H72 form O—H⋯O hydrogen bonds with the oxygen atoms O1 and O3 of the [Al2(PO4)3] layer, respectively (Tables 2 and 3). Thus, the H71⋯O1 and H72⋯O3 hydrogen bonds contribute to the accumulation of the layers.

Table 2. Hydrogen-bond geometry (Å, °) for (I).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O1i 0.89 1.95 2.831 (3) 178
O7—H72⋯O3ii 0.87 2.04 2.897 (3) 166

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Table 3. Hydrogen-bond geometry (Å, °) for (II).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O1i 0.81 1.99 2.790 (2) 167
O7—H72⋯O3ii 0.86 2.11 2.961 (2) 170

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

As for the hydrogen-bonding inter­actions of the ammonium cation (N atom site symmetry 2) within the title compounds, not all the H atoms could be definitively located from difference maps but some structural information could be obtained from the observed distances N1⋯O5 = 3.085 (5) and 3.103 (4) Å and N1⋯O6 = 2.906 (4) and 2.862 (3) Å for (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni), respectively. The longer N1⋯O5 distance and the large isotropic atomic displacement parameters, U iso, of the N1 atom clearly indicate the relatively weaker hydrogen bonding for the presumed N1—H⋯O5 cases. This structural feature did not allow us to definitively located the positions of hydrogen atoms within the N1—H⋯O5 cases. Nevertheless, some of the hydrogen-atom positions around the ammonium cations could be located in the difference-Fourier maps and coordinates are (0.5382, 0.3998, 0.2391) and (0.5357, 0.4204, 0.2296) for (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni), respectively. These possible hydrogen-atom positions correspond to those for the N1—H⋯O6 cases. Weak hydrogen bonds between NH4 + and the framework suggests that NH4 + and a monovalent cation (e.g., alkali cation or H3O+) are exchangeable akin to zeolitic cations in this unique framework structure (Meyer & Haushalter 1994; Kiriukhina et al., 2020). The chemical formula for the group of compounds reported in this study can be denoted by A + M 2+Al2(PO4)3·2H2O (A = monovalent cation, M = divalent transition-metal cation).

3. Synthesis and crystallization

Single crystals of (NH4)MAl2(PO4)3·2H2O (M = Mn and Ni) were obtained as by-products of the laumontite-type zeolite imidazole-templated hydro­thermal technique. The precursor solution was prepared by dissolving the chemical agents of imidazole, aluminium-isopropoxide and H3PO4 (85% solution): the transition-metal component (Ni or Mn) was added to the solution. For the insertion of nickel in the system, (CH3COO)2Ni·4H2O was used and for corresponding manganese analogue (CH3COO)2Mn·4H2O was added to the as-prepared precursor solution. In each case, the resultant gel mixture was then sealed in a Teflon-lined tube and heated at 453 K for three days.

A few colorless, transparent crystals of (NH4)MnAl2(PO4)3·2H2O with a plate-like form were separated from the microcrystalline material together with the laumontite-type aluminophosphate, Mn-hureaulite Mn5[PO3(OH)]2(PO4)2·4H2O. In the case of Ni, the product comprises NH4NiAl2(PO4)3·2H2O, which forms colorless, transparent plate-like crystals and organic compounds.

The chemical analyses of the synthesized products were performed using energy-dispersive X-ray spectroscopy (EDS). The EDS profile clearly showed the presence of nitro­gen. This supports the idea that NH4 +, a decomposition product of imidazole, was incorporated within the framework as a charge-compensating cation.

4. Refinement details

The crystal data, data collection methods, and structure refinement details are summarized in Table 4. The positions of the hydrogen atoms bonded to O7 were estimated using the residual peaks in the difference Fourier maps and refined using a riding model. The U iso parameters for hydrogen atoms were fixed at 1.5 × the U iso of O7.

Table 4. Experimental details.

  (NH4)MnAl2(PO4)3·2H2O (NH4)NiAl2(PO4)3·2H2O
Crystal data
M r 447.88 451.65
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 298 298
a, b, c (Å) 13.3577 (7), 10.2279 (5), 8.7922 (5) 13.0711 (3), 10.1772 (2), 8.74476 (19)
β (°) 108.885 (6) 108.527 (3)
V3) 1136.53 (11) 1103.00 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.85 2.44
Crystal size (mm) 0.05 × 0.04 × 0.02 0.11 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Single source at offset/far, HyPix XtaLAB Synergy, Single source at offset/far, HyPix
Absorption correction Numerical (CrysAlis PRO; Rigaku OD, 2021) Numerical (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.938, 0.968 0.853, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 5256, 1316, 1178 9320, 1328, 1281
R int 0.027 0.021
(sin θ/λ)max−1) 0.653 0.660
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.077, 1.11 0.018, 0.056, 1.14
No. of reflections 1316 1328
No. of parameters 97 97
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.51 0.42, −0.36

Computer programs: CrysAlis PRO 1.171.40.43a (Rigaku OD, 2021), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ) and VESTA (Momma & Izumi, 2011).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023000555/hb8032sup1.cif

e-79-00116-sup1.cif (1,010.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000555/hb8032Isup2.hkl

e-79-00116-Isup2.hkl (106.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023000555/hb8032IIsup3.hkl

e-79-00116-IIsup3.hkl (107.9KB, hkl)

CCDC references: 2237562, 2237561

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Crystal data

(NH4)MnAl2(PO4)3·2H2O F(000) = 956.0
Mr = 447.88 Dx = 2.618 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 13.3577 (7) Å Cell parameters from 3620 reflections
b = 10.2279 (5) Å θ = 3.9–27.6°
c = 8.7922 (5) Å µ = 1.85 mm1
β = 108.885 (6)° T = 298 K
V = 1136.53 (11) Å3 Plate, colourless
Z = 4 0.05 × 0.04 × 0.02 mm

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Data collection

XtaLAB Synergy, Single source at offset/far, HyPix diffractometer 1316 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 1178 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.0000 pixels mm-1 θmax = 27.6°, θmin = 3.2°
ω scans h = −17→17
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) k = −13→11
Tmin = 0.938, Tmax = 0.968 l = −11→11
5256 measured reflections

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0358P)2 + 3.6714P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
1316 reflections Δρmax = 0.90 e Å3
97 parameters Δρmin = −0.51 e Å3
0 restraints

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn 0.000000 0.21386 (5) 0.250000 0.01325 (16)
Al 0.16968 (5) 0.42298 (7) 0.07597 (8) 0.00506 (17)
P1 0.29135 (5) 0.62403 (6) 0.33188 (7) 0.00855 (16)
P2 0.000000 0.49748 (8) 0.250000 0.00678 (19)
N1 0.500000 0.3634 (4) 0.250000 0.0357 (10)
O1 0.20881 (14) 0.57892 (18) 0.1720 (2) 0.0129 (4)
O2 0.27155 (14) 0.77104 (18) 0.3420 (2) 0.0130 (4)
O3 0.27207 (14) 0.55150 (18) 0.4727 (2) 0.0132 (4)
O4 0.07105 (14) 0.40324 (18) 0.1938 (2) 0.0118 (4)
O5 0.06242 (14) 0.58669 (18) 0.3876 (2) 0.0116 (4)
O6 0.09702 (14) 0.09481 (19) 0.1661 (2) 0.0179 (4)
O7 0.11844 (17) 0.1969 (2) 0.4904 (3) 0.0262 (5)
H71 0.148203 0.266954 0.546232 0.039*
H72 0.160636 0.130057 0.499139 0.039*

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn 0.0131 (3) 0.0113 (3) 0.0168 (3) 0.000 0.0069 (2) 0.000
Al 0.0059 (3) 0.0047 (3) 0.0043 (3) 0.0007 (2) 0.0013 (3) −0.0007 (2)
P1 0.0090 (3) 0.0086 (3) 0.0088 (3) −0.0016 (2) 0.0039 (2) −0.0006 (2)
P2 0.0071 (4) 0.0071 (4) 0.0063 (4) 0.000 0.0024 (3) 0.000
N1 0.041 (2) 0.0174 (19) 0.048 (3) 0.000 0.013 (2) 0.000
O1 0.0152 (9) 0.0132 (9) 0.0101 (8) −0.0029 (7) 0.0039 (7) −0.0037 (7)
O2 0.0168 (9) 0.0095 (9) 0.0137 (9) −0.0030 (7) 0.0063 (7) −0.0024 (7)
O3 0.0165 (9) 0.0124 (9) 0.0126 (9) 0.0010 (7) 0.0071 (7) 0.0029 (7)
O4 0.0125 (9) 0.0099 (8) 0.0153 (9) 0.0006 (7) 0.0078 (7) 0.0000 (7)
O5 0.0114 (8) 0.0123 (9) 0.0095 (8) −0.0013 (7) 0.0010 (7) −0.0036 (7)
O6 0.0107 (9) 0.0185 (10) 0.0265 (10) −0.0019 (7) 0.0089 (8) −0.0045 (8)
O7 0.0275 (12) 0.0201 (11) 0.0223 (10) 0.0016 (9) −0.0040 (9) −0.0044 (8)

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Geometric parameters (Å, º)

Mn—O6 2.0799 (19) Al—O4 1.9320 (18)
Mn—O6i 2.0799 (19) P1—O6iv 1.5152 (19)
Mn—O7 2.199 (2) P1—O2 1.5342 (19)
Mn—O7i 2.199 (2) P1—O3 1.5350 (18)
Mn—O4 2.2805 (18) P1—O1 1.5493 (18)
Mn—O4i 2.2805 (18) P2—O5 1.5294 (18)
Mn—P2 2.9008 (10) P2—O5i 1.5294 (18)
Al—O2ii 1.7847 (19) P2—O4 1.5420 (18)
Al—O1 1.8013 (19) P2—O4i 1.5420 (18)
Al—O5iii 1.8080 (18) O7—H71 0.8867
Al—O3iii 1.8886 (19) O7—H72 0.8736
O6—Mn—O6i 108.33 (11) O5iii—Al—O4 90.54 (8)
O6—Mn—O7 87.58 (8) O3iii—Al—O4 176.17 (8)
O6i—Mn—O7 87.13 (8) O6iv—P1—O2 112.34 (11)
O6—Mn—O7i 87.13 (8) O6iv—P1—O3 108.44 (11)
O6i—Mn—O7i 87.58 (8) O2—P1—O3 110.49 (10)
O7—Mn—O7i 170.96 (12) O6iv—P1—O1 111.15 (11)
O6—Mn—O4 93.99 (7) O2—P1—O1 105.01 (10)
O6i—Mn—O4 157.67 (7) O3—P1—O1 109.38 (10)
O7—Mn—O4 93.15 (7) O5—P2—O5i 106.74 (14)
O7i—Mn—O4 94.53 (7) O5—P2—O4 113.09 (9)
O6—Mn—O4i 157.67 (7) O5i—P2—O4 110.71 (9)
O6i—Mn—O4i 93.99 (7) O5—P2—O4i 110.71 (9)
O7—Mn—O4i 94.53 (7) O5i—P2—O4i 113.09 (9)
O7i—Mn—O4i 93.15 (7) O4—P2—O4i 102.63 (14)
O4—Mn—O4i 63.72 (9) O5—P2—Mn 126.63 (7)
O6—Mn—P2 125.84 (6) O5i—P2—Mn 126.63 (7)
O6i—Mn—P2 125.84 (6) O4—P2—Mn 51.31 (7)
O7—Mn—P2 94.52 (6) O4i—P2—Mn 51.31 (7)
O7i—Mn—P2 94.52 (6) P1—O1—Al 134.62 (12)
O4—Mn—P2 31.86 (4) P1—O2—Aliv 144.61 (13)
O4i—Mn—P2 31.86 (4) P1—O3—Alv 131.12 (11)
O2ii—Al—O1 123.95 (9) P2—O4—Al 134.74 (11)
O2ii—Al—O5iii 115.92 (9) P2—O4—Mn 96.83 (9)
O1—Al—O5iii 120.10 (9) Al—O4—Mn 127.51 (9)
O2ii—Al—O3iii 91.29 (8) P2—O5—Alv 139.42 (12)
O1—Al—O3iii 87.58 (8) P1ii—O6—Mn 127.16 (12)
O5iii—Al—O3iii 92.86 (8) Mn—O7—H71 121.5
O2ii—Al—O4 88.81 (8) Mn—O7—H72 112.9
O1—Al—O4 89.19 (8) H71—O7—H72 115.0

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y+1, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, −y+1, z+1/2.

Ammonium manganese(II) dialuminium tris(phosphate) dihydrate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H71···O1v 0.89 1.95 2.831 (3) 178
O7—H72···O3vi 0.87 2.04 2.897 (3) 166

Symmetry codes: (v) x, −y+1, z+1/2; (vi) −x+1/2, −y+1/2, −z+1.

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Crystal data

(NH4)NiAl2(PO4)3·2H2O F(000) = 904
Mr = 451.65 Dx = 2.720 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 13.0711 (3) Å Cell parameters from 14220 reflections
b = 10.1772 (2) Å θ = 2.6–44.8°
c = 8.74476 (19) Å µ = 2.44 mm1
β = 108.527 (3)° T = 298 K
V = 1103.00 (4) Å3 Plate, colourless
Z = 4 0.11 × 0.04 × 0.03 mm

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Data collection

XtaLAB Synergy, Single source at offset/far, HyPix diffractometer 1328 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 1281 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 10.0000 pixels mm-1 θmax = 28.0°, θmin = 2.6°
ω scans h = −17→17
Absorption correction: numerical (CrysAlisPro; Rigaku OD, 2021) k = −13→13
Tmin = 0.853, Tmax = 0.962 l = −11→11
9320 measured reflections

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0245P)2 + 3.4224P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
1328 reflections Δρmax = 0.42 e Å3
97 parameters Δρmin = −0.36 e Å3
0 restraints

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.000000 0.22315 (3) 0.250000 0.00786 (10)
Al 0.17218 (4) 0.42251 (5) 0.07491 (6) 0.00453 (12)
P1 0.29302 (4) 0.62530 (5) 0.32906 (5) 0.00592 (11)
P2 0.000000 0.49528 (6) 0.250000 0.00488 (13)
N1 0.500000 0.3647 (3) 0.250000 0.0282 (7)
O1 0.20866 (11) 0.57928 (13) 0.16956 (15) 0.0093 (3)
O2 0.26781 (11) 0.77156 (13) 0.34168 (16) 0.0091 (3)
O3 0.27630 (11) 0.54936 (13) 0.47120 (15) 0.0092 (3)
O4 0.07228 (11) 0.39900 (13) 0.19411 (16) 0.0085 (3)
O5 0.06302 (11) 0.58454 (13) 0.38790 (15) 0.0088 (3)
O6 0.09292 (11) 0.10007 (14) 0.17281 (17) 0.0119 (3)
O7 0.11014 (13) 0.20652 (15) 0.48072 (18) 0.0185 (3)
H71 0.147718 0.262282 0.538535 0.028*
H72 0.150318 0.137982 0.497836 0.028*

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.00760 (16) 0.00725 (17) 0.00974 (17) 0.000 0.00416 (12) 0.000
Al 0.0051 (2) 0.0041 (2) 0.0044 (2) 0.00028 (18) 0.00137 (19) 0.00000 (17)
P1 0.0066 (2) 0.0055 (2) 0.0065 (2) −0.00124 (15) 0.00321 (16) −0.00082 (15)
P2 0.0047 (3) 0.0056 (3) 0.0045 (3) 0.000 0.0017 (2) 0.000
N1 0.0316 (16) 0.0160 (13) 0.0391 (17) 0.000 0.0143 (14) 0.000
O1 0.0120 (6) 0.0080 (6) 0.0078 (6) −0.0016 (5) 0.0028 (5) −0.0024 (5)
O2 0.0106 (6) 0.0065 (6) 0.0110 (6) −0.0018 (5) 0.0044 (5) −0.0021 (5)
O3 0.0111 (6) 0.0091 (6) 0.0090 (6) 0.0006 (5) 0.0056 (5) 0.0019 (5)
O4 0.0093 (6) 0.0073 (6) 0.0114 (6) 0.0005 (5) 0.0069 (5) −0.0001 (5)
O5 0.0087 (6) 0.0097 (6) 0.0064 (6) −0.0007 (5) 0.0002 (5) −0.0020 (5)
O6 0.0085 (6) 0.0111 (6) 0.0183 (7) −0.0002 (5) 0.0075 (5) −0.0026 (5)
O7 0.0192 (8) 0.0153 (7) 0.0149 (7) 0.0010 (6) −0.0032 (6) −0.0033 (6)

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Geometric parameters (Å, º)

Ni—O6 2.0052 (13) Al—O4 1.9271 (14)
Ni—O6i 2.0052 (13) P1—O6iv 1.5180 (14)
Ni—O7i 2.0799 (15) P1—O2 1.5361 (14)
Ni—O7 2.0799 (15) P1—O3 1.5371 (13)
Ni—O4 2.1512 (13) P1—O1 1.5502 (13)
Ni—O4i 2.1513 (13) P2—O5i 1.5253 (13)
Ni—P2 2.7695 (7) P2—O5 1.5253 (13)
Al—O2ii 1.7731 (14) P2—O4 1.5444 (13)
Al—O1 1.7908 (14) P2—O4i 1.5444 (13)
Al—O5iii 1.7979 (14) O7—H71 0.8131
Al—O3iii 1.8818 (14) O7—H72 0.8572
O6—Ni—O6i 102.68 (8) O5iii—Al—O4 90.50 (6)
O6—Ni—O7i 85.94 (6) O3iii—Al—O4 176.10 (6)
O6i—Ni—O7i 88.23 (6) O6iv—P1—O2 113.48 (8)
O6—Ni—O7 88.23 (6) O6iv—P1—O3 108.43 (8)
O6i—Ni—O7 85.94 (6) O2—P1—O3 109.89 (8)
O7i—Ni—O7 170.66 (9) O6iv—P1—O1 111.07 (8)
O6—Ni—O4 94.96 (5) O2—P1—O1 104.47 (8)
O6i—Ni—O4 162.34 (5) O3—P1—O1 109.41 (8)
O7i—Ni—O4 93.78 (6) O5i—P2—O5 106.90 (11)
O7—Ni—O4 93.98 (6) O5i—P2—O4 111.02 (7)
O6—Ni—O4i 162.34 (5) O5—P2—O4 113.39 (7)
O6i—Ni—O4i 94.96 (5) O5i—P2—O4i 113.39 (7)
O7i—Ni—O4i 93.98 (6) O5—P2—O4i 111.02 (7)
O7—Ni—O4i 93.78 (6) O4—P2—O4i 101.24 (10)
O4—Ni—O4i 67.41 (7) O5i—P2—Ni 126.55 (5)
O6—Ni—P2 128.66 (4) O5—P2—Ni 126.55 (5)
O6i—Ni—P2 128.66 (4) O4—P2—Ni 50.62 (5)
O7i—Ni—P2 94.67 (4) O4i—P2—Ni 50.62 (5)
O7—Ni—P2 94.67 (4) P1—O1—Al 133.93 (9)
O4—Ni—P2 33.70 (3) P1—O2—Aliv 142.39 (9)
O4i—Ni—P2 33.71 (3) P1—O3—Alv 128.58 (8)
O2ii—Al—O1 124.32 (7) P2—O4—Al 132.86 (8)
O2ii—Al—O5iii 117.33 (7) P2—O4—Ni 95.68 (6)
O1—Al—O5iii 118.28 (7) Al—O4—Ni 130.40 (7)
O2ii—Al—O3iii 92.12 (6) P2—O5—Alv 140.21 (9)
O1—Al—O3iii 87.71 (6) P1ii—O6—Ni 126.87 (8)
O5iii—Al—O3iii 93.10 (6) Ni—O7—H71 129.9
O2ii—Al—O4 87.54 (6) Ni—O7—H72 115.6
O1—Al—O4 89.27 (6) H71—O7—H72 104.1

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y+1, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, −y+1, z+1/2.

Ammonium nickel(II) dialuminium tris(phosphate) dihydrate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H71···O1v 0.81 1.99 2.790 (2) 167
O7—H72···O3vi 0.86 2.11 2.961 (2) 170

Symmetry codes: (v) x, −y+1, z+1/2; (vi) −x+1/2, −y+1/2, −z+1.

Funding Statement

This work was supported financially by Grant-in-Aid for Scientific Research on Innovative Areas No. 18H05456.

References

  1. Bieniok, A., Brendel, U., Lottermoser, W. & Amthauer, G. (2008). Z. Kristallogr. 223, 186–194.
  2. Chippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.
  3. Chippindale, A. M., Cowley, A. R. & Walton, R. I. (1996). J. Mater. Chem. 6, 611–614.
  4. Chippindale, A. M., Sharma, A. V. & Hibble, S. J. (2009). Acta Cryst. E65, i38–i39. [DOI] [PMC free article] [PubMed]
  5. Kiriukhina, G. V., Yakubovich, O. V., Shvanskaya, L. V., Kochetkova, E. M., Dimitrova, O. V., Volkov, A. S. & Simonov, S. V. (2020). Acta Cryst. C76, 302–310. [DOI] [PubMed]
  6. Lii, K.-H. & Huang, C.-Y. (1995). J. Chem. Soc. Dalton Trans. pp. 571–574.
  7. Medina, M. E., Iglesias, M., Gutiérrez-Puebla, E. & Monge, M. A. (2004). J. Mater. Chem. 14, 845–850.
  8. Meyer, L. M. & Haushalter, R. C. (1994). Chem. Mater. 6, 349–350.
  9. Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.
  10. Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73–82.
  11. Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010–1026.
  12. Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 93. Ithaca: Cornell University Press.
  13. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023000555/hb8032sup1.cif

e-79-00116-sup1.cif (1,010.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000555/hb8032Isup2.hkl

e-79-00116-Isup2.hkl (106.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023000555/hb8032IIsup3.hkl

e-79-00116-IIsup3.hkl (107.9KB, hkl)

CCDC references: 2237562, 2237561

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES