The orthophosphate BaNi2Fe(PO4)3 crystallizes in the α-CrPO4 type of structure, in which edge-sharing [Ni2O10] octahedra are linked to PO4 tetrahedra and [FeO6] octahedra to form a three-dimensional framework delimiting channels which house disordered Ba2+ cations.
Keywords: crystal structure, orthophosphates, solid-state reactions, α-CrPO4-type structure BaNi2Fe(PO4)3
Abstract
The orthophosphate BaNi2Fe(PO4)3 has been synthesized by a solid-state reaction route and characterized by single-crystal X-ray diffraction and energy-dispersive X-ray spectroscopy. The crystal structure comprises (100) sheets made up of [Ni2O10] dimers that are linked to two PO4 tetrahedra via common edges and vertices and of linear infinite [010] chains of corner-sharing [FeO6] octahedra and [PO4] tetrahedra. The linkage of the sheets and chains into a framework is accomplished through common vertices of PO4 tetrahedra and [FeO6] octahedra. The framework is perforated by channels in which positionally disordered Ba2+ cations are located.
1. Chemical context
Phosphate-based materials have been studied extensively in the past. Among them are orthophosphates, which have gained great interest in recent years owing to their structural richness (Maeda, 2004 ▸) and their promising applications, for example in electrochemical catalysis (Dwibedi et al., 2020 ▸; Cheng et al., 2021 ▸; Rekha et al., 2021 ▸; Anahmadi et al., 2022 ▸). Furthermore, orthophosphates doped with rare-earth cations have shown excellent optical properties (Ci et al., 2014 ▸; Li et al., 2021 ▸; Indumathi et al., 2022 ▸), along with a wide range of applications for use in luminescence emission displays (Li et al., 2008 ▸; Wan et al., 2010 ▸; Yang et al., 2019 ▸; Santos et al., 2022 ▸).
In this context, our research interest is connected with tris-orthophosphate-based materials with general formula (A 2/B)M 2 M′(PO4)3, where A can be an alkali, B an alkaline earth and M and M′ transition metal cations. The crystal structures of these orthophosphates adopt the α-CrPO4 type of structure, consisting of a three-dimensional framework made up of [MO6] and [M′O6] octahedra sharing corners and/or edges with PO4 tetrahedra. This framework is permeated by channels in which the A or B cations are located.
We report herein on the synthesis and structural characterization of barium dinickel(II) iron(III) tris-orthophosphate, BaNi2Fe(PO4)3.
2. Structural commentary
The title compound is related to the strontium and calcium homologs MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015 ▸, 2017 ▸), all adopting the α-CrPO4 structure type (Attfield et al., 1986 ▸). The asymmetric unit of BaNi2Fe(PO4)3 is comprised of ten sites, eight of which are on special positions, except the O3 and O4 sites on a general position (Wyckoff position 16 j). Ba1 (site occupation 0.9868) exhibits site symmetry mm2 (4 e), Ba2 (site occupation 0.0132) 2/m (4 a), Fe1 2/m (4 b), Ni1 2 (8 g), P1 mm2 (4 e), P2 2 (8 g), while O1 and O2 occupy sites with m (8 h) and m (8 i) symmetry, respectively. The framework structure of BaNi2Fe(PO4)3 is composed of extended (100) sheets and linear infinite chains extending parallel to [010] (Fig. 1 ▸). The (100) sheets are made up from edge-sharing [Ni2O10] dimers linked to two P2O4 tetrahedra via common edges to form an [Ni2P22O14] unit that is linked to four neighboring units (Fig. 2 ▸). Between these sheets appear the linear infinite chains resulting from the alternating linkage of P1O4 tetrahedra and [FeO6] octahedra, which are surrounded by a zigzag arrangement of Ba2+ cations (Fig. 3 ▸). The sheets and chains are linked through common vertices of PO4 tetrahedra and [FeO6] octahedra into a framework, which delimits two types of channels parallel to [100] and [010] in which the disordered Ba2+ cations are located (Figs. 4 ▸, 5 ▸).
Figure 1.
The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y +
, z − 1; (ii) x, y, z − 1; (iii) −x + 1, −y +
, z; (iv) −x +
, −y + 1, z −
; (v) x −
, y −
, z −
; (vi) −x +
, y −
, z −
; (vii) x −
, −y + 1, z −
; (viii) −x + 2, −y + 1, −z + 2; (ix) −x + 2, y, z; (x) x, −y + 1, −z + 2; (xi) −x +
, −y +
, −z +
; (xii) −x +
, y, −z +
; (xiii) x, −y + 1, −z + 1; (xiv) −x + 2, −y + 1, −z + 1; (xv) x +
, y, −z +
].
Figure 2.
Projection of a (100) sheet along [100] showing the [Ni2P(2)2O14] unit.
Figure 3.
A chain formed by sharing corners of [FeO6] octahedra and P1O4 tetrahedra, alternating with a zigzag arrangement of barium cations (Ba1) along [010].
Figure 4.
Polyhedral representation of the crystal structure of BaNi2Fe(PO4)3 showing Ba1 in the channels running along the [100] direction and a row of underoccupied Ba2 along [001].
Figure 5.
Polyhedral representation of the crystal structure of BaNi2Fe(PO4)3 showing Ba1 and Ba2 in the channels.
To confirm the structure model of BaNi2Fe(PO4)3, the bond-valence method (Brown, 1977 ▸; 1978 ▸; Brown & Altermatt, 1985 ▸) and charge distribution (CHARDI) concept (Hoppe et al., 1989 ▸) were employed by making use of the programs EXPO2014 (Altomare et al., 2013 ▸) and CHARDI2015 (Nespolo & Guillot, 2016 ▸), respectively. Table 1 ▸ compiles all cationic valences V(i) computed with the bond-valence method and their related charges Q(i) obtained with the CHARDI concept. The resulting Q(i) and V(i) values are all close to the corresponding charges q(i)×sof(i) [q(i) are formal oxidation numbers weighted by the site occupation factors sof(i)]. In summary, the expected oxidation states of Ba2+, Ni2+, Fe3+ and P5+ are predicted through the charge distribution. The internal criterion q(i)/Q(i) is very near to 1 for all ionic species and the mean absolute percentage deviation (MAPD), which gives a measure for the agreement between the q(i) and Q(i) charges, is just 1.3%, thus confirming the validity of the structure model (Eon & Nespolo, 2015 ▸). The global instability index (GII; Salinas-Sanchez et al., 1992 ▸) of 0.13 is a further confirmation of the structure model.
Table 1. Bond valence and CHARDI analyses for the cations in the title compound.
q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.
| Cation | q(i) | sof(i) | CN(i) | ECoN(i) | V(i) | Q(i) | q(i)/Q(i) |
|---|---|---|---|---|---|---|---|
| Ba1 | 1.98 | 0.99 | 8 | 7.99 | 2.37 | 1.98 | 1.00 |
| Ba2 | 0.02 | 0.01 | 8 | 5.43 | 0.02 | 0.99 | |
| Ni | 2.00 | 1.00 | 6 | 5.97 | 2.00 | 1.98 | 1.01 |
| Fe | 3.00 | 1.00 | 4 | 5.96 | 3.01 | 2.99 | 1.00 |
| P1 | 5.00 | 1.00 | 4 | 3.99 | 4.95 | 4.83 | 1.04 |
| P2 | 5.00 | 1.00 | 4 | 3.96 | 4.85 | 5.11 | 0.98 |
3. Database survey
It is reasonable to compare the crystal structure of the title compound with that of α-CrPO4 (Glaum et al., 1986 ▸). Both phosphates crystallize in the orthorhombic system in space group type Imma. Their unit-cell parameters are nearly the same despite the differences between their chemical formulae. In the structure of α-CrPO4, the Cr3+ and P5+ cations occupy four special positions that are part of a framework is comprised of [CrO6] octahedra and [PO4] tetrahedra. The resultant framework is permeated by vacant channels along [100] and [010]. The formula of α-CrPO4 can be written as X1X2Cr1Cr22(PO4)3, where X1, X2 represent the empty channel sites. Accordingly, the substitution of Cr1 or Cr2 by a divalent cation requires charge compensation by cations located in the channels to result in AA’MM’2(PO4)3 compounds such as BaNi2Fe(PO4)3, or MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015 ▸, 2017 ▸). The difference between BaNi2Fe(PO4)3 and the closely related MNi2Fe(PO4)3 structures pertains to the M site, which is split into two sites for the title compound and fully occupied for M = Ca, Sr.
4. Synthesis and crystallization
BaNi2Fe(PO4)3 was prepared from a mixture of Ba(NO3)2 (Merck, 98.5%), Ni(NO3)2·6H2O (Riedel-de-Haén, 97%), Fe(NO3)3·9H2O (Panreac, 98%) and H3PO4 (85%wt) in the molar ratio of Ba:Ni:Fe:P = 1:2:1:3. The precursors were suspended in 50 ml of distilled water and stirred without warming for 24 h before heating to dryness at 373 K. The obtained dry residue was ground in an agate mortar until homogeneous, subsequently heated in a platinum crucible up to 673 K to remove volatile decomposition products, and then melted at 1433 K. After being kept at this temperature for one h, the melt was cooled down slowly at a rate of 5 K h−1 to 1233 K and then to room temperature. Single crystals with a brown color and different forms were obtained after leaching with distilled water.
Chemical analysis of the title phosphate was performed with an energy-dispersive X-ray spectroscopy (EDS) microprobe mounted on a JEOL JSM-IT100 in TouchScopeTM scanning electron microscope. The EDS spectrum is depicted in Fig. 6 ▸ and confirms the presence of only barium, nickel, iron, phosphorus and oxygen in approximately the correct ratios, as shown in Table 2 ▸.
Figure 6.
SEM micrograph and results of an EDS measurement of the title compound.
Table 2. Atom percentages in BaNi2Fe(PO4)3 as determined by EDS.
| Element | Atomic percentage | Sigma |
|---|---|---|
| O | 56.74 | 0.13 |
| P | 19.60 | 0.16 |
| Fe | 5.63 | 0.17 |
| Ni | 12.25 | 0.27 |
| Ba | 5.78 | 0.30 |
| Total | 100.00 |
5. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. After assignment of the atomic sites according to the related MNi2Fe(PO4)3 structures (M = Sr, Ca; Ouaatta et al., 2015 ▸, 2017 ▸), a difference-Fourier map revealed a maximum electron density of 3.61 Å−3 that was finally modeled as a considerably underoccupied Ba site (Ba2). For the final model, the sum of site-occupation factors for the Ba1 and Ba2 sites were constrained to be 1. The highest remaining maximum and minimum electronic densities are 0.59 Å and 0.47 Å from Ba1 and Ni1, respectively.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | BaNi2Fe(PO4)3 |
| M r | 595.52 |
| Crystal system, space group | Orthorhombic, I m m a |
| Temperature (K) | 296 |
| a, b, c (Å) | 10.4711 (2), 13.2007 (3), 6.6132 (1) |
| V (Å3) | 914.12 (3) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 10.46 |
| Crystal size (mm) | 0.32 × 0.25 × 0.19 |
| Data collection | |
| Diffractometer | Bruker X8 APEX Diffractometer |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.624, 0.748 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 18099, 1460, 1440 |
| R int | 0.029 |
| (sin θ/λ)max (Å−1) | 0.893 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.015, 0.036, 1.21 |
| No. of reflections | 1460 |
| No. of parameters | 58 |
| Δρmax, Δρmin (e Å−3) | 1.33, −0.78 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667Isup2.hkl
CCDC reference: 2172184
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Faculty of Science, Mohammed V University in Rabat, for the X-ray measurements.
supplementary crystallographic information
Crystal data
| BaNi2Fe(PO4)3 | Dx = 4.327 Mg m−3 |
| Mr = 595.52 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Imma | Cell parameters from 1460 reflections |
| a = 10.4711 (2) Å | θ = 3.1–39.4° |
| b = 13.2007 (3) Å | µ = 10.46 mm−1 |
| c = 6.6132 (1) Å | T = 296 K |
| V = 914.12 (3) Å3 | Block, colourless |
| Z = 4 | 0.32 × 0.25 × 0.19 mm |
| F(000) = 1116 |
Data collection
| Bruker X8 APEX Diffractometer | 1460 independent reflections |
| Radiation source: fine-focus sealed tube | 1440 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.029 |
| φ and ω scans | θmax = 39.4°, θmin = 3.1° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −18→13 |
| Tmin = 0.624, Tmax = 0.748 | k = −23→23 |
| 18099 measured reflections | l = −11→11 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0147P)2 + 1.8221P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.036 | (Δ/σ)max = 0.001 |
| S = 1.21 | Δρmax = 1.33 e Å−3 |
| 1460 reflections | Δρmin = −0.78 e Å−3 |
| 58 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.00403 (16) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Ba1 | 0.500000 | 0.250000 | 0.39902 (2) | 0.00770 (4) | 0.9868 |
| Ba2 | 1.000000 | 0.500000 | 1.000000 | 0.020 (2) | 0.0132 |
| Ni1 | 0.750000 | 0.36701 (2) | 0.750000 | 0.00501 (4) | |
| Fe1 | 1.000000 | 0.500000 | 0.500000 | 0.00337 (5) | |
| P1 | 0.500000 | 0.250000 | 0.90454 (8) | 0.00317 (8) | |
| P2 | 0.750000 | 0.57020 (3) | 0.750000 | 0.00365 (6) | |
| O1 | 0.500000 | 0.34524 (8) | 1.03493 (17) | 0.00581 (16) | |
| O2 | 0.61939 (10) | 0.250000 | 0.76536 (17) | 0.00534 (15) | |
| O3 | 0.78276 (8) | 0.63385 (6) | 0.93423 (13) | 0.00771 (12) | |
| O4 | 0.86254 (7) | 0.49395 (6) | 0.70839 (12) | 0.00574 (11) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ba1 | 0.00681 (5) | 0.01253 (6) | 0.00377 (5) | 0.000 | 0.000 | 0.000 |
| Ba2 | 0.014 (5) | 0.041 (8) | 0.006 (4) | 0.000 | 0.000 | 0.000 (4) |
| Ni1 | 0.00498 (7) | 0.00383 (7) | 0.00621 (8) | 0.000 | 0.00057 (5) | 0.000 |
| Fe1 | 0.00303 (10) | 0.00352 (10) | 0.00355 (10) | 0.000 | 0.000 | 0.00008 (8) |
| P1 | 0.00348 (18) | 0.00281 (17) | 0.00322 (18) | 0.000 | 0.000 | 0.000 |
| P2 | 0.00380 (13) | 0.00392 (13) | 0.00324 (12) | 0.000 | 0.00055 (10) | 0.000 |
| O1 | 0.0078 (4) | 0.0033 (3) | 0.0063 (4) | 0.000 | 0.000 | −0.0014 (3) |
| O2 | 0.0042 (4) | 0.0063 (4) | 0.0055 (4) | 0.000 | 0.0016 (3) | 0.000 |
| O3 | 0.0096 (3) | 0.0080 (3) | 0.0055 (3) | −0.0024 (2) | 0.0007 (2) | −0.0023 (2) |
| O4 | 0.0045 (3) | 0.0058 (3) | 0.0070 (3) | 0.0009 (2) | 0.0016 (2) | 0.0006 (2) |
Geometric parameters (Å, º)
| Ba1—O1i | 2.7163 (11) | Ni1—O4 | 2.0670 (8) |
| Ba1—O1ii | 2.7163 (11) | Ni1—O4xii | 2.0670 (8) |
| Ba1—O2iii | 2.7262 (11) | Ni1—O3x | 2.1163 (8) |
| Ba1—O2 | 2.7262 (11) | Ni1—O3iv | 2.1163 (8) |
| Ba1—O3iv | 2.7530 (8) | Fe1—O4 | 1.9944 (8) |
| Ba1—O3v | 2.7530 (8) | Fe1—O4ix | 1.9944 (8) |
| Ba1—O3vi | 2.7530 (8) | Fe1—O4xiii | 1.9944 (8) |
| Ba1—O3vii | 2.7530 (8) | Fe1—O4xiv | 1.9944 (8) |
| Ba2—O4 | 2.4077 (8) | Fe1—O1iv | 2.0559 (11) |
| Ba2—O4viii | 2.4078 (8) | Fe1—O1xv | 2.0559 (11) |
| Ba2—O4ix | 2.4078 (8) | P1—O1 | 1.5246 (11) |
| Ba2—O4x | 2.4078 (8) | P1—O1iii | 1.5246 (11) |
| Ba2—O3ix | 2.9129 (9) | P1—O2 | 1.5524 (11) |
| Ba2—O3x | 2.9129 (9) | P1—O2iii | 1.5524 (11) |
| Ba2—O3viii | 2.9129 (9) | P2—O3 | 1.5192 (8) |
| Ba2—O3 | 2.9129 (9) | P2—O3xii | 1.5193 (8) |
| Ni1—O2xi | 2.0655 (7) | P2—O4xii | 1.5739 (8) |
| Ni1—O2 | 2.0655 (7) | P2—O4 | 1.5739 (8) |
| O1i—Ba1—O1ii | 55.14 (4) | O4viii—Ba2—O3 | 124.49 (2) |
| O1i—Ba1—O2iii | 141.97 (2) | O4ix—Ba2—O3 | 111.55 (2) |
| O1ii—Ba1—O2iii | 141.97 (2) | O4x—Ba2—O3 | 68.45 (2) |
| O1i—Ba1—O2 | 141.97 (2) | O3ix—Ba2—O3 | 102.68 (3) |
| O1ii—Ba1—O2 | 141.97 (2) | O3x—Ba2—O3 | 77.32 (3) |
| O2iii—Ba1—O2 | 54.59 (5) | O3viii—Ba2—O3 | 180.0 |
| O1i—Ba1—O3iv | 109.44 (2) | O2xi—Ni1—O2 | 83.20 (5) |
| O1ii—Ba1—O3iv | 79.47 (2) | O2xi—Ni1—O4 | 102.84 (3) |
| O2iii—Ba1—O3iv | 107.68 (3) | O2—Ni1—O4 | 172.00 (3) |
| O2—Ba1—O3iv | 63.00 (2) | O2xi—Ni1—O4xii | 172.00 (4) |
| O1i—Ba1—O3v | 79.47 (2) | O2—Ni1—O4xii | 102.84 (3) |
| O1ii—Ba1—O3v | 109.44 (2) | O4—Ni1—O4xii | 71.66 (4) |
| O2iii—Ba1—O3v | 63.00 (2) | O2xi—Ni1—O3x | 86.40 (4) |
| O2—Ba1—O3v | 107.68 (3) | O2—Ni1—O3x | 93.14 (4) |
| O3iv—Ba1—O3v | 170.30 (4) | O4—Ni1—O3x | 92.48 (3) |
| O1i—Ba1—O3vi | 79.47 (2) | O4xii—Ni1—O3x | 88.02 (3) |
| O1ii—Ba1—O3vi | 109.44 (2) | O2xi—Ni1—O3iv | 93.14 (4) |
| O2iii—Ba1—O3vi | 107.68 (3) | O2—Ni1—O3iv | 86.40 (4) |
| O2—Ba1—O3vi | 63.00 (2) | O4—Ni1—O3iv | 88.02 (3) |
| O3iv—Ba1—O3vi | 67.69 (4) | O4xii—Ni1—O3iv | 92.48 (3) |
| O3v—Ba1—O3vi | 111.43 (4) | O3x—Ni1—O3iv | 179.39 (5) |
| O1i—Ba1—O3vii | 109.44 (2) | O2xi—Ni1—P2 | 138.40 (2) |
| O1ii—Ba1—O3vii | 79.47 (2) | O2—Ni1—P2 | 138.40 (2) |
| O2iii—Ba1—O3vii | 63.00 (2) | O4—Fe1—O4ix | 92.40 (5) |
| O2—Ba1—O3vii | 107.68 (3) | O4—Fe1—O4xiii | 87.60 (5) |
| O3iv—Ba1—O3vii | 111.43 (4) | O4ix—Fe1—O4xiii | 180.0 |
| O3v—Ba1—O3vii | 67.69 (4) | O4—Fe1—O4xiv | 180.0 |
| O3vi—Ba1—O3vii | 170.30 (4) | O4ix—Fe1—O4xiv | 87.60 (5) |
| O4—Ba2—O4viii | 180.0 | O4xiii—Fe1—O4xiv | 92.40 (5) |
| O4—Ba2—O4ix | 73.43 (4) | O4—Fe1—O1iv | 87.83 (3) |
| O4viii—Ba2—O4ix | 106.57 (4) | O4ix—Fe1—O1iv | 87.83 (3) |
| O4—Ba2—O4x | 106.57 (4) | O4xiii—Fe1—O1iv | 92.17 (3) |
| O4viii—Ba2—O4x | 73.43 (4) | O4xiv—Fe1—O1iv | 92.17 (3) |
| O4ix—Ba2—O4x | 180.0 | O4—Fe1—O1xv | 92.17 (3) |
| O4—Ba2—O3ix | 111.55 (2) | O4ix—Fe1—O1xv | 92.17 (3) |
| O4viii—Ba2—O3ix | 68.45 (2) | O4xiii—Fe1—O1xv | 87.83 (3) |
| O4ix—Ba2—O3ix | 55.51 (2) | O4xiv—Fe1—O1xv | 87.83 (3) |
| O4x—Ba2—O3ix | 124.49 (2) | O1iv—Fe1—O1xv | 180.0 |
| O4—Ba2—O3x | 68.45 (2) | O1—P1—O1iii | 111.11 (9) |
| O4viii—Ba2—O3x | 111.55 (2) | O1—P1—O2 | 109.59 (3) |
| O4ix—Ba2—O3x | 124.49 (2) | O1iii—P1—O2 | 109.59 (3) |
| O4x—Ba2—O3x | 55.51 (2) | O1—P1—O2iii | 109.59 (3) |
| O3ix—Ba2—O3x | 180.0 | O1iii—P1—O2iii | 109.59 (3) |
| O4—Ba2—O3viii | 124.49 (2) | O2—P1—O2iii | 107.28 (9) |
| O4viii—Ba2—O3viii | 55.51 (2) | O3—P2—O3xii | 112.84 (7) |
| O4ix—Ba2—O3viii | 68.45 (2) | O3—P2—O4xii | 112.49 (4) |
| O4x—Ba2—O3viii | 111.55 (2) | O3xii—P2—O4xii | 108.95 (5) |
| O3ix—Ba2—O3viii | 77.32 (3) | O3—P2—O4 | 108.95 (5) |
| O3x—Ba2—O3viii | 102.68 (3) | O3xii—P2—O4 | 112.49 (4) |
| O4—Ba2—O3 | 55.51 (2) | O4xii—P2—O4 | 100.50 (6) |
Symmetry codes: (i) −x+1, −y+1/2, z−1; (ii) x, y, z−1; (iii) −x+1, −y+1/2, z; (iv) −x+3/2, −y+1, z−1/2; (v) x−1/2, y−1/2, z−1/2; (vi) −x+3/2, y−1/2, z−1/2; (vii) x−1/2, −y+1, z−1/2; (viii) −x+2, −y+1, −z+2; (ix) −x+2, y, z; (x) x, −y+1, −z+2; (xi) −x+3/2, −y+1/2, −z+3/2; (xii) −x+3/2, y, −z+3/2; (xiii) x, −y+1, −z+1; (xiv) −x+2, −y+1, −z+1; (xv) x+1/2, y, −z+3/2.
References
- Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.
- Anahmadi, H., Fathi, M., El hajri, F., Benzekri, Z., Sibous, S., Idrissi, B. C., El youbi, M. S., Souizi, A. & Boukhris, S. (2022). J. Mol. Struct. 1248, 131449.
- Attfield, J. P., Sleight, A. W. & Cheetham, A. K. (1986). Nature, 322, 620–622.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. (1977). Acta Cryst. B33, 1305–1310.
- Brown, I. D. (1978). Chem. Soc. Rev. 7, 359–376.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
- Bruker, (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Cheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, L., He, P., Pan, D. & Chen, S. (2021). Energy Storage Materials, 41, 842–882.
- Ci, Z., Que, M., Shi, Y., Zhu, G. & Wang, Y. (2014). Inorg. Chem. 53, 2195–2199. [DOI] [PubMed]
- Dwibedi, D., Barpanda, P. & Yamada, A. (2020). Small Methods, 4, 2000051.
- Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Glaum, R., Gruehn, R. & Möller, M. (1986). Z. Anorg. Allg. Chem. 543, 111–116.
- Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122.
- Indumathi, K., Tamilselvan, S., Rajasekaran, L., David, A. D. J., Muhammad, G. S., Ramalingam, G. & Biruntha, M. (2022). Mater. Lett. 309, 131371.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T. & Mitomo, M. (2008). Chem. Mater. 20, 6704–6714.
- Li, Z., Geng, X., Wang, Y. & Chen, Y. (2021). J. Lumin. 240, 118428.
- Maeda, K. (2004). Microporous Mesoporous Mater. 73, 47–55.
- Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321.
- Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258. [DOI] [PMC free article] [PubMed]
- Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 893–895. [DOI] [PMC free article] [PubMed]
- Rekha, P., Yadav, S. & Singh, L. (2021). Ceram. Int. 47, 16385–16401.
- Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.
- Santos, R. D. S., Oliveira, J. L., Araujo, R. M. & Rezende, M. V. dos S. (2022). J. Solid State Chem. 306, 122769.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Wan, C., Meng, J., Zhang, F., Deng, X. & Yang, C. (2010). Solid State Commun. 150, 1493–1495.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yang, X., Chen, J., Chai, C., Zheng, S. & Chen, C. (2019). Optik (Stuttg). 198, 163238.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667Isup2.hkl
CCDC reference: 2172184
Additional supporting information: crystallographic information; 3D view; checkCIF report






