In the crystal, molecules of the title compound are connected through C—H⋯N and C—H⋯O hydrogen bonds, I⋯O halogen bonds, π–π stacking interactions between the benzene and pyrimidine rings, and edge-to-edge electrostatic interactions, as shown by the analysis of the Hirshfeld surface and two-dimensional fingerprint plots, as well as intermolecular interaction energies.
Keywords: Single-crystal structure, C—H⋯N and C—H⋯O hydrogen bonds, I⋯O halogen bond, Hirshfeld surface, intermolecular energies
Abstract
In the crystal, molecules of the title compound, C10H8FIN2O3S, are connected through C—H⋯N and C—H⋯O hydrogen bonds, I⋯O halogen bonds, π–π stacking interactions between the benzene and pyrimidine rings, and edge-to-edge electrostatic interactions, as shown by the analysis of the Hirshfeld surface and two-dimensional fingerprint plots, as well as intermolecular interaction energies calculated using the electron-density model at the HF/3–21 G level of theory.
1. Chemical context
Quinazoline is an aromatic heterocycle consisting of a benzene ring fused with a pyrimidine ring. Its derivatives are well known for their biological activities such as anti-analgesic, anti-inflammatory, anti-hypertensive, sedative, hypnotic, anti-histaminic, anti-tumor, anti-microbial, anti-convulsant, anti-bacterial, anti-fungal, enzyme inhibition, and anti-HIV activities (Kumar et al., 1981 ▸; Baker et al., 1952 ▸; Rewcastle et al., 1995 ▸; Hitkari et al., 1995 ▸; Bertelli et al., 2000 ▸; Yang et al., 2009 ▸; Cao et al., 2009 ▸; De Clercq, 2001 ▸). Compounds bearing the quinazoline moiety also are potent cytotoxic agents (Ibrahim et al., 1988 ▸; Riou et al., 1991 ▸; Braña et al., 1994 ▸; Helissey et al., 1994 ▸), show anti-oxidant (Al-Amiery et al., 2014 ▸) and insecticidal (Yang et al., 2021 ▸) activities. In view of their therapeutic importance, we report herein the crystal structure, Hirshfeld surface and three-dimensional interaction energy studies of 2-(6-iodo-4-oxo-3,4-dihydroquinazolin-3-yl)ethanesulfonyl fluoride, (I).
2. Structural commentary
The molecular structure of (I) (Fig. 1 ▸) shows an out-of-plane conformation of the (CH2)2SO2F side chain, the C9/C10/S1 fragment forming a dihedral angle of 76.1 (5)° with the quinazoline (N1/N2/C1–C8) system mean plane, whereas the I1 and O1 substituents do not deviate appreciably from the latter plane. The molecule is stabilized by a weak intramolecular C10—H10B⋯O1 hydrogen bond, forming an S(6) ring motif. The S1 atom has a slightly distorted tetrahedral geometry. In the heterocycle, the N1=C1 bond [1.271 (8) Å] is essentially double, while those at the three-coordinate N2 atom are nominally single [C1—N2 = 1.359 (7), N2—C2 = 1.384 (6) Å].
Figure 1.
Molecular structure of (I). The atomic displacement ellipsoids are drawn at the 50% probability level.
The bond lengths and angles are in agreement with those in related structures (El-Hiti et al., 2014 ▸; Al-Salahi et al., 2012 ▸; Utayeva et al., 2013 ▸; Priya et al., 2011 ▸; Lakshminarayana et al., 2009 ▸, 2022 ▸; Sreenatha et al., 2018a ▸,b ▸, 2020 ▸, 2022 ▸).
3. Supramolecular features
In the crystal, each molecule donates three and accepts three intermolecular hydrogen bonds, viz. C1—H1⋯N1, C10—H10B⋯O1, C10—H10A⋯O1 (Table 1 ▸) and their inversion equivalents. Thus, each molecule participates in three centrosymmetric dimers with
(6),
(12) and
(12) ring motifs, respectively (Fig. 2 ▸). Molecules related by the a translation, form a continuous stack via π–π interactions between the benzene and the pyrimidine rings (which are parallel within 1.5°), with a mean interplanar separation of 3.503 (4) Å (Fig. 3 ▸). The I1⋯O2(x − 1, y + 1, z) contact of 3.152 (6) Å is considerably shorter than the sum of the van der Waals radii of 3.61 Å (Batsanov, 1995 ▸; Rowland & Taylor, 1996 ▸) and can be described as a halogen bond (Metrangolo & Resnati, 2001 ▸), the nearly linear angle C6—I1⋯O2 = 175.9 (3)° being typical of such bonds.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1⋯N1i | 0.93 | 2.46 | 3.284 (8) | 148 |
| C10—H10B⋯O1ii | 0.97 | 2.56 | 3.493 (7) | 160 |
| C10—H10A⋯O1iii | 0.97 | 2.45 | 3.151 (7) | 129 |
| C9—H9A⋯O3iv | 0.97 | 2.33 | 3.150 (8) | 141 |
| C10—H10B⋯O1 | 0.97 | 2.59 | 3.121 (7) | 115 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 2.
Intermolecular hydrogen (see Table 1 ▸) and halogen bonds in the structure of (I).
Figure 3.
π–π stacking in the structure of (I).
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update of October 2022; Groom et al., 2016 ▸) revealed only one structure, namely (Z)-ethyl-2-cyano-2-(3H-quinazoline-4-ylidene)acetate (ACEZUE; Tulyasheva et al., 2005 ▸), which shares such features of (I) as one two-coordinate (N1) and one three-coordinate (N2) nitrogen atom of the quinazoline ring system, as well as an exocyclic double bond at C2, although in this case the H atom at N2 is not substituted. Of the other comparable quinazoline derivatives, in 3-amino-6-bromo-1-methyl-2, 4-(1H,3H)-quinazolinedione (ABMQZD; Ardebili & While, 1978 ▸) both N atoms are three-coordinate, while in N-(5-methyl-1,2-oxazol-3-yl)-4-[(quinazolin-4-yl) level of theoryamino]benzene-1-sulfonamide and N-(3,4-dimethyl-1,2-oxazol-5-yl)-4-[(quinazolin-4-yl)amino]benzene-1-sulfonamide (GEYYOB, GEYYUH; Sunil Kumar et al., 2018 ▸) both are two-coordinate.
5. Hirshfeld surfaces and 2D fingerprint calculations
The Hirshfeld surfaces and two-dimensional fingerprint plots were calculated using CrystalExplorer17.5 (Spackman et al., 2009 ▸) to analyse the intermolecular interactions. The three-dimensional Hirshfeld surface mapped over the normalized contact distance (d norm) is shown in Fig. 4 ▸. The eight bright-red spots, indicating shortened contacts, correspond to the three pairs of intermolecular hydrogen bonds and one pair of halogen bonds discussed in Section 3. The two-dimensional fingerprint plots show the H⋯O contacts to be the most common (23.0%), followed by H⋯H (13.5%), H⋯C (11.5%), H⋯I (9.9%), I⋯O (7.8%), H⋯F (6.7%), H⋯N (6.4%), I⋯F (4.0%), I⋯C (3.2%), O⋯O (2.2%) and C⋯N (1.9%) (including the reverse ones for all heteronuclear contacts). The characteristic spikes in the plots of the H⋯O and H⋯N contacts indicate intermolecular hydrogen bonds, those in the I⋯O plot indicate halogen bonds (Fig. 5 ▸).
Figure 4.
Different aspects of the three-dimensional Hirshfeld surface of (I) mapped over d norm. Red spots indicate shortened contacts, revealing intermolecular hydrogen and halogen bonds
Figure 5.
Selected two-dimensional fingerprint plots of structure (I); d i and d e are the distances from the Hirshfeld surface to the nearest internal and external atoms. Arrows indicate the ‘spikes’ characteristic of hydrogen and halogen bonds
6. Three-dimensional framework analysis of interaction energies
Quantification of intermolecular interactions energies is important for molecular recognition, protein modelling and drug design (Volkov & Coppens, 2004 ▸). We computed these energies for (I) with the HF/3-21G(d,p) electron-density model (Grimme, 2006 ▸), using CrystalExplorer17.5 software. Eleven molecules surrounding the original one with shortest intermolecular atom–atom distances of 3.8 Å or less were included in the calculations. The total interaction energy (E tot) between each pair of molecules comprises coloumbic (E ele), dispersion (E dis), polarization (E pol) and exchange-repulsion interaction energies (E rep) (Turner et al., 2015 ▸, 2017 ▸). The E ele, E dis and E tot intermolecular energy frameworks for (I) are shown graphically in Fig. 6 ▸ and numerically in Fig. 7 ▸. The molecular stacks (Fig. 3 ▸, top line in the Fig. 7 ▸ table) are held together mostly by dispersion (van der Waals) interactions, supported by the shortest C—H⋯O hydrogen bonds, while edge-to-edge intermolecular contacts (lines 5 to 8) have larger contributions of electrostatic interactions. The interaction between halogen-bonded molecules (line 3) is smaller than the above in absolute terms (10.8 kJ mol−1), but is remarkable given that only one pair of atoms is actually in contact.
Figure 6.
Intermolecular energy frameworks of (a) E ele, (b) E dis and (c) E tot in the structure of (I), viewed down the b axis.
Figure 7.
Intermolecular energies (in kJ mol−1) and their components in the structure of (I). N is the number of molecules in a group, Symop is the symmetry operator, R is the distance between molecular centroids in Å.
7. Synthesis and crystallization
To an ice-cooled stirred suspension of NaH (60% suspension in mineral oil; 125 mg, 2.0 mmol, 2.0 equiv) and 6-iodoquinazolin-4(3H)-one (1.0 mmol, 1.0 equiv) in DMF (2 mL), a solution of 2-bromoethanesulfonyl fluoride (350 mg, 1.0 mmol, 1.0 equiv) in DMF (1 mL) was added, under an N2 atmosphere. The reaction was heated at 353 K for 4 h under an N2 atmosphere (monitored by TLC). After the complete conversion of the reactants as confirmed from TLC analysis, the reaction mixture was quenched with saturated NH4Cl solution (25 mL), extracted with EtOAc (25 mL) and the collected organic layer was further washed with water (25 mL) and brine (25 mL), then dried over anhydrous Na2SO4 and concentrated under vacuum. Compound (I) was isolated by silica gel chromatography (using chloroform and methanol as mobile phase) and recrystallized from DMF.
8. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. Hydrogen atoms were placed in idealized positions and refined using a riding model with C—H 0.93 Å for sp 2 and 0.97 Å for sp 3 C atoms, with U iso(H) = 1.2U eq(C) for both.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C10H8FIN2O3S |
| M r | 382.14 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 293 |
| a, b, c (Å) | 5.0230 (5), 11.3241 (11), 11.5509 (11) |
| α, β, γ (°) | 103.081 (2), 96.742 (1), 97.860 (1) |
| V (Å3) | 626.43 (11) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 2.74 |
| Crystal size (mm) | 0.34 × 0.30 × 0.27 |
| Data collection | |
| Diffractometer | Bruker APEXII |
| Absorption correction | – |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 4073, 3207, 2315 |
| R int | 0.035 |
| (sin θ/λ)max (Å−1) | 0.673 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.055, 0.166, 1.11 |
| No. of reflections | 3207 |
| No. of parameters | 164 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.88, −1.39 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902201221X/zv2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902201221X/zv2021Isup3.hkl
Supporting information file. DOI: 10.1107/S205698902201221X/zv2021Isup3.cml
CCDC reference: 1987361
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors are thankful to Dr A. S. Jeevan Chakravarthy, C/O Professor H. ILA, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Amruthahalli, Bengaluru − 560064, Karnataka, and to the Department of Engineering Physics, Adichunchanagiri Institute of Technology, Chikkamagaluru, Karnataka, India, for support.
supplementary crystallographic information
Crystal data
| C10H8FIN2O3S | Z = 2 |
| Mr = 382.14 | F(000) = 368 |
| Triclinic, P1 | Dx = 2.026 Mg m−3 |
| a = 5.0230 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 11.3241 (11) Å | Cell parameters from 3207 reflections |
| c = 11.5509 (11) Å | θ = 2.9–28.6° |
| α = 103.081 (2)° | µ = 2.74 mm−1 |
| β = 96.742 (1)° | T = 293 K |
| γ = 97.860 (1)° | Block, colourless |
| V = 626.43 (11) Å3 | 0.34 × 0.30 × 0.27 mm |
Data collection
| Bruker APEXII diffractometer | 2315 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.035 |
| Graphite monochromator | θmax = 28.6°, θmin = 2.9° |
| SAINT (Bruker, 2009) scans | h = −6→6 |
| 4073 measured reflections | k = −15→15 |
| 3207 independent reflections | l = −15→9 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.055 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.166 | (Δ/σ)max = 0.027 |
| S = 1.11 | Δρmax = 0.88 e Å−3 |
| 3207 reflections | Δρmin = −1.39 e Å−3 |
| 164 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.075 (6) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| I1 | 0.12293 (8) | 0.97164 (3) | 0.27666 (4) | 0.0627 (3) | |
| S1 | 0.6688 (3) | 0.23549 (14) | 0.14355 (16) | 0.0558 (4) | |
| C4 | 0.6072 (11) | 0.6675 (5) | 0.4017 (4) | 0.0400 (10) | |
| O1 | 0.7389 (9) | 0.6113 (4) | 0.0952 (3) | 0.0492 (9) | |
| C6 | 0.3202 (11) | 0.8380 (5) | 0.3281 (5) | 0.0452 (12) | |
| N1 | 0.7570 (11) | 0.5853 (5) | 0.4409 (4) | 0.0502 (11) | |
| C3 | 0.5977 (10) | 0.6826 (5) | 0.2840 (4) | 0.0374 (10) | |
| C2 | 0.7379 (10) | 0.6082 (4) | 0.2009 (4) | 0.0370 (10) | |
| C1 | 0.8777 (12) | 0.5224 (5) | 0.3644 (5) | 0.0473 (12) | |
| H1 | 0.976779 | 0.467243 | 0.390691 | 0.057* | |
| C10 | 0.8383 (12) | 0.3422 (5) | 0.0775 (5) | 0.0466 (12) | |
| H10A | 0.946662 | 0.300744 | 0.022171 | 0.056* | |
| H10B | 0.705250 | 0.375036 | 0.031537 | 0.056* | |
| C9 | 1.0223 (10) | 0.4478 (5) | 0.1700 (5) | 0.0424 (11) | |
| H9A | 1.146034 | 0.414079 | 0.219643 | 0.051* | |
| H9B | 1.130812 | 0.496966 | 0.128183 | 0.051* | |
| C5 | 0.4554 (11) | 0.7690 (5) | 0.2498 (5) | 0.0416 (11) | |
| H5 | 0.452220 | 0.780100 | 0.172336 | 0.050* | |
| C7 | 0.3249 (13) | 0.8216 (6) | 0.4448 (6) | 0.0554 (14) | |
| H7 | 0.231139 | 0.867697 | 0.498211 | 0.066* | |
| O3 | 0.4727 (11) | 0.2855 (6) | 0.2052 (7) | 0.0900 (19) | |
| O2 | 0.8528 (12) | 0.1889 (8) | 0.2130 (10) | 0.139 (4) | |
| N2 | 0.8762 (8) | 0.5277 (4) | 0.2479 (4) | 0.0393 (9) | |
| F1 | 0.532 (2) | 0.1389 (6) | 0.0379 (6) | 0.167 (4) | |
| C8 | 0.4670 (14) | 0.7380 (6) | 0.4805 (5) | 0.0534 (14) | |
| H8 | 0.470010 | 0.728088 | 0.558397 | 0.064* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| I1 | 0.0622 (3) | 0.0401 (3) | 0.0873 (4) | 0.01597 (19) | 0.0067 (2) | 0.0166 (2) |
| S1 | 0.0624 (8) | 0.0382 (7) | 0.0754 (11) | 0.0114 (6) | 0.0258 (8) | 0.0219 (7) |
| C4 | 0.049 (2) | 0.038 (3) | 0.031 (2) | 0.001 (2) | 0.005 (2) | 0.0078 (19) |
| O1 | 0.069 (2) | 0.049 (2) | 0.038 (2) | 0.0201 (19) | 0.0135 (17) | 0.0178 (16) |
| C6 | 0.046 (3) | 0.033 (3) | 0.055 (3) | 0.007 (2) | 0.006 (2) | 0.007 (2) |
| N1 | 0.072 (3) | 0.048 (3) | 0.034 (2) | 0.017 (2) | 0.003 (2) | 0.0161 (19) |
| C3 | 0.042 (2) | 0.034 (2) | 0.036 (2) | 0.0027 (19) | 0.0040 (19) | 0.0112 (19) |
| C2 | 0.045 (2) | 0.031 (2) | 0.036 (3) | 0.0049 (19) | 0.0046 (19) | 0.0147 (19) |
| C1 | 0.062 (3) | 0.040 (3) | 0.039 (3) | 0.011 (2) | −0.007 (2) | 0.014 (2) |
| C10 | 0.064 (3) | 0.038 (3) | 0.042 (3) | 0.010 (2) | 0.018 (2) | 0.012 (2) |
| C9 | 0.044 (2) | 0.040 (3) | 0.050 (3) | 0.014 (2) | 0.012 (2) | 0.017 (2) |
| C5 | 0.050 (3) | 0.038 (3) | 0.037 (3) | 0.006 (2) | 0.005 (2) | 0.012 (2) |
| C7 | 0.067 (4) | 0.045 (3) | 0.056 (3) | 0.012 (3) | 0.021 (3) | 0.009 (3) |
| O3 | 0.078 (3) | 0.079 (4) | 0.142 (5) | 0.028 (3) | 0.065 (4) | 0.053 (4) |
| O2 | 0.073 (4) | 0.141 (7) | 0.265 (11) | 0.040 (4) | 0.031 (5) | 0.160 (8) |
| N2 | 0.044 (2) | 0.036 (2) | 0.040 (2) | 0.0097 (18) | 0.0016 (17) | 0.0129 (17) |
| F1 | 0.280 (10) | 0.083 (4) | 0.098 (4) | −0.080 (5) | 0.054 (5) | −0.009 (3) |
| C8 | 0.076 (4) | 0.048 (3) | 0.041 (3) | 0.010 (3) | 0.017 (3) | 0.015 (2) |
Geometric parameters (Å, º)
| I1—C6 | 2.075 (5) | C2—N2 | 1.384 (6) |
| S1—O3 | 1.390 (6) | C1—N2 | 1.359 (7) |
| S1—O2 | 1.389 (6) | C1—H1 | 0.9300 |
| S1—F1 | 1.467 (6) | C10—C9 | 1.521 (8) |
| S1—C10 | 1.748 (5) | C10—H10A | 0.9700 |
| C4—C3 | 1.404 (7) | C10—H10B | 0.9700 |
| C4—N1 | 1.393 (7) | C9—N2 | 1.462 (6) |
| C4—C8 | 1.392 (8) | C9—H9A | 0.9700 |
| O1—C2 | 1.230 (6) | C9—H9B | 0.9700 |
| C6—C5 | 1.363 (8) | C5—H5 | 0.9300 |
| C6—C7 | 1.400 (9) | C7—C8 | 1.367 (9) |
| N1—C1 | 1.271 (8) | C7—H7 | 0.9300 |
| C3—C5 | 1.387 (7) | C8—H8 | 0.9300 |
| C3—C2 | 1.443 (7) | ||
| O3—S1—O2 | 113.9 (5) | C9—C10—H10A | 109.1 |
| O3—S1—F1 | 108.8 (5) | S1—C10—H10A | 109.1 |
| O2—S1—F1 | 110.1 (6) | C9—C10—H10B | 109.1 |
| O3—S1—C10 | 110.6 (3) | S1—C10—H10B | 109.1 |
| O2—S1—C10 | 110.8 (3) | H10A—C10—H10B | 107.8 |
| F1—S1—C10 | 101.9 (3) | N2—C9—C10 | 114.0 (4) |
| C3—C4—N1 | 121.3 (5) | N2—C9—H9A | 108.8 |
| C3—C4—C8 | 118.8 (5) | C10—C9—H9A | 108.8 |
| N1—C4—C8 | 119.8 (5) | N2—C9—H9B | 108.8 |
| C5—C6—C7 | 119.6 (5) | C10—C9—H9B | 108.8 |
| C5—C6—I1 | 120.1 (4) | H9A—C9—H9B | 107.7 |
| C7—C6—I1 | 120.3 (4) | C6—C5—C3 | 121.0 (5) |
| C1—N1—C4 | 116.9 (4) | C6—C5—H5 | 119.5 |
| C4—C3—C5 | 119.6 (5) | C3—C5—H5 | 119.5 |
| C4—C3—C2 | 119.2 (4) | C8—C7—C6 | 120.2 (6) |
| C5—C3—C2 | 121.2 (4) | C8—C7—H7 | 119.9 |
| O1—C2—N2 | 120.0 (5) | C6—C7—H7 | 119.9 |
| O1—C2—C3 | 125.0 (4) | C1—N2—C2 | 121.1 (4) |
| N2—C2—C3 | 115.0 (4) | C1—N2—C9 | 120.1 (4) |
| N1—C1—N2 | 126.4 (5) | C2—N2—C9 | 118.8 (4) |
| N1—C1—H1 | 116.8 | C7—C8—C4 | 120.8 (5) |
| N2—C1—H1 | 116.8 | C7—C8—H8 | 119.6 |
| C9—C10—S1 | 112.5 (4) | C4—C8—H8 | 119.6 |
| C3—C4—N1—C1 | −2.0 (8) | I1—C6—C5—C3 | 177.4 (4) |
| C8—C4—N1—C1 | 179.1 (6) | C4—C3—C5—C6 | −1.2 (8) |
| N1—C4—C3—C5 | −177.4 (5) | C2—C3—C5—C6 | 179.1 (5) |
| C8—C4—C3—C5 | 1.6 (8) | C5—C6—C7—C8 | 0.8 (9) |
| N1—C4—C3—C2 | 2.3 (7) | I1—C6—C7—C8 | −176.6 (5) |
| C8—C4—C3—C2 | −178.8 (5) | N1—C1—N2—C2 | 1.0 (9) |
| C4—C3—C2—O1 | 178.3 (5) | N1—C1—N2—C9 | −179.1 (6) |
| C5—C3—C2—O1 | −2.1 (8) | O1—C2—N2—C1 | −179.9 (5) |
| C4—C3—C2—N2 | −1.0 (7) | C3—C2—N2—C1 | −0.6 (7) |
| C5—C3—C2—N2 | 178.7 (4) | O1—C2—N2—C9 | 0.2 (7) |
| C4—N1—C1—N2 | 0.3 (9) | C3—C2—N2—C9 | 179.5 (4) |
| O3—S1—C10—C9 | 70.2 (5) | C10—C9—N2—C1 | 106.4 (6) |
| O2—S1—C10—C9 | −57.1 (7) | C10—C9—N2—C2 | −73.7 (6) |
| F1—S1—C10—C9 | −174.2 (6) | C6—C7—C8—C4 | −0.4 (10) |
| S1—C10—C9—N2 | −67.0 (5) | C3—C4—C8—C7 | −0.7 (9) |
| C7—C6—C5—C3 | 0.0 (8) | N1—C4—C8—C7 | 178.2 (6) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1···N1i | 0.93 | 2.46 | 3.284 (8) | 148 |
| C10—H10B···O1ii | 0.97 | 2.56 | 3.493 (7) | 160 |
| C10—H10A···O1iii | 0.97 | 2.45 | 3.151 (7) | 129 |
| C9—H9A···O3iv | 0.97 | 2.33 | 3.150 (8) | 141 |
| C10—H10B···O1 | 0.97 | 2.59 | 3.121 (7) | 115 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z; (iv) x+1, y, z.
References
- Al-Amiery, A. A., Kadhum, A. A., Shamel, M., Satar, M., Khalid, Y. & Mohamad, A. B. (2014). Med. Chem. Res. 23, 236–242.
- Al-Salahi, R., Marzouk, M., Abbas, M. & Ng, S. W. (2012). Acta Cryst. E68, o1806. [DOI] [PMC free article] [PubMed]
- Ardebili, M. H. P. & White, J. G. (1978). Acta Cryst. B34, 2890–2891.
- Baker, B. R., Schaub, R. E., McEvoy, F. J. & Williams, J. H. (1952). J. Org. Chem. 17, 132–140.
- Batsanov, S. S. (1995). Russ. Chem. Bull. 44, 18–23.
- Bertelli, L., Biagi, G., Giorgi, I., Livi, O., Manera, C., Scartoni, V., Lucacchini, A., Giannaccini, G. & Barili, P. L. (2000). Eur. J. Med. Chem. 235, 333–341. [DOI] [PubMed]
- Braña, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martín, Y., Redondo, C., Schlick, E. & Walker, N. (1994). Anticancer Drug. Des. 9, 527–538. [PubMed]
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, S.-L., Guo, Y.-W., Wang, X.-B., Zhang, M., Feng, Y.-P., Jiang, Y.-Y., Wang, Y., Gao, Q. & Ren, J. (2009). Arch. Pharm. Chem. Life Sci. 342, 182–189. [DOI] [PubMed]
- De Clercq, E. (2001). Curr. Med. Chem. 8, 1543–1572. [DOI] [PubMed]
- El-Hiti, G. A., Smith, K., Hegazy, A. S., Alshammari, M. B. & Kariuki, B. M. (2014). Acta Cryst. E70, o1279. [DOI] [PMC free article] [PubMed]
- Grimme, S. (2006). J. Comput. Chem. 27, 1787–1799. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Helissey, P., Cros, S. & Giorgi-Renault, S. (1994). Anticancer Drug. Des. 9, 51–67. [PubMed]
- Hitkari, A., Bhalla, M., Saxena, A. K., Verma, M., Gupta, M. P. & Shanker, K. (1995). Boll. Chim. Farm. 134, 609–615. [PubMed]
- Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. & Green, B. (1988). Eur. J. Med. Chem. 23, 183–188.
- Kumar, P., Agarwal, J. C., Nath, C., Bhargava, K. P. & Shanker, K. (1981). Pharmazie, 36, 780. [PubMed]
- Lakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237. [DOI] [PMC free article] [PubMed]
- Lakshminarayana, B. N., Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B. & Hariprasad, S. (2022). Crystallogr. Rep. 67, 201–208.
- Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519. [DOI] [PubMed]
- Priya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2310. [DOI] [PMC free article] [PubMed]
- Rewcastle, G. W., Denny, W. A., Bridges, A. J., Zhou, H., Cody, D. R., McMichael, A. & Fry, D. W. (1995). J. Med. Chem. 38, 3482–3487. [DOI] [PubMed]
- Riou, J.-F., Helissey, P., Grondard, L. & Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699–706. [PubMed]
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Sreenatha, N. R., Ganesha, D. P., Jeevan Chakravarthy, A. S., Suchithra, B. & Lakshminarayana, B. N. (2022). Heliyon, 8, e10151. [DOI] [PMC free article] [PubMed]
- Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B., Lakshminarayana, B. N., Hariprasad, S. & Ganesha, D. P. (2020). J. Mol. Struct. 1210, 127979.
- Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Gnanendra, C. R., Nagaraju, S. & Madan Kumar, S. (2018a). Chem. Data Collect. 17–18, 394–403.
- Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018b). X-ray Struct. Anal. Online, 34, 23–24. https://doi.org/10.2116/xraystruct.34.23
- Sunil Kumar, A., Kudva, J., Madan Kumar, S., Vishwanatha, U., Kumar, V. & Naral, D. (2018). J. Mol. Struct. 1167, 142–153.
- Tulyasheva, M., Rasulev, B. F., Tojiboev, A. G., Turgunov, K. K., Tashkhodjaev, B., Abdullaev, N. D. & Shakhidoyatov, K. M. (2005). Molecules, 10, 1209–1217. [DOI] [PMC free article] [PubMed]
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
- Utayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094. [DOI] [PMC free article] [PubMed]
- Volkov, A. & Coppens, P. (2004). J. Comput. Chem. 25, 921–934. [DOI] [PubMed]
- Yang, S., Lai, Q. Q., Lai, F. W., Jiang, X. Y., Zhao, C. & Xu, H. H. (2021). Pest Manag. Sci. 77, 1013–1022. [DOI] [PubMed]
- Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902201221X/zv2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902201221X/zv2021Isup3.hkl
Supporting information file. DOI: 10.1107/S205698902201221X/zv2021Isup3.cml
CCDC reference: 1987361
Additional supporting information: crystallographic information; 3D view; checkCIF report







