Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jan 17;79(Pt 2):95–98. doi: 10.1107/S2056989023000336

Crystal structure of barium dinickel(II) iron(III) tris­[orthophosphate(V)], BaNi2Fe(PO4)3

Said Ouaatta a,*, Adam Bouraima a,b, Elhassan Benhsina a, Jamal Khmiyas a, Abderrazzak Assani a, Mohamed Saadi a, Lahcen El Ammari a
Editor: M Weilc
PMCID: PMC9912466  PMID: 36793405

The orthophosphate BaNi2Fe(PO4)3 crystallizes in the α-CrPO4 type of structure, in which edge-sharing [Ni2O10] octa­hedra are linked to PO4 tetra­hedra and [FeO6] octa­hedra to form a three-dimensional framework delimiting channels which house disordered Ba2+ cations.

Keywords: crystal structure, orthophosphates, solid-state reactions, α-CrPO4-type structure BaNi2Fe(PO4)3

Abstract

The orthophosphate BaNi2Fe(PO4)3 has been synthesized by a solid-state reaction route and characterized by single-crystal X-ray diffraction and energy-dispersive X-ray spectroscopy. The crystal structure comprises (100) sheets made up of [Ni2O10] dimers that are linked to two PO4 tetra­hedra via common edges and vertices and of linear infinite [010] chains of corner-sharing [FeO6] octa­hedra and [PO4] tetra­hedra. The linkage of the sheets and chains into a framework is accomplished through common vertices of PO4 tetra­hedra and [FeO6] octa­hedra. The framework is perforated by channels in which positionally disordered Ba2+ cations are located.

1. Chemical context

Phosphate-based materials have been studied extensively in the past. Among them are orthophosphates, which have gained great inter­est in recent years owing to their structural richness (Maeda, 2004) and their promising applications, for example in electrochemical catalysis (Dwibedi et al., 2020; Cheng et al., 2021; Rekha et al., 2021; Anahmadi et al., 2022). Furthermore, orthophosphates doped with rare-earth cations have shown excellent optical properties (Ci et al., 2014; Li et al., 2021; Indumathi et al., 2022), along with a wide range of applications for use in luminescence emission displays (Li et al., 2008; Wan et al., 2010; Yang et al., 2019; Santos et al., 2022).

In this context, our research inter­est is connected with tris-orthophosphate-based materials with general formula (A 2/B)M 2 M′(PO4)3, where A can be an alkali, B an alkaline earth and M and M′ transition metal cations. The crystal structures of these orthophosphates adopt the α-CrPO4 type of structure, consisting of a three-dimensional framework made up of [MO6] and [M′O6] octa­hedra sharing corners and/or edges with PO4 tetra­hedra. This framework is permeated by channels in which the A or B cations are located.

We report herein on the synthesis and structural characterization of barium dinickel(II) iron(III) tris-orthophosphate, BaNi2Fe(PO4)3.

2. Structural commentary

The title compound is related to the strontium and calcium homologs MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015, 2017), all adopting the α-CrPO4 structure type (Attfield et al., 1986). The asymmetric unit of BaNi2Fe(PO4)3 is comprised of ten sites, eight of which are on special positions, except the O3 and O4 sites on a general position (Wyckoff position 16 j). Ba1 (site occupation 0.9868) exhibits site symmetry mm2 (4 e), Ba2 (site occupation 0.0132) 2/m (4 a), Fe1 2/m (4 b), Ni1 2 (8 g), P1 mm2 (4 e), P2 2 (8 g), while O1 and O2 occupy sites with m (8 h) and m (8 i) symmetry, respectively. The framework structure of BaNi2Fe(PO4)3 is composed of extended (100) sheets and linear infinite chains extending parallel to [010] (Fig. 1). The (100) sheets are made up from edge-sharing [Ni2O10] dimers linked to two P2O4 tetra­hedra via common edges to form an [Ni2P22O14] unit that is linked to four neighboring units (Fig. 2). Between these sheets appear the linear infinite chains resulting from the alternating linkage of P1O4 tetra­hedra and [FeO6] octa­hedra, which are surrounded by a zigzag arrangement of Ba2+ cations (Fig. 3). The sheets and chains are linked through common vertices of PO4 tetra­hedra and [FeO6] octa­hedra into a framework, which delimits two types of channels parallel to [100] and [010] in which the disordered Ba2+ cations are located (Figs. 4, 5).

Figure 1.

Figure 1

The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y +  Inline graphic , z − 1; (ii) x, y, z − 1; (iii) −x + 1, −y +  Inline graphic , z; (iv) −x +  Inline graphic , −y + 1, z −  Inline graphic ; (v) x −  Inline graphic , y −  Inline graphic , z −  Inline graphic ; (vi) −x +  Inline graphic , y −  Inline graphic , z −  Inline graphic ; (vii) x −  Inline graphic , −y + 1, z −  Inline graphic ; (viii) −x + 2, −y + 1, −z + 2; (ix) −x + 2, y, z; (x) x, −y + 1, −z + 2; (xi) −x +  Inline graphic , −y +  Inline graphic , −z +  Inline graphic ; (xii) −x +  Inline graphic , y, −z +  Inline graphic ; (xiii) x, −y + 1, −z + 1; (xiv) −x + 2, −y + 1, −z + 1; (xv) x +  Inline graphic , y, −z +  Inline graphic ].

Figure 2.

Figure 2

Projection of a (100) sheet along [100] showing the [Ni2P(2)2O14] unit.

Figure 3.

Figure 3

A chain formed by sharing corners of [FeO6] octa­hedra and P1O4 tetra­hedra, alternating with a zigzag arrangement of barium cations (Ba1) along [010].

Figure 4.

Figure 4

Polyhedral representation of the crystal structure of BaNi2Fe(PO4)3 showing Ba1 in the channels running along the [100] direction and a row of underoccupied Ba2 along [001].

Figure 5.

Figure 5

Polyhedral representation of the crystal structure of BaNi2Fe(PO4)3 showing Ba1 and Ba2 in the channels.

To confirm the structure model of BaNi2Fe(PO4)3, the bond-valence method (Brown, 1977; 1978; Brown & Altermatt, 1985) and charge distribution (CHARDI) concept (Hoppe et al., 1989) were employed by making use of the programs EXPO2014 (Altomare et al., 2013) and CHARDI2015 (Nespolo & Guillot, 2016), respectively. Table 1 compiles all cationic valences V(i) computed with the bond-valence method and their related charges Q(i) obtained with the CHARDI concept. The resulting Q(i) and V(i) values are all close to the corresponding charges q(i)×sof(i) [q(i) are formal oxidation numbers weighted by the site occupation factors sof(i)]. In summary, the expected oxidation states of Ba2+, Ni2+, Fe3+ and P5+ are predicted through the charge distribution. The inter­nal criterion q(i)/Q(i) is very near to 1 for all ionic species and the mean absolute percentage deviation (MAPD), which gives a measure for the agreement between the q(i) and Q(i) charges, is just 1.3%, thus confirming the validity of the structure model (Eon & Nespolo, 2015). The global instability index (GII; Salinas-Sanchez et al., 1992) of 0.13 is a further confirmation of the structure model.

Table 1. Bond valence and CHARDI analyses for the cations in the title compound.

q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number.

Cation q(i) sof(i) CN(i) ECoN(i) V(i) Q(i) q(i)/Q(i)
Ba1 1.98 0.99 8 7.99 2.37 1.98 1.00
Ba2 0.02 0.01 8 5.43 0.02 0.99  
Ni 2.00 1.00 6 5.97 2.00 1.98 1.01
Fe 3.00 1.00 4 5.96 3.01 2.99 1.00
P1 5.00 1.00 4 3.99 4.95 4.83 1.04
P2 5.00 1.00 4 3.96 4.85 5.11 0.98

3. Database survey

It is reasonable to compare the crystal structure of the title compound with that of α-CrPO4 (Glaum et al., 1986). Both phosphates crystallize in the ortho­rhom­bic system in space group type Imma. Their unit-cell parameters are nearly the same despite the differences between their chemical formulae. In the structure of α-CrPO4, the Cr3+ and P5+ cations occupy four special positions that are part of a framework is comprised of [CrO6] octa­hedra and [PO4] tetra­hedra. The resultant framework is permeated by vacant channels along [100] and [010]. The formula of α-CrPO4 can be written as X1X2Cr1Cr22(PO4)3, where X1, X2 represent the empty channel sites. Accordingly, the substitution of Cr1 or Cr2 by a divalent cation requires charge compensation by cations located in the channels to result in AAMM2(PO4)3 compounds such as BaNi2Fe(PO4)3, or MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015, 2017). The difference between BaNi2Fe(PO4)3 and the closely related MNi2Fe(PO4)3 structures pertains to the M site, which is split into two sites for the title compound and fully occupied for M = Ca, Sr.

4. Synthesis and crystallization

BaNi2Fe(PO4)3 was prepared from a mixture of Ba(NO3)2 (Merck, 98.5%), Ni(NO3)2·6H2O (Riedel-de-Haén, 97%), Fe(NO3)3·9H2O (Panreac, 98%) and H3PO4 (85%wt) in the molar ratio of Ba:Ni:Fe:P = 1:2:1:3. The precursors were suspended in 50 ml of distilled water and stirred without warming for 24 h before heating to dryness at 373 K. The obtained dry residue was ground in an agate mortar until homogeneous, subsequently heated in a platinum crucible up to 673 K to remove volatile decomposition products, and then melted at 1433 K. After being kept at this temperature for one h, the melt was cooled down slowly at a rate of 5 K h−1 to 1233 K and then to room temperature. Single crystals with a brown color and different forms were obtained after leaching with distilled water.

Chemical analysis of the title phosphate was performed with an energy-dispersive X-ray spectroscopy (EDS) microprobe mounted on a JEOL JSM-IT100 in TouchScopeTM scanning electron microscope. The EDS spectrum is depicted in Fig. 6 and confirms the presence of only barium, nickel, iron, phospho­rus and oxygen in approximately the correct ratios, as shown in Table 2.

Figure 6.

Figure 6

SEM micrograph and results of an EDS measurement of the title compound.

Table 2. Atom percentages in BaNi2Fe(PO4)3 as determined by EDS.

Element Atomic percentage Sigma
O 56.74 0.13
P 19.60 0.16
Fe 5.63 0.17
Ni 12.25 0.27
Ba 5.78 0.30
Total 100.00  

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. After assignment of the atomic sites according to the related MNi2Fe(PO4)3 structures (M = Sr, Ca; Ouaatta et al., 2015, 2017), a difference-Fourier map revealed a maximum electron density of 3.61 Å−3 that was finally modeled as a considerably underoccupied Ba site (Ba2). For the final model, the sum of site-occupation factors for the Ba1 and Ba2 sites were constrained to be 1. The highest remaining maximum and minimum electronic densities are 0.59 Å and 0.47 Å from Ba1 and Ni1, respectively.

Table 3. Experimental details.

Crystal data
Chemical formula BaNi2Fe(PO4)3
M r 595.52
Crystal system, space group Orthorhombic, I m m a
Temperature (K) 296
a, b, c (Å) 10.4711 (2), 13.2007 (3), 6.6132 (1)
V3) 914.12 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.46
Crystal size (mm) 0.32 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker X8 APEX Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.624, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 18099, 1460, 1440
R int 0.029
(sin θ/λ)max−1) 0.893
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.015, 0.036, 1.21
No. of reflections 1460
No. of parameters 58
Δρmax, Δρmin (e Å−3) 1.33, −0.78

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT2014/4 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667sup1.cif

e-79-00095-sup1.cif (577.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667Isup2.hkl

e-79-00095-Isup2.hkl (119KB, hkl)

CCDC reference: 2172184

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Faculty of Science, Mohammed V University in Rabat, for the X-ray measurements.

supplementary crystallographic information

Crystal data

BaNi2Fe(PO4)3 Dx = 4.327 Mg m3
Mr = 595.52 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Imma Cell parameters from 1460 reflections
a = 10.4711 (2) Å θ = 3.1–39.4°
b = 13.2007 (3) Å µ = 10.46 mm1
c = 6.6132 (1) Å T = 296 K
V = 914.12 (3) Å3 Block, colourless
Z = 4 0.32 × 0.25 × 0.19 mm
F(000) = 1116

Data collection

Bruker X8 APEX Diffractometer 1460 independent reflections
Radiation source: fine-focus sealed tube 1440 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 39.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −18→13
Tmin = 0.624, Tmax = 0.748 k = −23→23
18099 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0147P)2 + 1.8221P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.036 (Δ/σ)max = 0.001
S = 1.21 Δρmax = 1.33 e Å3
1460 reflections Δρmin = −0.78 e Å3
58 parameters Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00403 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ba1 0.500000 0.250000 0.39902 (2) 0.00770 (4) 0.9868
Ba2 1.000000 0.500000 1.000000 0.020 (2) 0.0132
Ni1 0.750000 0.36701 (2) 0.750000 0.00501 (4)
Fe1 1.000000 0.500000 0.500000 0.00337 (5)
P1 0.500000 0.250000 0.90454 (8) 0.00317 (8)
P2 0.750000 0.57020 (3) 0.750000 0.00365 (6)
O1 0.500000 0.34524 (8) 1.03493 (17) 0.00581 (16)
O2 0.61939 (10) 0.250000 0.76536 (17) 0.00534 (15)
O3 0.78276 (8) 0.63385 (6) 0.93423 (13) 0.00771 (12)
O4 0.86254 (7) 0.49395 (6) 0.70839 (12) 0.00574 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.00681 (5) 0.01253 (6) 0.00377 (5) 0.000 0.000 0.000
Ba2 0.014 (5) 0.041 (8) 0.006 (4) 0.000 0.000 0.000 (4)
Ni1 0.00498 (7) 0.00383 (7) 0.00621 (8) 0.000 0.00057 (5) 0.000
Fe1 0.00303 (10) 0.00352 (10) 0.00355 (10) 0.000 0.000 0.00008 (8)
P1 0.00348 (18) 0.00281 (17) 0.00322 (18) 0.000 0.000 0.000
P2 0.00380 (13) 0.00392 (13) 0.00324 (12) 0.000 0.00055 (10) 0.000
O1 0.0078 (4) 0.0033 (3) 0.0063 (4) 0.000 0.000 −0.0014 (3)
O2 0.0042 (4) 0.0063 (4) 0.0055 (4) 0.000 0.0016 (3) 0.000
O3 0.0096 (3) 0.0080 (3) 0.0055 (3) −0.0024 (2) 0.0007 (2) −0.0023 (2)
O4 0.0045 (3) 0.0058 (3) 0.0070 (3) 0.0009 (2) 0.0016 (2) 0.0006 (2)

Geometric parameters (Å, º)

Ba1—O1i 2.7163 (11) Ni1—O4 2.0670 (8)
Ba1—O1ii 2.7163 (11) Ni1—O4xii 2.0670 (8)
Ba1—O2iii 2.7262 (11) Ni1—O3x 2.1163 (8)
Ba1—O2 2.7262 (11) Ni1—O3iv 2.1163 (8)
Ba1—O3iv 2.7530 (8) Fe1—O4 1.9944 (8)
Ba1—O3v 2.7530 (8) Fe1—O4ix 1.9944 (8)
Ba1—O3vi 2.7530 (8) Fe1—O4xiii 1.9944 (8)
Ba1—O3vii 2.7530 (8) Fe1—O4xiv 1.9944 (8)
Ba2—O4 2.4077 (8) Fe1—O1iv 2.0559 (11)
Ba2—O4viii 2.4078 (8) Fe1—O1xv 2.0559 (11)
Ba2—O4ix 2.4078 (8) P1—O1 1.5246 (11)
Ba2—O4x 2.4078 (8) P1—O1iii 1.5246 (11)
Ba2—O3ix 2.9129 (9) P1—O2 1.5524 (11)
Ba2—O3x 2.9129 (9) P1—O2iii 1.5524 (11)
Ba2—O3viii 2.9129 (9) P2—O3 1.5192 (8)
Ba2—O3 2.9129 (9) P2—O3xii 1.5193 (8)
Ni1—O2xi 2.0655 (7) P2—O4xii 1.5739 (8)
Ni1—O2 2.0655 (7) P2—O4 1.5739 (8)
O1i—Ba1—O1ii 55.14 (4) O4viii—Ba2—O3 124.49 (2)
O1i—Ba1—O2iii 141.97 (2) O4ix—Ba2—O3 111.55 (2)
O1ii—Ba1—O2iii 141.97 (2) O4x—Ba2—O3 68.45 (2)
O1i—Ba1—O2 141.97 (2) O3ix—Ba2—O3 102.68 (3)
O1ii—Ba1—O2 141.97 (2) O3x—Ba2—O3 77.32 (3)
O2iii—Ba1—O2 54.59 (5) O3viii—Ba2—O3 180.0
O1i—Ba1—O3iv 109.44 (2) O2xi—Ni1—O2 83.20 (5)
O1ii—Ba1—O3iv 79.47 (2) O2xi—Ni1—O4 102.84 (3)
O2iii—Ba1—O3iv 107.68 (3) O2—Ni1—O4 172.00 (3)
O2—Ba1—O3iv 63.00 (2) O2xi—Ni1—O4xii 172.00 (4)
O1i—Ba1—O3v 79.47 (2) O2—Ni1—O4xii 102.84 (3)
O1ii—Ba1—O3v 109.44 (2) O4—Ni1—O4xii 71.66 (4)
O2iii—Ba1—O3v 63.00 (2) O2xi—Ni1—O3x 86.40 (4)
O2—Ba1—O3v 107.68 (3) O2—Ni1—O3x 93.14 (4)
O3iv—Ba1—O3v 170.30 (4) O4—Ni1—O3x 92.48 (3)
O1i—Ba1—O3vi 79.47 (2) O4xii—Ni1—O3x 88.02 (3)
O1ii—Ba1—O3vi 109.44 (2) O2xi—Ni1—O3iv 93.14 (4)
O2iii—Ba1—O3vi 107.68 (3) O2—Ni1—O3iv 86.40 (4)
O2—Ba1—O3vi 63.00 (2) O4—Ni1—O3iv 88.02 (3)
O3iv—Ba1—O3vi 67.69 (4) O4xii—Ni1—O3iv 92.48 (3)
O3v—Ba1—O3vi 111.43 (4) O3x—Ni1—O3iv 179.39 (5)
O1i—Ba1—O3vii 109.44 (2) O2xi—Ni1—P2 138.40 (2)
O1ii—Ba1—O3vii 79.47 (2) O2—Ni1—P2 138.40 (2)
O2iii—Ba1—O3vii 63.00 (2) O4—Fe1—O4ix 92.40 (5)
O2—Ba1—O3vii 107.68 (3) O4—Fe1—O4xiii 87.60 (5)
O3iv—Ba1—O3vii 111.43 (4) O4ix—Fe1—O4xiii 180.0
O3v—Ba1—O3vii 67.69 (4) O4—Fe1—O4xiv 180.0
O3vi—Ba1—O3vii 170.30 (4) O4ix—Fe1—O4xiv 87.60 (5)
O4—Ba2—O4viii 180.0 O4xiii—Fe1—O4xiv 92.40 (5)
O4—Ba2—O4ix 73.43 (4) O4—Fe1—O1iv 87.83 (3)
O4viii—Ba2—O4ix 106.57 (4) O4ix—Fe1—O1iv 87.83 (3)
O4—Ba2—O4x 106.57 (4) O4xiii—Fe1—O1iv 92.17 (3)
O4viii—Ba2—O4x 73.43 (4) O4xiv—Fe1—O1iv 92.17 (3)
O4ix—Ba2—O4x 180.0 O4—Fe1—O1xv 92.17 (3)
O4—Ba2—O3ix 111.55 (2) O4ix—Fe1—O1xv 92.17 (3)
O4viii—Ba2—O3ix 68.45 (2) O4xiii—Fe1—O1xv 87.83 (3)
O4ix—Ba2—O3ix 55.51 (2) O4xiv—Fe1—O1xv 87.83 (3)
O4x—Ba2—O3ix 124.49 (2) O1iv—Fe1—O1xv 180.0
O4—Ba2—O3x 68.45 (2) O1—P1—O1iii 111.11 (9)
O4viii—Ba2—O3x 111.55 (2) O1—P1—O2 109.59 (3)
O4ix—Ba2—O3x 124.49 (2) O1iii—P1—O2 109.59 (3)
O4x—Ba2—O3x 55.51 (2) O1—P1—O2iii 109.59 (3)
O3ix—Ba2—O3x 180.0 O1iii—P1—O2iii 109.59 (3)
O4—Ba2—O3viii 124.49 (2) O2—P1—O2iii 107.28 (9)
O4viii—Ba2—O3viii 55.51 (2) O3—P2—O3xii 112.84 (7)
O4ix—Ba2—O3viii 68.45 (2) O3—P2—O4xii 112.49 (4)
O4x—Ba2—O3viii 111.55 (2) O3xii—P2—O4xii 108.95 (5)
O3ix—Ba2—O3viii 77.32 (3) O3—P2—O4 108.95 (5)
O3x—Ba2—O3viii 102.68 (3) O3xii—P2—O4 112.49 (4)
O4—Ba2—O3 55.51 (2) O4xii—P2—O4 100.50 (6)

Symmetry codes: (i) −x+1, −y+1/2, z−1; (ii) x, y, z−1; (iii) −x+1, −y+1/2, z; (iv) −x+3/2, −y+1, z−1/2; (v) x−1/2, y−1/2, z−1/2; (vi) −x+3/2, y−1/2, z−1/2; (vii) x−1/2, −y+1, z−1/2; (viii) −x+2, −y+1, −z+2; (ix) −x+2, y, z; (x) x, −y+1, −z+2; (xi) −x+3/2, −y+1/2, −z+3/2; (xii) −x+3/2, y, −z+3/2; (xiii) x, −y+1, −z+1; (xiv) −x+2, −y+1, −z+1; (xv) x+1/2, y, −z+3/2.

References

  1. Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.
  2. Anahmadi, H., Fathi, M., El hajri, F., Benzekri, Z., Sibous, S., Idrissi, B. C., El youbi, M. S., Souizi, A. & Boukhris, S. (2022). J. Mol. Struct. 1248, 131449.
  3. Attfield, J. P., Sleight, A. W. & Cheetham, A. K. (1986). Nature, 322, 620–622.
  4. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Brown, I. D. (1977). Acta Cryst. B33, 1305–1310.
  6. Brown, I. D. (1978). Chem. Soc. Rev. 7, 359–376.
  7. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  8. Bruker, (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
  9. Cheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, L., He, P., Pan, D. & Chen, S. (2021). Energy Storage Materials, 41, 842–882.
  10. Ci, Z., Que, M., Shi, Y., Zhu, G. & Wang, Y. (2014). Inorg. Chem. 53, 2195–2199. [DOI] [PubMed]
  11. Dwibedi, D., Barpanda, P. & Yamada, A. (2020). Small Methods, 4, 2000051.
  12. Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47. [DOI] [PubMed]
  13. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  14. Glaum, R., Gruehn, R. & Möller, M. (1986). Z. Anorg. Allg. Chem. 543, 111–116.
  15. Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122.
  16. Indumathi, K., Tamilselvan, S., Rajasekaran, L., David, A. D. J., Muhammad, G. S., Ramalingam, G. & Biruntha, M. (2022). Mater. Lett. 309, 131371.
  17. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  18. Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T. & Mitomo, M. (2008). Chem. Mater. 20, 6704–6714.
  19. Li, Z., Geng, X., Wang, Y. & Chen, Y. (2021). J. Lumin. 240, 118428.
  20. Maeda, K. (2004). Microporous Mesoporous Mater. 73, 47–55.
  21. Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321.
  22. Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258. [DOI] [PMC free article] [PubMed]
  23. Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 893–895. [DOI] [PMC free article] [PubMed]
  24. Rekha, P., Yadav, S. & Singh, L. (2021). Ceram. Int. 47, 16385–16401.
  25. Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.
  26. Santos, R. D. S., Oliveira, J. L., Araujo, R. M. & Rezende, M. V. dos S. (2022). J. Solid State Chem. 306, 122769.
  27. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  28. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  29. Wan, C., Meng, J., Zhang, F., Deng, X. & Yang, C. (2010). Solid State Commun. 150, 1493–1495.
  30. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  31. Yang, X., Chen, J., Chai, C., Zheng, S. & Chen, C. (2019). Optik (Stuttg). 198, 163238.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667sup1.cif

e-79-00095-sup1.cif (577.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000336/wm5667Isup2.hkl

e-79-00095-Isup2.hkl (119KB, hkl)

CCDC reference: 2172184

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES