Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 31;79(Pt 2):120–123. doi: 10.1107/S2056989023000695

Crystal structures of rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione and N-[(2S,5R)-1,1,4-trioxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acet­amide

Hemant P Yennawar a, Saige L Lowe b, Matthew M Mammen b, Connor R Verhagen b, Lee J Silverberg b,*
Editor: W T A Harrisonc
PMCID: PMC9912464  PMID: 36793410

The syntheses and crystal structures of two thia­zinone compounds, in an enanti­opure form, are reported. The thia­zine rings in the two structures differ in their puckering, as a half-chair in the first and a boat pucker in the second.

Keywords: crystal structure, thia­zinone, sulfone, enanti­opure

Abstract

The syntheses and crystal structures of two thia­zinone compounds, namely, rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione, C16H15NO3S, in its racemic form, and N-[(2S,5R)-1,1,4-trioxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acet­amide, C18H18N2O4S, in an enanti­opure form, are reported. The thia­zine rings in the two structures differ in their puckering, as a half-chair in the first and a boat pucker in the second. The extended structures for both compounds have only C—H⋯O-type inter­actions between symmetry-related mol­ecules, and exhibit no π–π stacking inter­actions in spite of each having two phenyl rings.

1. Chemical context

The 2,3-di­hydro-4H-1,3-thia­zin-4-ones are a group of six-membered heterocycles with a wide range of biological activity (Ryabukhin et al., 1996; Silverberg & Moyer, 2019). Surrey’s research (Surrey et al., 1958; Surrey, 1963a ,b ) resulted in the discovery of two drugs, the anti­anxiety and muscle relaxant chlormezanone, C11H12ClNO3S, [2-(4-chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (O’Neil, 2006; Tanaka & Horayama, 2005) and the muscle relaxant dichlormezanone, C11H11Cl2NO3S, [2-(3,4-di­chloro­phen­yl)-3-methyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1,1-dioxide] (Elks & Ganellin, 1990). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey et al., 1958). 1.

We have previously reported the preparation of the sulfones rac-2,3-di­hydro-2,3-diphenyl-4H-1,3-thia­zin-4-one 1,1-dioxide and N-[(2S,5R)-1,1-dioxido-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide (Silverberg, 2020). We have also reported X-ray crystal structures of the corresponding sulfides and sulfoxides (Yennawar & Silverberg, 2014, 2015; Yennawar et al., 2015, 2016, 2017). The crystal structure of chlormezanone has been reported (Tanaka & Horayama, 2005). Herein we report the crystal structures of rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione, 1, and N-[(2S,5R)-1,1,4-trioxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acet­amide, 2.

2. Structural commentary

Compound 1 has one chiral center at C1 with an S configuration in the arbitrarily chosen asymmetric unit but crystal symmetry generates a racemic mixture (space group P21/c). Compound 2 has two chiral centers, at C1 and C3 (S and R respectively), synthesized as such, and crystallizes in space group P212121. In 1, the dihedral angles between the thia­zine ring (all atoms) and the pendant C5–C10 and C11–C16 phenyl groups are 84.02 (14) and 79.56 (12)°, respectively; the dihedral angle between the pendant rings is 61.26 (15)°. The equivalent angles in 2 are 81.25 (15), 82.58 (13) and 50.40 (15)°, respectively.

The structure of 1 (Fig. 1) has a half-chair puckering of the thia­zine ring with puckering amplitude Q = 0.605 (2) Å, θ = 47.2 (2)°, φ = 346.7 (3)°, while in 2 (Fig. 2) the ring has a boat pucker [Q = 0.770 (2) Å, θ = 85.31 (15)°, φ = 61.89 (17)°]. This change in the puckering of the central ring system of the two mol­ecules leads to differing orientations of one of the phenyl rings, which is clear from the overlay diagram (Fig. 3).

Figure 1.

Figure 1

The asymmetric unit of 1 with displacement ellipsoids drawn at 50% probability level.

Figure 2.

Figure 2

The asymmetric unit of 2 with displacement ellipsoids drawn at 50% probability level.

Figure 3.

Figure 3

Overlay plot of 1 and 2 where the three atoms S1, N1, and C11 are matched. Atoms C3 and C8 of compound 1 are labeled.

3. Supra­molecular features

In both structures, only C—H⋯O-type hydrogen-bond inter­actions between symmetry-related mol­ecules are observed (Tables 1 and 2). In 1, a single hydrogen bond [C12—H12⋯O1 = 3.454 (4) Å, 157°] and its symmetry-equivalent form a pair of parallel inter­actions (Fig. 4). In 2 (Fig. 5), the carbon atoms C1 and C4, both of the thia­zine ring, as well as C8 of one of the phenyl rings each donate an H atom for three distinct inter­actions involving three of the four oxygen atoms in the mol­ecule. Although both compounds each have two phenyl rings, neither of the lattices exhibit any π–π stacking inter­actions.

Table 1. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.56 3.454 (4) 157

Symmetry code: (i) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.39 3.365 (3) 173
C4—H4A⋯O4ii 0.97 2.29 3.185 (4) 153
C8—H8⋯O3iii 0.93 2.51 3.378 (5) 155

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 4.

Figure 4

Crystal packing diagram for 1 showing inter­molecular pairs of C—H⋯O hydrogen bonds.

Figure 5.

Figure 5

Crystal packing diagram for 2 showing inter­molecular C—H⋯O hydrogen bonds.

4. Database survey

Searches undertaken using the American Chemical Society’s Chemical Abstract Service (CAS) Scifinder platform did not find crystal structures of any 1,3-thia­zin-4-one sulfones other than chlormezanone (CSD refcode KAPNAR; Tanaka & Horayama, 2005).

5. Synthesis and crystallization

General oxidation procedure (Surrey et al., 1958; Silverberg, 2020; Cannon et al. 2015): the heterocycle (0.267 mmol) was dissolved in glacial acetic acid (1.2 ml). An aqueous solution of KMnO4 (0.535 mmol in 1.45 ml water) was added dropwise at room temperature with vigorous stirring. The reaction was followed by TLC. Solid sodium bis­ulfite (NaHSO3/Na2S2O5) was added until the mixture remained colorless and then 1.45 ml of water were added and stirred for 10 min. The mixture was extracted with CH2Cl2 (3 × 5 ml). The organics were combined and washed once with sat. NaCl. The solution was dried over Na2SO4 and filtered. The product was purified by chromatography in a silica gel micro-column.

rac-2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zine-1,1,4-trione, 1: Eluted with mixtures of ethyl acetate and hexa­nes. White solid (0.053 g, 70%). m.p.: 418–421 K. Crystals for X-ray diffraction studies were grown by slow evaporation from toluene solution.

N-[(2S,5R)-1,1,4-trioxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acet­amide, 2: Eluted with a mixture of 10% acetone and 90% ethyl acetate. White solid (0.076 g, 80%). m.p.: 443–467 K (decomposition). Crystals were grown by slow evaporation from ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were placed in their geometrically calculated positions and their coordin­ates refined using the riding model with parent-atom—H lengths of 0.93 Å (CH), 0.98 Å (chiral-CH), 0.96 Å (CH3), 0.97 Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times U eq of the parent atom.

Table 3. Experimental details.

  1 2
Crystal data
Chemical formula C16H15NO3S C18H18N2O4S
M r 301.35 358.40
Crystal system, space group Monoclinic, P21/c Orthorhombic, P212121
Temperature (K) 173 298
a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 5.5230 (4), 10.6857 (9), 28.430 (2)
α, β, γ (°) 90, 107.179 (4), 90 90, 90, 90
V3) 1478.13 (11) 1677.8 (2)
Z 4 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 2.03 0.22
Crystal size (mm) 0.2 × 0.18 × 0.09 0.22 × 0.06 × 0.06
 
Data collection
Diffractometer Rigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150 Bruker SMART CCD area detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.668, 1.000 0.656, 0.900
No. of measured, independent and observed [I > 2σ(I)] reflections 7437, 2856, 2139 13301, 4037, 3460
R int 0.056 0.035
(sin θ/λ)max−1) 0.628 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.150, 1.10 0.042, 0.103, 1.04
No. of reflections 2856 4037
No. of parameters 191 231
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.34 0.24, −0.14
Absolute structure Flack x determined using 1213 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.07 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SMART and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXS (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989023000695/hb8050sup1.cif

e-79-00120-sup1.cif (290.7KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989023000695/hb80501sup2.hkl

e-79-00120-1sup2.hkl (156.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023000695/hb80501sup4.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989023000695/hb80502sup3.hkl

e-79-00120-2sup3.hkl (221.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023000695/hb80502sup5.mol

Supporting information file. DOI: 10.1107/S2056989023000695/hb80501sup6.cml

Supporting information file. DOI: 10.1107/S2056989023000695/hb80502sup7.cml

CCDC references: 2238010, 2238009

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Crystal data

C16H15NO3S F(000) = 632
Mr = 301.35 Dx = 1.354 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 14.4485 (6) Å Cell parameters from 3416 reflections
b = 10.2031 (5) Å θ = 3.2–73.3°
c = 10.4950 (4) Å µ = 2.03 mm1
β = 107.179 (4)° T = 173 K
V = 1478.13 (11) Å3 Block, clear colourless
Z = 4 0.2 × 0.18 × 0.09 mm

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Data collection

Rigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150 diffractometer 2856 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source 2139 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.056
Detector resolution: 10.0000 pixels mm-1 θmax = 75.6°, θmin = 3.2°
ω scans h = −15→17
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −11→12
Tmin = 0.668, Tmax = 1.000 l = −12→13
7437 measured reflections

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.268P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.32 e Å3
2856 reflections Δρmin = −0.34 e Å3
191 parameters Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0023 (5)
Primary atom site location: dual

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.45082 (4) 0.66477 (7) 0.66401 (5) 0.0380 (2)
O1 0.52700 (12) 0.5704 (2) 0.67907 (19) 0.0514 (6)
O2 0.41925 (14) 0.6961 (2) 0.77812 (16) 0.0519 (6)
O3 0.22170 (13) 0.91599 (19) 0.44575 (18) 0.0455 (5)
N1 0.27444 (13) 0.7076 (2) 0.48536 (18) 0.0306 (5)
C1 0.35000 (16) 0.6063 (3) 0.5290 (2) 0.0310 (5)
H1 0.374440 0.583984 0.451921 0.037*
C4 0.47674 (18) 0.8100 (3) 0.5937 (2) 0.0396 (6)
H4A 0.532525 0.854461 0.656910 0.048*
H4B 0.493981 0.790381 0.511127 0.048*
C3 0.38813 (19) 0.8988 (3) 0.5617 (3) 0.0425 (6)
H3A 0.399282 0.971486 0.505438 0.051*
H3B 0.384838 0.938047 0.646531 0.051*
C2 0.28912 (18) 0.8402 (3) 0.4920 (2) 0.0348 (6)
C5 0.18322 (17) 0.6594 (3) 0.3978 (2) 0.0333 (6)
C6 0.17961 (19) 0.6182 (3) 0.2711 (2) 0.0440 (7)
H6 0.235336 0.625452 0.241121 0.053*
C7 0.0947 (2) 0.5664 (4) 0.1879 (3) 0.0559 (9)
H7 0.091908 0.537900 0.100655 0.067*
C8 0.0141 (2) 0.5563 (4) 0.2324 (3) 0.0633 (10)
H8 −0.044126 0.519958 0.175939 0.076*
C9 0.0179 (2) 0.5990 (4) 0.3588 (3) 0.0682 (11)
H9 −0.038042 0.592964 0.388363 0.082*
C10 0.10296 (19) 0.6506 (3) 0.4427 (3) 0.0496 (8)
H10 0.105807 0.679455 0.529797 0.060*
C11 0.31292 (16) 0.4818 (3) 0.5756 (2) 0.0334 (6)
C12 0.3255 (2) 0.3631 (3) 0.5188 (3) 0.0437 (7)
H12 0.356067 0.360439 0.450153 0.052*
C13 0.2933 (2) 0.2481 (3) 0.5624 (3) 0.0550 (8)
H13 0.301505 0.166705 0.523015 0.066*
C14 0.2495 (2) 0.2515 (3) 0.6624 (3) 0.0541 (8)
H14 0.227909 0.172599 0.692365 0.065*
C15 0.2371 (2) 0.3693 (3) 0.7189 (3) 0.0468 (7)
H15 0.207209 0.371115 0.788272 0.056*
C16 0.26749 (17) 0.4849 (3) 0.6758 (2) 0.0391 (6)
H16 0.257539 0.566039 0.714104 0.047*

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0329 (4) 0.0492 (5) 0.0252 (3) −0.0062 (3) −0.0018 (2) 0.0054 (3)
O1 0.0332 (10) 0.0563 (14) 0.0540 (11) 0.0048 (9) −0.0038 (8) 0.0172 (10)
O2 0.0568 (12) 0.0699 (15) 0.0249 (9) −0.0242 (11) 0.0060 (8) −0.0045 (9)
O3 0.0431 (11) 0.0385 (11) 0.0531 (11) 0.0069 (9) 0.0117 (8) 0.0068 (9)
N1 0.0264 (10) 0.0339 (12) 0.0271 (9) 0.0014 (9) 0.0010 (7) 0.0010 (9)
C1 0.0288 (12) 0.0369 (14) 0.0242 (11) 0.0019 (11) 0.0029 (8) 0.0001 (10)
C4 0.0332 (13) 0.0488 (18) 0.0306 (12) −0.0078 (12) −0.0002 (9) −0.0007 (12)
C3 0.0429 (15) 0.0410 (16) 0.0409 (13) −0.0035 (13) 0.0085 (11) −0.0046 (12)
C2 0.0387 (13) 0.0361 (15) 0.0287 (12) 0.0004 (12) 0.0088 (9) 0.0008 (11)
C5 0.0266 (12) 0.0412 (16) 0.0273 (11) 0.0008 (11) 0.0006 (9) 0.0025 (11)
C6 0.0344 (13) 0.061 (2) 0.0318 (13) 0.0004 (13) 0.0024 (10) −0.0038 (13)
C7 0.0457 (16) 0.075 (2) 0.0375 (14) −0.0016 (16) −0.0020 (11) −0.0111 (15)
C8 0.0393 (16) 0.083 (3) 0.0542 (18) −0.0118 (17) −0.0070 (13) −0.0056 (18)
C9 0.0319 (15) 0.118 (3) 0.0511 (18) −0.0105 (19) 0.0072 (12) 0.003 (2)
C10 0.0347 (14) 0.079 (2) 0.0340 (13) −0.0036 (15) 0.0083 (10) −0.0019 (14)
C11 0.0284 (12) 0.0365 (15) 0.0299 (11) 0.0023 (11) 0.0005 (9) 0.0008 (11)
C12 0.0441 (15) 0.0421 (17) 0.0402 (14) 0.0065 (13) 0.0051 (11) −0.0036 (13)
C13 0.063 (2) 0.0324 (17) 0.0579 (18) 0.0028 (15) 0.0007 (15) 0.0000 (14)
C14 0.0525 (17) 0.0420 (19) 0.0573 (18) −0.0064 (15) −0.0001 (14) 0.0102 (15)
C15 0.0428 (15) 0.0516 (19) 0.0431 (15) −0.0038 (14) 0.0083 (11) 0.0098 (14)
C16 0.0398 (14) 0.0400 (16) 0.0360 (13) −0.0006 (12) 0.0089 (10) 0.0013 (12)

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Geometric parameters (Å, º)

S1—O1 1.435 (2) C6—C7 1.383 (4)
S1—O2 1.438 (2) C7—H7 0.9500
S1—C1 1.807 (2) C7—C8 1.381 (4)
S1—C4 1.744 (3) C8—H8 0.9500
O3—C2 1.226 (3) C8—C9 1.382 (5)
N1—C1 1.475 (3) C9—H9 0.9500
N1—C2 1.368 (3) C9—C10 1.387 (4)
N1—C5 1.451 (3) C10—H10 0.9500
C1—H1 1.0000 C11—C12 1.385 (4)
C1—C11 1.514 (4) C11—C16 1.394 (3)
C4—H4A 0.9900 C12—H12 0.9500
C4—H4B 0.9900 C12—C13 1.389 (4)
C4—C3 1.523 (4) C13—H13 0.9500
C3—H3A 0.9900 C13—C14 1.377 (5)
C3—H3B 0.9900 C14—H14 0.9500
C3—C2 1.524 (4) C14—C15 1.375 (4)
C5—C6 1.381 (3) C15—H15 0.9500
C5—C10 1.377 (4) C15—C16 1.381 (4)
C6—H6 0.9500 C16—H16 0.9500
O1—S1—O2 118.62 (12) C5—C6—H6 120.0
O1—S1—C1 106.20 (12) C5—C6—C7 119.9 (3)
O1—S1—C4 111.28 (13) C7—C6—H6 120.0
O2—S1—C1 110.23 (11) C6—C7—H7 120.2
O2—S1—C4 108.92 (14) C8—C7—C6 119.6 (3)
C4—S1—C1 99.96 (11) C8—C7—H7 120.2
C2—N1—C1 126.0 (2) C7—C8—H8 119.9
C2—N1—C5 117.7 (2) C7—C8—C9 120.2 (3)
C5—N1—C1 114.2 (2) C9—C8—H8 119.9
S1—C1—H1 108.3 C8—C9—H9 119.8
N1—C1—S1 111.31 (17) C8—C9—C10 120.4 (3)
N1—C1—H1 108.3 C10—C9—H9 119.8
N1—C1—C11 112.84 (19) C5—C10—C9 119.1 (3)
C11—C1—S1 107.70 (15) C5—C10—H10 120.5
C11—C1—H1 108.3 C9—C10—H10 120.5
S1—C4—H4A 109.9 C12—C11—C1 119.3 (2)
S1—C4—H4B 109.9 C12—C11—C16 119.7 (3)
H4A—C4—H4B 108.3 C16—C11—C1 121.0 (2)
C3—C4—S1 109.11 (19) C11—C12—H12 120.1
C3—C4—H4A 109.9 C11—C12—C13 119.8 (3)
C3—C4—H4B 109.9 C13—C12—H12 120.1
C4—C3—H3A 107.6 C12—C13—H13 119.9
C4—C3—H3B 107.6 C14—C13—C12 120.2 (3)
C4—C3—C2 118.7 (2) C14—C13—H13 119.9
H3A—C3—H3B 107.1 C13—C14—H14 120.0
C2—C3—H3A 107.6 C15—C14—C13 119.9 (3)
C2—C3—H3B 107.6 C15—C14—H14 120.0
O3—C2—N1 120.7 (2) C14—C15—H15 119.7
O3—C2—C3 117.7 (2) C14—C15—C16 120.7 (3)
N1—C2—C3 121.5 (2) C16—C15—H15 119.7
C6—C5—N1 118.8 (2) C11—C16—H16 120.2
C10—C5—N1 120.3 (2) C15—C16—C11 119.6 (3)
C10—C5—C6 120.9 (2) C15—C16—H16 120.2
S1—C1—C11—C12 −111.1 (2) C4—C3—C2—O3 −167.2 (2)
S1—C1—C11—C16 68.1 (2) C4—C3—C2—N1 15.3 (4)
S1—C4—C3—C2 −45.9 (3) C2—N1—C1—S1 29.3 (3)
O1—S1—C1—N1 −168.32 (16) C2—N1—C1—C11 150.5 (2)
O1—S1—C1—C11 67.50 (19) C2—N1—C5—C6 96.5 (3)
O1—S1—C4—C3 172.01 (17) C2—N1—C5—C10 −86.0 (3)
O2—S1—C1—N1 62.00 (19) C5—N1—C1—S1 −167.57 (16)
O2—S1—C1—C11 −62.2 (2) C5—N1—C1—C11 −46.3 (3)
O2—S1—C4—C3 −55.4 (2) C5—N1—C2—O3 13.2 (3)
N1—C1—C11—C12 125.6 (2) C5—N1—C2—C3 −169.4 (2)
N1—C1—C11—C16 −55.2 (3) C5—C6—C7—C8 0.0 (5)
N1—C5—C6—C7 177.1 (3) C6—C5—C10—C9 0.3 (5)
N1—C5—C10—C9 −177.2 (3) C6—C7—C8—C9 0.7 (6)
C1—S1—C4—C3 60.16 (19) C7—C8—C9—C10 −0.9 (6)
C1—N1—C2—O3 175.8 (2) C8—C9—C10—C5 0.4 (6)
C1—N1—C2—C3 −6.8 (3) C10—C5—C6—C7 −0.5 (4)
C1—N1—C5—C6 −68.1 (3) C11—C12—C13—C14 −0.4 (4)
C1—N1—C5—C10 109.4 (3) C12—C11—C16—C15 1.1 (4)
C1—C11—C12—C13 178.9 (2) C12—C13—C14—C15 0.4 (4)
C1—C11—C16—C15 −178.1 (2) C13—C14—C15—C16 0.4 (4)
C4—S1—C1—N1 −52.56 (18) C14—C15—C16—C11 −1.2 (4)
C4—S1—C1—C11 −176.73 (18) C16—C11—C12—C13 −0.3 (4)

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1i 0.95 2.56 3.454 (4) 157

Symmetry code: (i) −x+1, −y+1, −z+1.

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Crystal data

C18H18N2O4S Dx = 1.419 Mg m3
Mr = 358.40 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 4224 reflections
a = 5.5230 (4) Å θ = 2.4–25.0°
b = 10.6857 (9) Å µ = 0.22 mm1
c = 28.430 (2) Å T = 298 K
V = 1677.8 (2) Å3 Rod, colorless
Z = 4 0.22 × 0.06 × 0.06 mm
F(000) = 752

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Data collection

Bruker SMART CCD area detector diffractometer 3460 reflections with I > 2σ(I)
phi and ω scans Rint = 0.035
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 28.3°, θmin = 1.4°
Tmin = 0.656, Tmax = 0.900 h = −7→5
13301 measured reflections k = −12→14
4037 independent reflections l = −36→37

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.035P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.24 e Å3
4037 reflections Δρmin = −0.14 e Å3
231 parameters Absolute structure: Flack x determined using 1213 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.07 (4)
Primary atom site location: structure-invariant direct methods

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29097 (13) 0.61561 (6) 0.04750 (2) 0.04039 (18)
O1 0.2013 (5) 0.5960 (2) 0.00084 (6) 0.0665 (7)
O2 0.5430 (4) 0.5943 (2) 0.05600 (8) 0.0655 (6)
O3 0.0948 (4) 0.72050 (18) 0.18769 (6) 0.0575 (6)
O4 −0.3983 (4) 0.8940 (2) 0.13514 (8) 0.0659 (6)
N1 0.1594 (4) 0.56459 (18) 0.13538 (6) 0.0394 (5)
N2 0.0062 (5) 0.8977 (2) 0.12438 (9) 0.0485 (6)
C1 0.1124 (4) 0.5198 (2) 0.08754 (7) 0.0333 (5)
H1 −0.058432 0.536713 0.080716 0.040*
C2 0.0930 (5) 0.6841 (2) 0.14753 (8) 0.0409 (6)
C3 0.0251 (5) 0.7713 (2) 0.10656 (8) 0.0398 (6)
H3 −0.132274 0.745690 0.093867 0.048*
C4 0.2134 (6) 0.7692 (2) 0.06686 (8) 0.0424 (6)
H4A 0.359008 0.811013 0.077660 0.051*
H4B 0.150687 0.816206 0.040330 0.051*
C11 0.1560 (4) 0.3832 (2) 0.07738 (7) 0.0350 (5)
C16 0.3688 (5) 0.3203 (3) 0.08898 (9) 0.0448 (6)
H16 0.493371 0.362002 0.104412 0.054*
C15 0.3932 (6) 0.1953 (3) 0.07738 (10) 0.0559 (8)
H15 0.533040 0.152566 0.085968 0.067*
C14 0.2132 (7) 0.1331 (3) 0.05326 (10) 0.0596 (9)
H14 0.232717 0.049213 0.045356 0.072*
C13 0.0065 (7) 0.1949 (3) 0.04104 (10) 0.0565 (8)
H13 −0.114479 0.153289 0.024516 0.068*
C12 −0.0235 (5) 0.3194 (2) 0.05317 (8) 0.0434 (6)
H12 −0.165681 0.360621 0.044990 0.052*
C5 0.2702 (5) 0.4889 (2) 0.17177 (7) 0.0393 (6)
C6 0.1536 (6) 0.3843 (3) 0.18873 (9) 0.0535 (8)
H6 0.004073 0.360301 0.176670 0.064*
C7 0.2639 (10) 0.3152 (3) 0.22429 (10) 0.0815 (13)
H7 0.188747 0.243530 0.235747 0.098*
C8 0.4806 (12) 0.3516 (5) 0.24243 (12) 0.0976 (17)
H8 0.553113 0.304469 0.266063 0.117*
C9 0.5929 (8) 0.4575 (5) 0.22597 (12) 0.0839 (13)
H9 0.738587 0.483351 0.239181 0.101*
C10 0.4902 (6) 0.5261 (3) 0.18983 (10) 0.0560 (8)
H10 0.568552 0.596319 0.177902 0.067*
C17 −0.2027 (7) 0.9434 (3) 0.14185 (9) 0.0490 (7)
C18 −0.1753 (8) 1.0631 (3) 0.16996 (11) 0.0678 (10)
H18A −0.330040 1.103268 0.172852 0.102*
H18B −0.064566 1.118103 0.154150 0.102*
H18C −0.113853 1.043699 0.200700 0.102*
H2 0.139 (5) 0.924 (3) 0.1348 (9) 0.042 (8)*

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0452 (4) 0.0358 (3) 0.0402 (3) 0.0022 (3) 0.0046 (3) 0.0016 (2)
O1 0.1092 (19) 0.0556 (12) 0.0347 (9) −0.0001 (14) 0.0030 (11) −0.0010 (8)
O2 0.0404 (11) 0.0512 (13) 0.1048 (17) 0.0035 (10) 0.0137 (12) 0.0130 (11)
O3 0.0835 (16) 0.0502 (12) 0.0387 (9) 0.0055 (11) 0.0013 (10) −0.0095 (8)
O4 0.0562 (14) 0.0671 (15) 0.0742 (14) 0.0093 (13) −0.0051 (11) −0.0223 (12)
N1 0.0536 (15) 0.0329 (10) 0.0317 (9) 0.0008 (10) −0.0029 (9) −0.0018 (8)
N2 0.0530 (16) 0.0315 (12) 0.0611 (14) −0.0018 (12) −0.0034 (12) −0.0078 (10)
C1 0.0321 (12) 0.0353 (12) 0.0324 (10) 0.0017 (10) −0.0035 (9) −0.0027 (9)
C2 0.0461 (16) 0.0349 (13) 0.0415 (12) −0.0033 (12) 0.0008 (12) −0.0033 (10)
C3 0.0431 (15) 0.0303 (12) 0.0460 (13) −0.0002 (11) −0.0029 (11) −0.0054 (10)
C4 0.0506 (15) 0.0347 (12) 0.0419 (12) −0.0013 (13) −0.0016 (12) 0.0019 (9)
C11 0.0406 (14) 0.0327 (11) 0.0317 (10) −0.0004 (11) 0.0015 (9) −0.0009 (9)
C16 0.0480 (16) 0.0434 (14) 0.0431 (13) 0.0080 (13) −0.0010 (11) 0.0002 (11)
C15 0.072 (2) 0.0458 (16) 0.0498 (15) 0.0223 (16) 0.0092 (15) 0.0110 (12)
C14 0.095 (3) 0.0319 (13) 0.0516 (15) −0.0005 (17) 0.0225 (18) 0.0014 (11)
C13 0.072 (2) 0.0451 (16) 0.0521 (15) −0.0183 (17) 0.0068 (15) −0.0108 (12)
C12 0.0463 (15) 0.0445 (15) 0.0394 (12) −0.0049 (13) 0.0010 (12) −0.0051 (11)
C5 0.0445 (15) 0.0420 (13) 0.0315 (10) 0.0043 (12) −0.0011 (11) −0.0019 (9)
C6 0.071 (2) 0.0473 (15) 0.0422 (13) −0.0011 (16) 0.0077 (13) 0.0033 (12)
C7 0.138 (4) 0.060 (2) 0.0462 (16) 0.015 (3) 0.012 (2) 0.0154 (14)
C8 0.147 (5) 0.100 (4) 0.0458 (18) 0.058 (3) −0.020 (2) 0.0019 (19)
C9 0.073 (3) 0.118 (4) 0.060 (2) 0.039 (3) −0.0289 (19) −0.029 (2)
C10 0.0483 (18) 0.071 (2) 0.0483 (14) 0.0058 (16) −0.0050 (13) −0.0119 (14)
C17 0.065 (2) 0.0384 (14) 0.0435 (13) 0.0077 (15) −0.0061 (15) −0.0038 (10)
C18 0.095 (3) 0.0437 (16) 0.0649 (18) 0.0125 (19) −0.0055 (19) −0.0156 (13)

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Geometric parameters (Å, º)

S1—O1 1.431 (2) C15—H15 0.9300
S1—O2 1.431 (2) C15—C14 1.378 (5)
S1—C1 1.821 (2) C14—H14 0.9300
S1—C4 1.783 (3) C14—C13 1.364 (5)
O3—C2 1.206 (3) C13—H13 0.9300
O4—C17 1.218 (4) C13—C12 1.384 (4)
N1—C1 1.465 (3) C12—H12 0.9300
N1—C2 1.373 (3) C5—C6 1.377 (4)
N1—C5 1.449 (3) C5—C10 1.378 (4)
N2—C3 1.446 (3) C6—H6 0.9300
N2—C17 1.348 (4) C6—C7 1.393 (5)
N2—H2 0.84 (3) C7—H7 0.9300
C1—H1 0.9800 C7—C8 1.360 (7)
C1—C11 1.507 (3) C8—H8 0.9300
C2—C3 1.538 (3) C8—C9 1.373 (6)
C3—H3 0.9800 C9—H9 0.9300
C3—C4 1.535 (4) C9—C10 1.384 (5)
C4—H4A 0.9700 C10—H10 0.9300
C4—H4B 0.9700 C17—C18 1.515 (4)
C11—C16 1.394 (4) C18—H18A 0.9600
C11—C12 1.386 (3) C18—H18B 0.9600
C16—H16 0.9300 C18—H18C 0.9600
C16—C15 1.382 (4)
O1—S1—C1 108.03 (13) C16—C15—H15 119.5
O1—S1—C4 109.74 (13) C14—C15—C16 121.0 (3)
O2—S1—O1 118.01 (15) C14—C15—H15 119.5
O2—S1—C1 109.38 (12) C15—C14—H14 120.1
O2—S1—C4 109.15 (14) C13—C14—C15 119.8 (3)
C4—S1—C1 101.20 (11) C13—C14—H14 120.1
C2—N1—C1 119.34 (19) C14—C13—H13 119.9
C2—N1—C5 116.91 (18) C14—C13—C12 120.2 (3)
C5—N1—C1 123.75 (19) C12—C13—H13 119.9
C3—N2—H2 112 (2) C11—C12—H12 119.6
C17—N2—C3 122.0 (3) C13—C12—C11 120.7 (3)
C17—N2—H2 120 (2) C13—C12—H12 119.6
S1—C1—H1 107.1 C6—C5—N1 120.4 (2)
N1—C1—S1 107.50 (16) C10—C5—N1 118.5 (3)
N1—C1—H1 107.1 C10—C5—C6 121.1 (3)
N1—C1—C11 117.76 (19) C5—C6—H6 120.7
C11—C1—S1 109.76 (16) C5—C6—C7 118.7 (3)
C11—C1—H1 107.1 C7—C6—H6 120.7
O3—C2—N1 122.4 (2) C6—C7—H7 119.7
O3—C2—C3 121.6 (2) C8—C7—C6 120.6 (4)
N1—C2—C3 115.99 (19) C8—C7—H7 119.7
N2—C3—C2 108.5 (2) C7—C8—H8 119.9
N2—C3—H3 109.0 C7—C8—C9 120.2 (4)
N2—C3—C4 108.7 (2) C9—C8—H8 119.9
C2—C3—H3 109.0 C8—C9—H9 119.8
C4—C3—C2 112.5 (2) C8—C9—C10 120.3 (4)
C4—C3—H3 109.0 C10—C9—H9 119.8
S1—C4—H4A 108.8 C5—C10—C9 119.0 (4)
S1—C4—H4B 108.8 C5—C10—H10 120.5
C3—C4—S1 113.79 (17) C9—C10—H10 120.5
C3—C4—H4A 108.8 O4—C17—N2 123.0 (2)
C3—C4—H4B 108.8 O4—C17—C18 122.5 (3)
H4A—C4—H4B 107.7 N2—C17—C18 114.5 (3)
C16—C11—C1 123.8 (2) C17—C18—H18A 109.5
C12—C11—C1 117.2 (2) C17—C18—H18B 109.5
C12—C11—C16 118.9 (2) C17—C18—H18C 109.5
C11—C16—H16 120.3 H18A—C18—H18B 109.5
C15—C16—C11 119.5 (3) H18A—C18—H18C 109.5
C15—C16—H16 120.3 H18B—C18—H18C 109.5
S1—C1—C11—C16 73.2 (2) C2—N1—C5—C6 114.0 (3)
S1—C1—C11—C12 −103.8 (2) C2—N1—C5—C10 −64.0 (3)
O1—S1—C1—N1 −165.13 (17) C2—C3—C4—S1 50.6 (3)
O1—S1—C1—C11 65.65 (19) C3—N2—C17—O4 −15.9 (4)
O1—S1—C4—C3 111.3 (2) C3—N2—C17—C18 165.1 (2)
O2—S1—C1—N1 65.22 (19) C4—S1—C1—N1 −49.88 (19)
O2—S1—C1—C11 −64.00 (19) C4—S1—C1—C11 −179.10 (17)
O2—S1—C4—C3 −117.9 (2) C11—C16—C15—C14 2.0 (4)
O3—C2—C3—N2 8.7 (4) C16—C11—C12—C13 0.6 (4)
O3—C2—C3—C4 129.0 (3) C16—C15—C14—C13 −0.7 (4)
N1—C1—C11—C16 −50.2 (3) C15—C14—C13—C12 −0.6 (4)
N1—C1—C11—C12 132.9 (2) C14—C13—C12—C11 0.7 (4)
N1—C2—C3—N2 −169.1 (2) C12—C11—C16—C15 −1.9 (4)
N1—C2—C3—C4 −48.8 (3) C5—N1—C1—S1 −117.4 (2)
N1—C5—C6—C7 −178.9 (3) C5—N1—C1—C11 7.2 (3)
N1—C5—C10—C9 177.3 (3) C5—N1—C2—O3 −9.9 (4)
N2—C3—C4—S1 170.82 (19) C5—N1—C2—C3 167.9 (2)
C1—S1—C4—C3 −2.7 (2) C5—C6—C7—C8 1.1 (5)
C1—N1—C2—O3 169.2 (3) C6—C5—C10—C9 −0.8 (4)
C1—N1—C2—C3 −13.1 (4) C6—C7—C8—C9 0.3 (6)
C1—N1—C5—C6 −64.9 (3) C7—C8—C9—C10 −2.0 (6)
C1—N1—C5—C10 117.0 (3) C8—C9—C10—C5 2.2 (5)
C1—C11—C16—C15 −178.8 (2) C10—C5—C6—C7 −0.9 (4)
C1—C11—C12—C13 177.7 (2) C17—N2—C3—C2 −88.7 (3)
C2—N1—C1—S1 63.7 (3) C17—N2—C3—C4 148.7 (3)
C2—N1—C1—C11 −171.8 (2)

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O2i 0.98 2.39 3.365 (3) 173
C4—H4A···O4ii 0.97 2.29 3.185 (4) 153
C8—H8···O3iii 0.93 2.51 3.378 (5) 155

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+1/2.

Funding Statement

Research reported here was conducted on instrumentation funded by NSF (for Bruker AXS system) CHEM-0131112, and SIG S10 grants of the National Institutes of Health (for the Rigaku rotating anode system) under award numbers 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar.

References

  1. Bruker (2016). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Intl. J. Chem. 7, 73–84.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Elks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382. Cambridge: Chapman and Hall.
  5. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  6. O’Neil, M. J. (2006). Editor. The Merck Index, 14th ed., p. 349. Whitehouse Station, NJ: Merck & Co. Inc.
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  9. Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–190.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Silverberg, L. J. (2020). World patent WO2020231873 A1.
  14. Silverberg, L. J. & Moyer, Q. J. (2019). Arkivoc, (i), 139-227.
  15. Surrey, A. R. (1963a). US Patent 3082209.
  16. Surrey, A. R. (1963b). US Patent 3093639.
  17. Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.
  18. Tanaka, R. & Horayama, N. (2005). Anal. Sci. X, 21, X57–X58.
  19. Yennawar, H. P., Noble, D. J. & Silverberg, L. J. (2017). Acta Cryst. E73, 1417–1420. [DOI] [PMC free article] [PubMed]
  20. Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. [DOI] [PMC free article] [PubMed]
  21. Yennawar, H. P. & Silverberg, L. J. (2015). Acta Cryst. E71, e5. [DOI] [PMC free article] [PubMed]
  22. Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64. [DOI] [PMC free article] [PubMed]
  23. Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989023000695/hb8050sup1.cif

e-79-00120-sup1.cif (290.7KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989023000695/hb80501sup2.hkl

e-79-00120-1sup2.hkl (156.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023000695/hb80501sup4.mol

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989023000695/hb80502sup3.hkl

e-79-00120-2sup3.hkl (221.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023000695/hb80502sup5.mol

Supporting information file. DOI: 10.1107/S2056989023000695/hb80501sup6.cml

Supporting information file. DOI: 10.1107/S2056989023000695/hb80502sup7.cml

CCDC references: 2238010, 2238009

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES