Skip to main content
Journal of Clinical Medicine logoLink to Journal of Clinical Medicine
. 2023 Jan 29;12(3):1048. doi: 10.3390/jcm12031048

Global, Regional, and National Incidence and Disability-Adjusted Life-Years for Urolithiasis in 195 Countries and Territories, 1990–2019: Results from the Global Burden of Disease Study 2019

Juan Li 1, Yue Zhao 1, Zhuang Xiong 1, Guoqiang Yang 1,*
Editors: Jinwei Wang1, Juan F Navarro-González1
PMCID: PMC9918205  PMID: 36769696

Abstract

Purpose: Urolithiasis is highly prevalent worldwide. The aim of this study was to report the results of the Global Burden of Disease 2019 study on urolithiasis burden estimates grouped by gender, regions, countries or territories, and sociodemographic index (SDI) from 1990 to 2019 globally. Methods: We reported detailed estimates and temporal trends of the burden estimates of urolithiasis from 1990 to 2019 in 195 countries and territories and further evaluated the relationship between these estimates and SDI, a composite indicator of income per person, years of education, and fertility as a measurement of country/region socio-economic level. Urolithiasis incidence and disability-adjusted life years by gender, regions, countries or territories, and SDI were reported. The percentage change and estimated annual percentage change of these burden estimates were calculated to quantify temporal trends. Results: From 1990 to 2019, the age-standardized incidence rate (ASIR) and disability-adjusted life years (DALYs) of urolithiasis decreased globally by 0.459% and 1.898% per year, respectively. Such a trend of ASIR was prominently due to the decline in the middle, high-middle, and high SDI countries, including Eastern Asia, high-income Eastern Europe, and high-income North America. During this period, these estimates increased in low and low-middle SDI countries, particularly in South Asia, Andean Latin America, and Western Europe. A decline in DALYs was observed in all SDI countries. An approximate positive linear association existed between the burden estimate’s decreased APC and SDI level, except at the high SDI level. Both males and females showed the same trend. Conclusions: This study provides comprehensive knowledge of the burden estimate of urolithiasis. Although the burden estimates of urolithiasis showed a global decrease during the past 29 years, this progress has yet to be universal; the increasing trends were observed in countries with low and low-middle SDI countries. Research in these countries is needed and helps with the appropriate allocation of health resources for prevention, screening, and treatment strategies.

Keywords: disability-adjusted life years, global burden, incidence, urolithiasis, prevention

1. Introduction

Urolithiasis is a highly prevalent disease worldwide with prevalence rates ranging from 1% to 20% [1], it is characterized by significant morbidity, economic costs and days lost from work [2]. In addition, about half of the stone formers have one lifetime recurrence [3]. High recurrence is observed in more than 10% of urolithiasis patients [4]. There is significant variation in rates based on geography, climate, diet style, ethnicity, gender, and age [5]. In countries such as Sweden, Canada or the United States, the prevalence of stones are notably high (more than 10%) [3,6,7]. However, in Asian countries, there was little epidemiologic data about urolithiasis. Yasui et al. [8] reported that the incidence of urolithiasis in Japan was 134.0 per 100,000 person/year, which was significantly lower than that reported in Western countries. Due to the high rates of new and recurrent stones, management of stones is expensive.

Understanding the epidemiology of urolithiasis measures among different regions/nations, and changing trends is crucial for treatment outcome. Furthermore, reliable and accurate statistics on patterns and disease trends in various geographic locations give policy makers the proof they need to allocate resources properly. However, few evaluations have been carried out at the national level, and there is no study addressing the trend in disease burden of urolithiasis. The majority of epidemiological studies of urolithiasis were based on general practice surveys, selected population surveys, or hospitals [9]. For understanding of a nation’s actual demographic status, they are insufficient. A historical evaluation and a comparison of different countries are also impossible. The global burden of disease (GBD) study evaluated the prevalence of urolithiasis in 195 nations and territories, offering a rare chance to comprehend the epidemiology of this condition. By combining several forms of data, it gives a thorough assessment of changes in disease health status. A cycle of continuous quality improvement of this database has additionally led to substantial changes, including new data sources, identification of novel causes of death, and updated methods, which serve as global information freely available for policy makers and public groups seeking to improve human health [10].

Although there were several studies addressing this issue based on GBD 2019 [11,12,13], they did not demonstrate the global disease burden of urolithiasis stratified by sex, countries and territories. Therefore, we have reported an in-depth examination of the global burden of urolithiasis from a complete time series of incidence from 1990 to 2019, with disability-adjusted life years (DALYs), and investigated the disease burden to determine the temporal trends of these estimates at global, regional, and national levels. The relationships of estimates of the global burden of urolithiasis with socioeconomic development level, and measured SDI, were further assessed.

2. Methods

2.1. Data Sources

The Global Burden of Disease (GBD) is a systematic, scientific effort to quantify the comparative magnitude of health loss due to diseases, injuries, and risk factors by age, sex, and geography over time. The conceptual and analytical framework for GBD 2019, with details of the hierarchy of causes and risk factors, data inputs and processing, and analytical methods, has been published elsewhere [14,15,16]. GBD Results Tool provides the details of different risk factors, causes and impairments related to health in terms of deaths, Disability-Adjusted Life Years (DALYs), Years Lived with Disability (YLDs), Years of Life Lost (YLLs) and prevalence via age, year, gender, and location. Results from the GBD 2019 study, which evaluated 354 causes and 3484 sequelae, were obtained from 195 different nations [14]. These results were generated using a total of 68,781 data sources, including a thorough literature review, hospital and clinical data, surveillance and survey data from various sources, and inpatient and outpatient medical records [14,17]. In our study, data on urolithiasis incidence and DALYs and their uncertainty intervals were curated from GBD 2019 data sources (http://ghdx.healthdata.org/gbd-results-tool (accessed on 1 December 2021)) provided by the Institute for Health Metrics and Evaluation. The present study complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) recommendations (Table S1).

2.2. Modeling

The major data inputs for the distribution of urolithiasis globally included national health surveys, population representative surveys and cohort studies, and a variety of published and unpublished studies which were described in the appendix (Supplementary Materials, Supplementary Tables S2–S6). In the GBD 2019, urolithiasis was defined as stone formation located anywhere along the genitourinary tract. Using DisMod-MR, version 2.1, a disease modeling computational tool that is the standard GBD modeling approach for non-fatal health outcomes, the incidence of urolithiasis was estimated by region, age, sex, and year (Figure S1). The identification of all accessible data sources, their evaluation for data extraction based on inclusion criteria, the determination of sequelae severity distributions, the incorporation of disability weights to quantify severity, and comorbidity adjustment of sequelae were all steps in the process of estimating the incidence of urolithiasis.

DALYs, a summary measure of total health loss, were calculated for urolithiasis by summing YLLs and YLDs for each location, age, sex, and year (Figure S1). YLD captures years lived with less-than-ideal health because of urolithiasis and was estimated by a multiplication of prevalent cases of urolithiasis and a disability weight [16,18]. YLL is a measure of the years lost owing to premature mortality due to urolithiasis and was based on the remaining life expectancy compared with a reference standard life table at age of death [16].

2.3. The Socio-Demographic Index

The Socio-demographic Index (SDI) is a summary measure that estimates a location’s position on a spectrum of development [19]. Briefly, the SDI was computed on the basis of the geometric mean of three indicators: lag-distributed income per capita, educational attainment over the age of 15 years, and total fertility rate in women aged 15–49 years. SDI scores were scaled from 0 to 1, and each location was assigned an SDI score for each year. A total of five SDI quintiles, high, high-middle, middle, low-middle, and low, were selected based on SDI values (Table S7). Average relationships between SDI and incidence and DALYs of urolithiasis were estimated using spline regressions, which were then used to estimate expected values at each level of SDI. The results presented for SDI quintiles in this study reflect each country’s position based on its SDI values in 2019.

2.4. Statistical Analysis

To measure the trend in the global burden of urolithiasis, we utilized the age-standardized incidence rate (ASIR), DALYs, percentage change (PC), and estimated annual percentage change (APC) [20]. When comparing populations with varied age structures or for the same population across time when the age profiles change proportionally, standardization is required. By adding the products of the age-specific rates and the number of people in the same age subgroup of the chosen reference standard population, and then dividing the total by the standard population weights, the age-standardized rates according to the direct approach were determined. The GBD world population standard was used for calculation of age-standardized rates. APC is a widely used measure of the ASR trend over a specific time interval. A regression line was fitted to the natural logarithm of the rates. APC and 95% confidential interval (CI) values can also be obtained from the linear regression model [21]. We employed a generalized additive model with Loess smoother on SDI to estimate the associations between SDI and ASIR and DALYs using GBD estimates from all national locations across the years from 1990 to 2019 [22]. Uncertainty intervals (UI) were defined as the 2.5th and 97.5th values of the ordered draws. All statistical analyses were performed using SPSS (Version 23, SPSS Inc., Chicago, IL, USA) and the R program (Version 3.4.4, R core team, Vienna, Austria), with p-Values <.001 considered significant.

3. Results

3.1. Age Standardized Incidence Rate (ASIR) of Urolithiasis

Globally, ASIR of urolithiasis changed from 1146.048 per 100,000 individuals in 1990 to 1031.497 per 100,000 individuals in 2019, representing a shift of −0.459% per year (95%CI: −0.506%–−0.411%) and −9.995% in total. Both male and female showed a decrease in ASIR of urolithiasis, which were −0.557% and −0.312% per year, respectively (Table 1).

Table 1.

The global age standardized incidence rate and disability adjusted life years of urolithiasis from 1990 to 2019 stratified by gender.

ASIR DALYs
Year Both Male and Female Male Female Both Male and Female Male Female
1990 1146.047641 1440.793066 875.8114857 9.427001255 11.18863773 7.973054209
1991 1140.911218 1436.61929 868.5097849 9.39061477 11.16270689 7.922430885
1992 1135.762233 1431.9645 861.7192101 9.36658052 11.09585561 7.930221913
1993 1130.191462 1426.5021 855.0269892 9.299745192 10.99529361 7.881904971
1994 1124.645275 1420.736097 848.901434 9.053485315 10.73258633 7.638401684
1995 1119.436554 1415.011279 843.6554232 8.692092247 10.34541661 7.285534651
1996 1113.859253 1408.393382 838.7490017 8.282838434 9.869189374 6.923735513
1997 1107.69147 1400.543025 833.931449 8.005927994 9.625529321 6.606542967
1998 1101.155628 1392.024039 829.1017686 7.757849186 9.323976626 6.39918849
1999 1095.041447 1383.898419 824.7663553 7.603703949 9.1440201 6.264852915
2000 1090.020906 1377.162259 821.2682917 7.442599032 9.012731993 6.06963117
2001 1086.013963 1371.772109 818.4771954 7.251061201 8.859252356 5.842025802
2002 1082.627938 1367.045562 816.2512963 7.081799647 8.698538836 5.660230101
2003 1079.422137 1362.43179 814.2720769 6.912126255 8.540729982 5.476002512
2004 1076.408171 1357.917612 812.5774435 6.759182321 8.378038779 5.326008996
2005 1073.399559 1353.298749 811.0104047 6.640680704 8.23488217 5.222382904
2006 1065.985207 1341.19763 808.1331063 6.449663697 8.005666955 5.061498996
2007 1052.913051 1319.364923 803.6658621 6.303375455 7.810608222 4.956258738
2008 1038.240731 1294.641594 798.9102725 6.233267481 7.704416674 4.917888338
2009 1026.320337 1274.275091 795.3064952 6.124649977 7.531218857 4.867998357
2010 1021.561136 1265.710553 794.3282972 6.079312489 7.433786439 4.868709668
2011 1021.931662 1265.637737 795.1469297 6.009475453 7.325908862 4.830072279
2012 1022.798159 1266.314351 796.2151329 5.979276847 7.270361007 4.819140076
2013 1024.003667 1267.443282 797.5020103 5.98219769 7.238329177 4.851921944
2014 1025.494809 1268.944095 798.9300114 6.027458681 7.259450318 4.917627711
2015 1027.278721 1270.930727 800.47074 6.09657588 7.317248455 4.995490077
2016 1029.251288 1273.264415 802.0485335 6.113928135 7.331595153 5.015602337
2017 1029.342488 1274.353335 802.1264334 6.124817645 7.330605333 5.014520307
2018 1030.366188 1275.154675 803.4326121 6.163431149 7.286751188 4.953148863
2019 1031.497187 1276.066795 803.7609031 6.046272099 7.267762028 4.946559974

Abbreviations: Age standardized Incidence rate, ASIR; Disability adjusted life years, DALYs.

There was a decreasing trend observed in 12 of 21 regions. The largest decrease in APC was observed in Eastern Asia (−1.396%), followed by high-income Eastern Europe (−0.317%) and high-income North America (−0.305%), which collectively contributed to 73.130% of the decreasing trend. Conversely, an increasing trend, was observed in another 9 regions. The largest increase in APC was detected in South Asia (0.568%), followed by Andean Latin America (0.381%) and Western Europe (0.261%). These three regions contributed 58.815% of the overall increasing trend. (Figure 1 and Table 2).

Figure 1.

Figure 1

Annual percentage change of age standardized incidence rate of urolithiasis stratified by gender and 21 regions. (A) APC of ASIR stratified by SDI levels of both gender; (B) APC of ASIR stratified by SDI levels of male; (C) APC of ASIR stratified by SDI levels of female.

Table 2.

Percentage change and annual percentage change of age standardized incidence rate of urolithiasis stratified by gender and 21 regions.

Both Male and Female Male Female
PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value
Central Asia −1.065 −0.006 −0.063 0.050 0.818 −1.530 −0.010 −0.080 0.060 0.772 −2.341 −0.076 −0.127 −0.025 0.005
Eastern Asia −24.330 −1.396 −1.653 −1.138 <0.001 −24.363 −1.402 −1.675 −1.130 <0.001 −23.715 −1.335 −1.557 −1.114 <0.001
High-income Asia Pacific −0.485 −0.062 −0.091 −0.033 <0.001 −0.854 −0.066 −0.087 −0.045 <0.001 −2.032 −0.130 −0.171 −0.088 <0.001
South Asia 13.301 0.568 0.481 0.656 <0.001 13.904 0.564 0.490 0.638 <0.001 14.777 0.660 0.550 0.770 <0.001
Southeast Asia −4.006 −0.253 −0.329 −0.177 <0.001 −5.788 −0.336 −0.413 −0.259 <0.001 −0.610 −0.099 −0.173 −0.026 0.010
Central Europe −6.216 −0.196 −0.229 −0.162 <0.001 −7.562 −0.237 −0.263 −0.210 <0.001 −5.417 −0.182 −0.226 −0.137 <0.001
Eastern Europe −7.412 −0.317 −0.434 −0.200 <0.001 −7.647 −0.336 −0.454 −0.217 <0.001 −9.720 −0.393 −0.529 −0.257 <0.001
Western Europe 4.148 0.262 0.219 0.304 <0.001 2.298 0.188 0.148 0.229 <0.001 3.852 0.263 0.212 0.314 <0.001
Andean Latin America 7.773 0.382 0.340 0.424 <0.001 6.184 0.317 0.275 0.358 <0.001 9.655 0.456 0.411 0.501 <0.001
Central Latin America −1.064 −0.029 −0.074 0.017 0.205 −0.919 −0.038 −0.096 0.020 0.193 −0.571 0.011 −0.019 0.041 0.464
Southern Latin America 0.496 −0.032 −0.052 −0.013 0.002 0.874 −0.016 −0.035 0.003 0.098 0.102 −0.051 −0.073 −0.028 <0.001
Tropical Latin America −2.436 −0.084 −0.142 −0.025 0.007 −4.542 −0.285 −0.368 −0.202 <0.001 0.489 0.157 0.094 0.221 <0.001
High-income North America −5.087 −0.305 −0.491 −0.120 0.002 −6.431 −0.572 −0.779 −0.365 <0.001 −5.464 0.001 −0.207 0.209 0.992
Central Sub-Saharan Africa 4.118 0.194 0.154 0.234 <0.001 4.962 0.225 0.179 0.270 <0.001 3.656 0.169 0.140 0.197 <0.001
Eastern Sub-Saharan Africa 2.022 0.094 0.042 0.146 0.001 2.130 0.097 0.039 0.155 0.002 2.891 0.136 0.088 0.184 <0.001
Southern Sub-Saharan Africa 2.884 0.127 0.109 0.144 <0.001 3.415 0.135 0.129 0.141 <0.001 2.876 0.135 0.116 0.154 <0.001
Western Sub-Saharan Africa 1.653 0.078 0.055 0.101 <0.001 2.655 0.111 0.080 0.142 <0.001 2.451 0.124 0.095 0.154 <0.001
North Africa and Middle East 3.135 0.140 0.110 0.169 <0.001 3.475 0.163 0.136 0.191 <0.001 1.180 0.037 0.007 0.067 0.016
Oceania −0.158 −0.013 −0.041 0.015 0.363 1.933 0.070 0.039 0.101 <0.001 −3.025 −0.143 −0.166 −0.120 <0.001
Australasia −3.774 −0.067 −0.136 0.001 0.054 −5.276 −0.127 −0.200 −0.054 0.001 −3.053 −0.035 −0.106 0.036 0.315
Caribbean 5.131 0.216 0.197 0.235 <0.001 6.675 0.268 0.248 0.288 <0.001 4.064 0.176 0.158 0.195 <0.001

Abbreviations: PC: percentage change; APC: annual percentage change. p < 0.001 considered significant.

Between 1990 and 2019, APC of ASIR decreased in 53 of the 195 countries, among which statistical significance was reached in 38 countries (71.70%). The top three were China (−1.492%), Indonesia (−0.900%), and New Zealand (−0.673%). Almost three-fourths of the countries or territories (142/195) displayed an increasing trend during the observational period, the majority with statistical significance (89.29%). Territories of Taiwan (a part of China) showed the most pronounced increase with an average of 1.208% per year, followed by Ecuador (APC = 1.006%) and Belgium (APC = 0.891%) (Figure 2 and Table 3).

Figure 2.

Figure 2

Percentage change and annual percentage change of age standardized incidence rate of urolithiasis stratified by gender and 195 Countries and territories. (A) PC of ASIR stratified 195 Countries and territories of both gender; (B) APC of ASIR stratified 195 Countries and territories of both gender; (C) PC of ASIR stratified 195 Countries and territories of male. (D) APC of ASIR stratified 195 Countries and territories of male; (E) PC of ASIR stratified 195 Countries and territories of female; (F) APC of ASIR stratified 195 Countries and territories of female.

Table 3.

Percentage change and annual percentage change of age standardized incidence rate of urolithiasis stratified by gender and 195 Countries and territories.

Both Male and Female Male Female
Number Countries and Territories PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value
1 Afghanistan 2.105 0.106 0.078 0.134 <0.001 2.540 0.116 0.092 0.140 <0.001 2.374 0.094 0.075 0.114 <0.001
2 Albania 1.031 0.057 0.034 0.080 <0.001 0.925 0.066 0.034 0.098 <0.001 2.053 0.079 0.064 0.093 <0.001
3 Algeria 2.295 0.098 0.087 0.108 <0.001 1.942 0.089 0.077 0.102 <0.001 2.043 0.077 0.068 0.086 <0.001
4 American Samoa −10.603 −0.520 −0.573 −0.466 <0.001 −8.667 −0.430 −0.484 −0.376 <0.001 −11.115 −0.548 −0.590 −0.506 <0.001
5 Andorra 0.186 −0.037 −0.052 −0.022 <0.001 0.859 0.006 −0.012 0.024 0.491 2.008 0.047 0.035 0.060 <0.001
6 Angola 2.561 0.131 0.105 0.158 <0.001 4.465 0.200 0.173 0.227 <0.001 3.386 0.162 0.136 0.188 <0.001
7 Antigua and Barbuda 6.458 0.244 0.232 0.256 <0.001 5.941 0.226 0.213 0.238 <0.001 5.040 0.195 0.189 0.202 <0.001
8 Argentina 2.269 0.087 0.073 0.101 <0.001 2.539 0.097 0.085 0.109 <0.001 2.059 0.077 0.064 0.090 <0.001
9 Armenia −5.537 −0.208 −0.280 −0.136 <0.001 −4.310 −0.145 −0.218 −0.071 <0.001 −7.671 −0.332 −0.393 −0.272 <0.001
10 Australia −0.339 0.028 −0.009 0.064 0.129 −2.071 −0.035 −0.083 0.012 0.140 0.518 0.059 0.032 0.087 <0.001
11 Austria 6.372 0.277 0.012 0.541 0.041 7.061 0.295 −0.080 0.671 0.118 −0.339 −0.002 −0.080 0.076 0.954
12 Azerbaijan 5.502 0.280 0.207 0.352 <0.001 4.577 0.254 0.148 0.360 <0.001 3.702 0.200 0.144 0.257 <0.001
13 Bahrain 3.254 0.175 0.154 0.196 <0.001 2.001 0.090 0.083 0.096 <0.001 1.285 0.038 0.033 0.042 <0.001
14 Bangladesh 8.883 0.327 0.296 0.359 <0.001 11.902 0.436 0.390 0.483 <0.001 6.904 0.267 0.235 0.299 <0.001
15 Barbados 2.702 0.140 0.126 0.154 <0.001 0.566 0.083 0.050 0.116 <0.001 2.920 0.134 0.117 0.151 <0.001
16 Belarus 5.666 0.227 0.128 0.326 <0.001 7.651 0.299 0.199 0.399 <0.001 2.929 0.145 0.031 0.258 0.014
17 Belgium 17.111 0.891 0.628 1.155 <0.001 17.327 0.912 0.626 1.198 <0.001 13.416 0.731 0.515 0.947 <0.001
18 Belize 6.754 0.249 0.243 0.254 <0.001 7.918 0.285 0.275 0.294 <0.001 4.740 0.179 0.158 0.200 <0.001
19 Benin 2.202 0.097 0.070 0.123 <0.001 1.602 0.060 0.042 0.079 <0.001 2.936 0.139 0.110 0.167 <0.001
20 Bermuda 3.960 0.179 0.165 0.193 <0.001 5.262 0.216 0.201 0.231 <0.001 1.910 0.104 0.087 0.121 <0.001
21 Bhutan 8.416 0.309 0.287 0.331 <0.001 8.959 0.342 0.311 0.372 <0.001 6.192 0.235 0.216 0.254 <0.001
22 Bolivia 2.084 0.098 0.084 0.112 <0.001 1.169 0.069 0.053 0.084 <0.001 2.885 0.128 0.114 0.141 <0.001
23 Bosnia and Herzegovina 4.153 0.165 0.154 0.176 <0.001 4.099 0.174 0.161 0.188 <0.001 3.308 0.126 0.119 0.133 <0.001
24 Botswana 3.260 0.133 0.107 0.159 <0.001 3.197 0.126 0.104 0.148 <0.001 2.787 0.120 0.100 0.140 <0.001
25 Brazil −2.582 −0.089 −0.149 −0.029 0.005 −4.772 −0.298 −0.383 −0.212 <0.001 0.438 0.159 0.094 0.224 <0.001
26 Brunei −3.843 −0.153 −0.175 −0.131 <0.001 −4.072 −0.174 −0.183 −0.165 <0.001 1.050 0.047 0.038 0.056 <0.001
27 Bulgaria −15.062 −0.616 −0.754 −0.478 <0.001 −16.907 −0.715 −0.859 −0.570 <0.001 −12.332 −0.488 −0.610 −0.366 <0.001
28 Burkina Faso 1.022 0.050 0.038 0.062 <0.001 0.922 0.041 0.026 0.055 <0.001 1.711 0.089 0.070 0.109 <0.001
29 Burundi 3.680 0.139 0.085 0.192 <0.001 0.447 0.005 −0.058 0.068 0.873 2.964 0.125 0.078 0.171 <0.001
30 Cambodia 5.173 0.211 0.165 0.256 <0.001 4.426 0.189 0.135 0.243 <0.001 4.206 0.161 0.132 0.190 <0.001
31 Cameroon 1.129 0.060 0.037 0.083 <0.001 1.012 0.045 0.027 0.063 <0.001 1.037 0.066 0.036 0.097 <0.001
32 Canada 2.296 0.105 0.097 0.114 <0.001 1.780 0.091 0.082 0.099 <0.001 1.498 0.068 0.057 0.079 <0.001
33 Cape Verde 4.380 0.183 0.152 0.214 <0.001 3.366 0.149 0.118 0.180 <0.001 2.315 0.106 0.083 0.129 <0.001
34 Central African Republic 4.741 0.199 0.167 0.231 <0.001 5.124 0.204 0.171 0.236 <0.001 3.754 0.166 0.136 0.195 <0.001
35 Chad 4.400 0.183 0.156 0.210 <0.001 2.836 0.111 0.085 0.138 <0.001 3.213 0.151 0.119 0.183 <0.001
36 Chile −4.029 −0.326 −0.383 −0.269 <0.001 −3.394 −0.291 −0.347 −0.236 <0.001 −4.931 −0.373 −0.436 −0.310 <0.001
37 China −26.411 −1.492 −1.764 −1.220 <0.001 −26.565 −1.500 −1.787 −1.213 <0.001 −25.503 −1.424 −1.656 −1.191 <0.001
38 Colombia 3.242 0.123 0.100 0.146 <0.001 3.749 0.144 0.122 0.166 <0.001 3.511 0.129 0.109 0.150 <0.001
39 Comoros 1.315 0.057 0.011 0.103 0.018 1.757 0.071 0.022 0.121 0.006 2.113 0.084 0.046 0.121 <0.001
40 Congo 4.186 0.179 0.154 0.204 <0.001 3.259 0.134 0.108 0.160 <0.001 3.137 0.144 0.124 0.165 <0.001
41 Costa Rica 1.848 0.073 0.054 0.093 <0.001 2.726 0.106 0.086 0.127 <0.001 2.157 0.085 0.061 0.109 <0.001
42 Cote d’Ivoire 1.304 0.053 0.027 0.078 <0.001 1.317 0.034 0.011 0.057 0.005 1.942 0.092 0.069 0.115 <0.001
43 Croatia −11.731 −0.605 −0.711 −0.499 <0.001 −15.729 −0.749 −0.947 −0.551 <0.001 −8.157 −0.480 −0.541 −0.419 <0.001
44 Cuba 5.371 0.221 0.192 0.251 <0.001 7.643 0.291 0.263 0.319 <0.001 3.718 0.169 0.141 0.198 <0.001
45 Cyprus −1.128 −0.162 −0.246 −0.077 0.001 1.872 0.027 0.004 0.050 0.021 −7.131 −0.546 −0.765 −0.327 <0.001
46 Czech Republic −9.462 −0.288 −0.381 −0.196 <0.001 −10.369 −0.258 −0.383 −0.132 <0.001 −11.376 −0.457 −0.528 −0.385 <0.001
47 Democratic Republic of the Congo 4.480 0.210 0.162 0.257 <0.001 5.193 0.238 0.183 0.294 <0.001 3.770 0.172 0.141 0.203 <0.001
48 Denmark 1.823 −0.039 −0.118 0.041 0.325 0.480 −0.123 −0.238 −0.008 0.037 1.210 −0.001 −0.022 0.020 0.901
49 Djibouti 0.180 −0.011 −0.029 0.008 0.257 −0.960 −0.050 −0.073 −0.028 <0.001 0.373 0.013 −0.012 0.039 0.287
50 Dominica 7.734 0.301 0.288 0.315 <0.001 6.972 0.273 0.249 0.296 <0.001 4.330 0.173 0.157 0.190 <0.001
51 Dominican Republic 5.455 0.229 0.208 0.249 <0.001 6.870 0.277 0.250 0.305 <0.001 4.285 0.170 0.157 0.183 <0.001
52 Ecuador 20.409 1.006 0.889 1.124 <0.001 15.411 0.829 0.721 0.936 <0.001 26.535 1.209 1.076 1.342 <0.001
53 Egypt 2.670 0.103 0.090 0.117 <0.001 2.474 0.100 0.088 0.113 <0.001 1.959 0.072 0.060 0.083 <0.001
54 El Salvador 3.046 0.116 0.094 0.138 <0.001 5.040 0.182 0.161 0.204 <0.001 2.796 0.116 0.095 0.138 <0.001
55 Equatorial Guinea 7.297 0.321 0.284 0.359 <0.001 8.401 0.346 0.288 0.404 <0.001 5.772 0.262 0.233 0.291 <0.001
56 Eritrea 2.160 0.039 0.012 0.066 0.006 1.512 −0.033 −0.071 0.006 0.097 3.915 0.144 0.118 0.169 <0.001
57 Estonia −3.388 −0.165 −0.265 −0.064 0.002 −6.013 −0.303 −0.384 −0.222 <0.001 −4.609 −0.174 −0.295 −0.053 0.006
58 Ethiopia −0.327 0.031 −0.062 0.123 0.501 −2.463 −0.039 −0.156 0.079 0.506 2.128 0.133 0.055 0.210 0.002
59 Federated States of Micronesia −3.597 −0.158 −0.169 −0.146 <0.001 1.147 0.034 0.006 0.062 0.019 −9.703 −0.418 −0.453 −0.384 <0.001
60 Fiji 1.621 0.073 0.054 0.092 <0.001 2.101 0.085 0.067 0.103 <0.001 1.702 0.070 0.051 0.089 <0.001
61 Finland −6.480 −0.242 −0.593 0.110 0.169 −8.061 −0.334 −0.655 −0.011 0.043 −8.630 −0.292 −0.683 0.101 0.139
62 France 2.136 0.058 0.037 0.079 <0.001 0.697 0.011 −0.018 0.040 0.448 2.543 0.072 0.061 0.082 <0.001
63 Gabon 2.436 0.098 0.093 0.103 <0.001 1.942 0.068 0.060 0.075 <0.001 2.201 0.099 0.088 0.109 <0.001
64 Georgia −5.470 −0.295 −0.355 −0.234 <0.001 −7.376 −0.386 −0.457 −0.315 <0.001 −5.282 −0.275 −0.323 −0.228 <0.001
65 Germany 17.760 0.833 0.722 0.944 <0.001 16.550 0.805 0.681 0.929 <0.001 13.405 0.667 0.568 0.766 <0.001
66 Ghana 1.944 0.072 0.058 0.085 <0.001 2.850 0.094 0.082 0.107 <0.001 3.080 0.142 0.116 0.169 <0.001
67 Greece 1.826 0.033 0.018 0.047 <0.001 1.508 0.017 −0.003 0.037 0.100 1.587 0.031 0.021 0.040 <0.001
68 Greenland 2.691 0.104 0.093 0.114 <0.001 −0.371 −0.026 −0.049 −0.003 0.031 1.222 0.049 0.038 0.060 <0.001
69 Grenada 5.659 0.249 0.194 0.304 <0.001 0.707 0.063 −0.059 0.186 0.299 4.733 0.187 0.168 0.206 <0.001
70 Guam −5.518 −0.258 −0.306 −0.209 <0.001 −2.170 −0.110 −0.137 −0.082 <0.001 −9.831 −0.462 −0.513 −0.410 <0.001
71 Guatemala 3.224 0.137 0.106 0.168 <0.001 4.964 0.200 0.172 0.228 <0.001 3.287 0.140 0.113 0.166 <0.001
72 Guinea 3.424 0.147 0.111 0.183 <0.001 3.898 0.154 0.116 0.191 <0.001 2.672 0.120 0.088 0.152 <0.001
73 Guinea-Bissau −0.253 −0.019 −0.048 0.010 0.196 −0.373 −0.033 −0.054 −0.013 0.003 1.255 0.044 0.010 0.077 0.012
74 Guyana 6.636 0.248 0.230 0.266 <0.001 8.053 0.307 0.281 0.334 <0.001 5.779 0.206 0.203 0.208 <0.001
75 Haiti 5.985 0.243 0.218 0.267 <0.001 7.402 0.296 0.262 0.329 <0.001 5.623 0.236 0.208 0.263 <0.001
76 Honduras 4.862 0.156 0.145 0.167 <0.001 5.446 0.168 0.155 0.182 <0.001 4.933 0.176 0.171 0.180 <0.001
77 Hungary −16.069 −0.543 −0.615 −0.471 <0.001 −17.486 −0.590 −0.665 −0.514 <0.001 −15.098 −0.512 −0.580 −0.445 <0.001
78 Iceland −5.340 −0.314 −0.385 −0.243 <0.001 −8.058 −0.461 −0.559 −0.363 <0.001 −1.580 −0.098 −0.128 −0.068 <0.001
79 India 14.709 0.638 0.534 0.742 <0.001 14.550 0.603 0.519 0.687 <0.001 17.276 0.775 0.641 0.908 <0.001
80 Indonesia −16.520 −0.900 −1.050 −0.749 <0.001 −19.533 −1.044 −1.197 −0.891 <0.001 −10.651 −0.628 −0.772 −0.485 <0.001
81 Iran 3.079 0.019 −0.116 0.155 0.772 3.550 0.045 −0.101 0.191 0.534 3.182 0.030 −0.092 0.151 0.617
82 Iraq −0.311 −0.002 −0.013 0.009 0.703 −0.717 −0.017 −0.031 −0.002 0.024 −0.374 −0.003 −0.015 0.009 0.587
83 Ireland 2.518 0.068 0.053 0.083 <0.001 1.935 0.041 0.019 0.063 0.001 2.448 0.055 0.042 0.069 <0.001
84 Israel 3.152 0.088 0.076 0.100 <0.001 2.727 0.067 0.053 0.081 <0.001 2.628 0.061 0.049 0.073 <0.001
85 Italy −13.545 −0.665 −0.861 −0.469 <0.001 −17.931 −0.893 −1.026 −0.760 <0.001 −8.570 −0.400 −0.714 −0.086 0.015
86 Jamaica 6.283 0.244 0.236 0.252 <0.001 7.186 0.265 0.258 0.272 <0.001 4.290 0.177 0.161 0.193 <0.001
87 Japan −1.348 −0.108 −0.141 −0.074 <0.001 −1.209 −0.088 −0.112 −0.064 <0.001 −3.429 −0.209 −0.262 −0.156 <0.001
88 Jordan 2.986 0.127 0.100 0.154 <0.001 2.265 0.100 0.089 0.111 <0.001 1.462 0.060 0.045 0.075 <0.001
89 Kazakhstan −8.764 −0.328 −0.360 −0.297 <0.001 −8.258 −0.256 −0.298 −0.213 <0.001 −11.232 −0.480 −0.521 −0.439 <0.001
90 Kenya 3.821 0.143 0.110 0.176 <0.001 5.110 0.182 0.155 0.210 <0.001 3.298 0.126 0.090 0.162 <0.001
91 Kiribati −0.710 −0.024 −0.053 0.004 0.084 −0.320 −0.001 −0.040 0.038 0.966 0.481 0.008 −0.001 0.016 0.083
92 Kuwait −1.278 −0.064 −0.096 −0.032 <0.001 1.975 0.080 0.072 0.088 <0.001 1.540 0.069 0.064 0.073 <0.001
93 Kyrgyzstan −3.843 −0.104 −0.159 −0.049 0.001 −7.849 −0.280 −0.338 −0.222 <0.001 0.452 0.096 0.021 0.172 0.015
94 Laos 6.147 0.237 0.192 0.282 <0.001 6.120 0.242 0.181 0.303 <0.001 4.152 0.154 0.129 0.180 <0.001
95 Latvia −8.826 −0.395 −0.497 −0.294 <0.001 −9.813 −0.484 −0.576 −0.392 <0.001 −10.211 −0.427 −0.550 −0.304 <0.001
96 Lebanon 2.910 0.116 0.104 0.128 <0.001 2.385 0.098 0.087 0.109 <0.001 1.853 0.077 0.065 0.088 <0.001
97 Lesotho 3.328 0.129 0.102 0.156 <0.001 4.882 0.186 0.159 0.212 <0.001 3.377 0.136 0.106 0.166 <0.001
98 Liberia 2.544 0.153 0.105 0.200 <0.001 3.396 0.186 0.136 0.237 <0.001 3.004 0.162 0.123 0.200 <0.001
99 Libya −0.126 0.032 0.011 0.053 0.004 1.969 0.083 0.074 0.092 <0.001 1.688 0.071 0.062 0.081 <0.001
100 Lithuania −10.033 −0.408 −0.512 −0.304 <0.001 −11.906 −0.480 −0.556 −0.404 <0.001 −7.838 −0.304 −0.427 −0.182 <0.001
101 Luxembourg 10.205 0.182 −0.066 0.430 0.144 6.913 0.025 −0.218 0.268 0.835 10.308 0.276 0.010 0.542 0.043
102 Macedonia 1.776 0.073 0.057 0.089 <0.001 2.013 0.084 0.071 0.098 <0.001 1.728 0.065 0.053 0.077 <0.001
103 Madagascar 2.832 0.118 0.072 0.165 <0.001 4.177 0.161 0.111 0.211 <0.001 2.615 0.121 0.083 0.160 <0.001
104 Malawi 3.150 0.111 0.079 0.144 <0.001 4.413 0.159 0.121 0.197 <0.001 3.530 0.149 0.108 0.190 <0.001
105 Malaysia 5.510 0.189 0.168 0.211 <0.001 4.894 0.170 0.140 0.201 <0.001 4.000 0.126 0.113 0.138 <0.001
106 Maldives 5.354 0.219 0.144 0.295 <0.001 5.877 0.235 0.195 0.276 <0.001 2.305 0.096 0.072 0.121 <0.001
107 Mali 3.341 0.144 0.111 0.177 <0.001 3.259 0.136 0.098 0.173 <0.001 2.476 0.121 0.088 0.154 <0.001
108 Malta 11.694 0.634 0.494 0.774 <0.001 8.636 0.548 0.389 0.708 <0.001 11.539 0.562 0.462 0.661 <0.001
109 Marshall Islands −3.624 −0.187 −0.209 −0.164 <0.001 −1.073 −0.051 −0.083 −0.020 0.002 −7.890 −0.408 −0.498 −0.318 <0.001
110 Mauritania −0.273 −0.008 −0.037 0.021 0.592 0.142 0.006 −0.032 0.044 0.748 −1.533 −0.049 −0.074 −0.025 <0.001
111 Mauritius 3.926 0.128 0.112 0.144 <0.001 3.850 0.122 0.108 0.136 <0.001 3.107 0.100 0.083 0.117 <0.001
112 Mexico −4.399 −0.156 −0.222 −0.090 <0.001 −4.791 −0.200 −0.293 −0.108 <0.001 −3.403 −0.076 −0.115 −0.037 <0.001
113 Moldova 5.635 0.286 0.161 0.411 <0.001 5.921 0.297 0.158 0.437 <0.001 4.767 0.257 0.140 0.374 <0.001
114 Mongolia −0.587 0.019 −0.062 0.100 0.637 5.854 0.312 0.220 0.404 <0.001 −6.690 −0.297 −0.375 −0.219 <0.001
115 Montenegro 2.168 0.088 0.074 0.101 <0.001 2.149 0.088 0.072 0.105 <0.001 1.444 0.063 0.052 0.075 <0.001
116 Morocco 2.288 0.089 0.066 0.112 <0.001 2.144 0.090 0.075 0.104 <0.001 1.932 0.069 0.056 0.082 <0.001
117 Mozambique 4.829 0.216 0.190 0.242 <0.001 6.813 0.284 0.264 0.304 <0.001 4.307 0.193 0.159 0.228 <0.001
118 Myanmar 4.117 0.176 0.137 0.215 <0.001 6.740 0.283 0.233 0.332 <0.001 4.326 0.170 0.140 0.199 <0.001
119 Namibia 1.929 0.094 0.071 0.116 <0.001 2.887 0.117 0.096 0.139 <0.001 2.259 0.117 0.091 0.143 <0.001
120 Nepal 8.460 0.321 0.287 0.354 <0.001 11.222 0.415 0.365 0.465 <0.001 7.660 0.285 0.257 0.313 <0.001
121 Netherlands −2.467 −0.098 −0.123 −0.074 <0.001 −4.608 −0.179 −0.205 −0.152 <0.001 −2.554 −0.106 −0.127 −0.085 <0.001
122 New Zealand −21.001 −0.673 −0.915 −0.430 <0.001 −21.187 −0.693 −0.903 −0.482 <0.001 −21.354 −0.674 −0.984 −0.364 <0.001
123 Nicaragua 4.133 0.161 0.135 0.186 <0.001 4.729 0.184 0.156 0.211 <0.001 3.051 0.126 0.103 0.148 <0.001
124 Niger 1.941 0.097 0.055 0.139 <0.001 2.650 0.117 0.071 0.163 <0.001 2.833 0.146 0.107 0.186 <0.001
125 Nigeria 1.185 0.064 0.045 0.083 <0.001 3.089 0.134 0.097 0.170 <0.001 2.587 0.136 0.107 0.166 <0.001
126 North Korea 6.919 0.294 0.243 0.346 <0.001 5.019 0.249 0.184 0.314 <0.001 3.930 0.161 0.136 0.185 <0.001
127 Northern Mariana Islands −8.478 −0.340 −0.372 −0.309 <0.001 −0.985 −0.047 −0.071 −0.022 0.001 −15.525 −0.683 −0.706 −0.660 <0.001
128 Norway 9.477 0.515 0.412 0.619 <0.001 13.009 0.731 0.562 0.899 <0.001 −3.009 −0.138 −0.162 −0.115 <0.001
129 Oman 4.436 0.193 0.123 0.264 <0.001 2.002 0.084 0.075 0.093 <0.001 1.755 0.074 0.068 0.080 <0.001
130 Pakistan 8.496 0.316 0.289 0.344 <0.001 10.865 0.389 0.355 0.422 <0.001 6.605 0.260 0.235 0.284 <0.001
131 Palestine 4.429 0.156 0.147 0.166 <0.001 2.835 0.114 0.104 0.125 <0.001 2.512 0.099 0.081 0.117 <0.001
132 Panama 2.655 0.102 0.078 0.126 <0.001 2.990 0.112 0.087 0.137 <0.001 2.965 0.118 0.096 0.140 <0.001
133 Papua New Guinea 0.270 0.005 −0.026 0.037 0.727 2.446 0.089 0.055 0.123 <0.001 −3.156 −0.147 −0.175 −0.119 <0.001
134 Paraguay 3.015 0.118 0.110 0.126 <0.001 2.968 0.120 0.108 0.133 <0.001 3.077 0.122 0.114 0.130 <0.001
135 Peru 3.332 0.141 0.120 0.161 <0.001 3.272 0.135 0.110 0.161 <0.001 3.377 0.143 0.127 0.160 <0.001
136 Philippines 3.481 −0.019 −0.367 0.330 0.911 2.955 −0.060 −0.442 0.323 0.750 6.341 0.144 −0.140 0.428 0.308
137 Poland −6.833 −0.193 −0.223 −0.163 <0.001 −9.146 −0.273 −0.338 −0.208 <0.001 −4.978 −0.139 −0.198 −0.080 <0.001
138 Portugal −1.138 −0.114 −0.156 −0.073 <0.001 −5.605 −0.342 −0.426 −0.258 <0.001 5.214 0.211 0.176 0.247 <0.001
139 Puerto Rico 4.651 0.186 0.167 0.206 <0.001 5.721 0.231 0.210 0.251 <0.001 4.282 0.164 0.152 0.175 <0.001
140 Qatar 4.731 0.248 0.214 0.282 <0.001 1.720 0.081 0.076 0.087 <0.001 1.492 0.049 0.046 0.051 <0.001
141 Romania 1.995 0.088 0.075 0.102 <0.001 1.982 0.089 0.078 0.100 <0.001 1.776 0.074 0.062 0.085 <0.001
142 Russian Federation −8.925 −0.360 −0.462 −0.257 <0.001 −10.881 −0.449 −0.555 −0.343 <0.001 −10.095 −0.383 −0.504 −0.262 <0.001
143 Rwanda 2.390 0.121 0.064 0.179 <0.001 3.382 0.149 0.094 0.205 <0.001 3.113 0.152 0.109 0.196 <0.001
144 Saint Lucia 6.169 0.229 0.221 0.238 <0.001 6.504 0.260 0.234 0.285 <0.001 3.317 0.110 0.066 0.155 <0.001
145 Saint Vincent and the Grenadines 6.514 0.241 0.227 0.255 <0.001 3.842 0.137 0.119 0.154 <0.001 4.552 0.183 0.169 0.197 <0.001
146 Samoa −0.597 −0.049 −0.066 −0.031 <0.001 1.906 0.068 0.046 0.090 <0.001 −4.237 −0.229 −0.251 −0.206 <0.001
147 Sao Tome and Principe 3.755 0.167 0.133 0.201 <0.001 3.768 0.165 0.132 0.199 <0.001 2.984 0.138 0.110 0.166 <0.001
148 Saudi Arabia 1.690 0.079 0.059 0.100 <0.001 1.999 0.088 0.080 0.096 <0.001 1.981 0.073 0.063 0.084 <0.001
149 Senegal 1.543 0.067 0.032 0.102 0.001 1.471 0.050 0.011 0.089 0.014 2.566 0.119 0.088 0.150 <0.001
150 Serbia −0.273 −0.020 −0.043 0.002 0.077 −4.874 −0.264 −0.328 −0.201 <0.001 5.046 0.251 0.215 0.288 <0.001
151 Seychelles 5.307 0.186 0.159 0.214 <0.001 3.868 0.117 0.096 0.137 <0.001 3.272 0.112 0.099 0.124 <0.001
152 Sierra Leone 2.899 0.125 0.079 0.171 <0.001 2.973 0.115 0.073 0.158 <0.001 2.857 0.134 0.098 0.170 <0.001
153 Singapore −1.730 −0.049 −0.080 −0.018 0.003 −1.903 −0.048 −0.083 −0.013 0.010 −0.040 0.002 −0.023 0.027 0.894
154 Slovakia −3.070 −0.224 −0.272 −0.176 <0.001 1.384 −0.057 −0.140 0.027 0.178 −9.854 −0.512 −0.564 −0.459 <0.001
155 Slovenia −7.616 −0.382 −0.470 −0.294 <0.001 −8.886 −0.439 −0.536 −0.342 <0.001 −8.851 −0.432 −0.509 −0.356 <0.001
156 Solomon Islands −1.853 −0.082 −0.115 −0.048 <0.001 2.609 0.108 0.068 0.147 <0.001 −5.460 −0.260 −0.289 −0.230 <0.001
157 Somalia 2.097 0.085 0.036 0.135 0.002 1.969 0.062 0.016 0.108 0.010 3.425 0.157 0.106 0.207 <0.001
158 South Africa 3.120 0.142 0.123 0.162 <0.001 3.408 0.143 0.132 0.153 <0.001 2.860 0.138 0.120 0.157 <0.001
159 South Korea 3.072 0.095 0.075 0.115 <0.001 1.573 0.026 0.012 0.040 0.001 2.073 0.082 0.067 0.097 <0.001
160 South Sudan −2.323 −0.095 −0.106 −0.083 <0.001 −1.567 −0.061 −0.071 −0.051 <0.001 −0.358 −0.003 −0.028 0.022 0.807
161 Spain 3.496 0.106 0.093 0.119 <0.001 2.607 0.071 0.048 0.094 <0.001 2.779 0.071 0.059 0.084 <0.001
162 Sri Lanka 0.963 0.030 −0.007 0.067 0.104 3.962 0.145 0.113 0.178 <0.001 2.776 0.091 0.071 0.111 <0.001
163 Sudan 2.728 0.110 0.101 0.118 <0.001 2.480 0.106 0.091 0.121 <0.001 2.177 0.091 0.074 0.108 <0.001
164 Suriname 1.372 0.110 0.041 0.179 0.003 0.124 0.104 −0.016 0.224 0.086 4.912 0.197 0.183 0.212 <0.001
165 Swaziland 2.746 0.107 0.097 0.118 <0.001 3.137 0.114 0.108 0.121 <0.001 3.013 0.123 0.104 0.143 <0.001
166 Sweden −2.233 −0.071 −0.237 0.094 0.384 −5.924 −0.176 −0.383 0.031 0.093 1.160 −0.002 −0.101 0.097 0.967
167 Switzerland 7.571 0.149 0.021 0.276 0.024 8.179 0.163 0.014 0.312 0.034 2.701 −0.015 −0.108 0.079 0.749
168 Syria 2.343 0.108 0.097 0.119 <0.001 2.499 0.112 0.100 0.124 <0.001 2.447 0.098 0.086 0.110 <0.001
169 Taiwan 50.579 1.208 0.738 1.681 <0.001 63.051 1.482 0.937 2.029 <0.001 36.035 0.908 0.585 1.232 <0.001
170 Tajikistan 3.941 0.222 0.130 0.314 <0.001 2.512 0.177 0.057 0.296 0.005 3.401 0.188 0.120 0.257 <0.001
171 Tanzania 3.344 0.143 0.102 0.184 <0.001 3.792 0.150 0.105 0.194 <0.001 3.318 0.151 0.113 0.188 <0.001
172 Thailand −7.106 −0.369 −0.417 −0.320 <0.001 −11.754 −0.606 −0.695 −0.517 <0.001 2.379 0.053 0.015 0.091 0.009
173 The Bahamas 4.776 0.203 0.183 0.224 <0.001 5.729 0.225 0.209 0.241 <0.001 2.392 0.126 0.105 0.146 <0.001
174 The Gambia 0.712 0.036 −0.001 0.073 0.056 1.403 0.057 0.024 0.091 0.001 2.278 0.110 0.078 0.142 <0.001
175 Timor-Leste 5.936 0.226 0.181 0.271 <0.001 7.670 0.281 0.228 0.335 <0.001 4.081 0.161 0.133 0.189 <0.001
176 Togo 1.686 0.072 0.039 0.105 <0.001 2.294 0.086 0.057 0.116 <0.001 2.818 0.133 0.099 0.167 <0.001
177 Tonga 1.981 0.065 0.048 0.083 <0.001 1.507 0.046 0.024 0.068 <0.001 1.879 0.068 0.047 0.089 <0.001
178 Trinidad and Tobago 1.874 0.169 0.098 0.239 <0.001 0.735 0.129 0.060 0.199 0.001 2.794 0.203 0.137 0.270 <0.001
179 Tunisia 1.239 0.053 0.038 0.067 <0.001 2.256 0.091 0.078 0.104 <0.001 1.538 0.069 0.057 0.081 <0.001
180 Turkey 7.071 0.407 0.331 0.482 <0.001 11.530 0.613 0.498 0.728 <0.001 −0.535 0.015 −0.009 0.039 0.205
181 Turkmenistan 6.083 0.302 0.212 0.391 <0.001 5.477 0.292 0.182 0.403 <0.001 3.725 0.193 0.132 0.255 <0.001
182 Uganda 3.251 0.142 0.101 0.183 <0.001 5.502 0.225 0.182 0.267 <0.001 3.935 0.166 0.128 0.203 <0.001
183 Ukraine −6.342 −0.353 −0.523 −0.182 <0.001 −2.580 −0.212 −0.382 −0.042 0.016 −12.187 −0.597 −0.790 −0.404 <0.001
184 United Arab Emirates 3.938 0.168 0.147 0.190 <0.001 2.124 0.094 0.087 0.101 <0.001 1.717 0.061 0.055 0.067 <0.001
185 United Kingdom 4.643 0.747 0.508 0.987 <0.001 1.631 0.551 0.356 0.747 <0.001 6.956 0.974 0.657 1.293 <0.001
186 United States −5.819 −0.352 −0.559 −0.145 0.002 −7.233 −0.646 −0.877 −0.415 <0.001 −6.156 −0.007 −0.238 0.224 0.949
187 Uruguay 2.431 0.088 0.080 0.096 <0.001 3.258 0.120 0.116 0.124 <0.001 1.927 0.068 0.058 0.078 <0.001
188 Uzbekistan 4.127 0.228 0.157 0.300 <0.001 4.048 0.237 0.142 0.332 <0.001 2.801 0.163 0.108 0.219 <0.001
189 Vanuatu 0.745 0.034 −0.001 0.069 0.058 2.526 0.104 0.076 0.131 <0.001 0.375 0.021 −0.012 0.054 0.207
190 Venezuela 1.662 0.067 0.041 0.093 <0.001 2.580 0.089 0.064 0.114 <0.001 0.355 0.024 −0.002 0.051 0.073
191 Vietnam 7.532 0.299 0.259 0.338 <0.001 7.540 0.309 0.257 0.361 <0.001 4.169 0.158 0.134 0.183 <0.001
192 Virgin Islands, U.S. 1.292 0.065 −0.021 0.151 0.134 6.349 0.246 0.118 0.375 0.001 −3.586 −0.132 −0.172 −0.092 <0.001
193 Yemen 2.381 0.089 0.080 0.098 <0.001 2.507 0.102 0.089 0.115 <0.001 2.189 0.088 0.073 0.103 <0.001
194 Zambia −0.354 −0.019 −0.050 0.012 0.214 0.639 0.023 0.007 0.038 0.007 0.674 0.035 −0.013 0.083 0.146
195 Zimbabwe 1.296 0.032 0.021 0.043 <0.001 2.546 0.062 0.045 0.079 <0.001 2.560 0.101 0.075 0.127 <0.001

Abbreviations: PC: percentage change; APC: annual percentage change. p < 0.001 considered significant.

When stratified by SDI quintiles, ASIR of urolithiasis increased in countries/regions at low and low-middle SDI quintiles but decreased in those at middle, high-middle and high SDI quintiles. There was an approximate positive linear association that existed between the decrease in APC and SDI except at high SDI levels. Both male and female demonstrated the same results. High-middle SDI (APC, −1.165%) and low SDI quintiles (APC, 0.335%) contributed most significantly to the decreasing and increasing trends, respectively (Table 4).

Table 4.

Percentage change and annual percentage change of age standardized incidence rate of urolithiasis stratified by gender and SDI level.

Both Male and Female Male Female
PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value
Global −9.995 −0.459 −0.506 −0.411 <0.001 −11.433 −0.557 −0.615 −0.499 <0.001 −8.227 −0.312 −0.367 −0.258 <0.001
Low SDI 7.620 0.335 0.268 0.403 <0.001 9.028 0.375 0.307 0.443 <0.001 7.492 0.352 0.280 0.423 <0.001
Low-middle SDI 2.899 0.121 0.094 0.147 <0.001 3.145 0.107 0.089 0.126 <0.001 4.540 0.221 0.174 0.268 <0.001
Middle SDI −11.840 −0.625 −0.731 −0.520 <0.001 −14.600 −0.783 −0.920 −0.646 <0.001 −5.982 −0.309 −0.363 −0.254 <0.001
High-middle SDI −23.757 −1.165 −1.255 −1.074 <0.001 −24.098 −1.204 −1.311 −1.096 <0.001 −25.151 −1.195 −1.271 −1.120 <0.001
High SDI −1.774 −0.103 −0.174 −0.033 0.006 −3.155 −0.218 −0.293 −0.143 <0.001 −2.358 −0.009 −0.096 0.079 0.840

Abbreviations: PC: percentage change; APC: annual percentage change; SDI: sociodemographic index. p < 0.001 considered significant.

3.2. Disability Adjusted Life Years (DALYs) of Urolithiasis

Globally, age-standardized DALYs of urolithiasis decreased by 35.862% from 9.427 per 100,000 individuals in 1990 to 6.046 per 100,000 individuals in 2019, with −1.898% per year (95%CI: −2.117–1.679%). Both male and female showed a decrease in age-standardized DALYs of urolithiasis, which were −1.812% and −2.078% per year, respectively (Table 1).

There was a decreasing trend observed in 12 of 21 regions. The largest decrease in APC was observed in Eastern Asia (−4.678%), followed by Central Europe (−2.776%) and Eastern Europe (−1.768%), which collectively contributed to 53.12% of the decreasing trend. Conversely, an increasing trend, was observed in another 9 regions. The largest increase in APC was detected in Tropical Latin America (3.248%), followed by the Caribbean (1.133%) and high-income Asia Pacific (0.670%). These three regions contributed 61.525% of the overall increasing trend (Figure 3 and Table 5).

Figure 3.

Figure 3

Annual percentage change of disability adjusted life years of urolithiasis stratified by gender and 21 regions. (A) APC of DALYs stratified by SDI levels of both gender; (B) APC of DALYs stratified by SDI levels of male. (C) APC of DALYs stratified by SDI levels of female.

Table 5.

Percentage change and annual percentage change of disability adjusted life years of urolithiasis stratified by gender and 21 regions.

Both Male and Female Male Female
PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value
Central Asia −18.427 −1.325 −1.663 −0.986 <0.001 −15.861 −1.145 −1.439 −0.849 <0.001 −23.294 −1.646 −2.061 −1.230 <0.001
Eastern Asia −65.808 −4.678 −4.953 −4.403 <0.001 −62.349 −4.110 −4.352 −3.867 <0.001 −71.220 −5.633 −6.046 −5.218 <0.001
High-income Asia Pacific 13.003 0.670 0.577 0.762 <0.001 4.323 0.270 0.200 0.341 <0.001 22.671 1.092 0.964 1.221 <0.001
South Asia −11.841 −0.459 −0.562 −0.355 <0.001 −10.493 −0.343 −0.425 −0.261 <0.001 −10.347 −0.477 −0.659 −0.295 <0.001
Southeast Asia 3.713 −0.284 −0.517 −0.050 0.019 −5.895 −0.742 −0.989 −0.494 <0.001 30.817 0.765 0.470 1.060 <0.001
Central Europe −53.614 −2.776 −3.305 −2.245 <0.001 −52.706 −2.678 −3.177 −2.176 <0.001 −55.245 −2.947 −3.509 −2.382 <0.001
Eastern Europe −28.217 −1.768 −2.177 −1.357 <0.001 −29.962 −1.845 −2.239 −1.451 <0.001 −30.651 −1.918 −2.369 −1.465 <0.001
Western Europe −10.909 −0.137 −0.318 0.044 0.132 −11.504 −0.168 −0.346 0.010 0.063 −12.669 −0.199 −0.398 <0.001 0.050
Andean Latin America −10.561 −0.323 −0.406 −0.240 <0.001 −12.678 −0.359 −0.442 −0.276 <0.001 −7.983 −0.280 −0.383 −0.176 <0.001
Central Latin America 3.083 0.172 −0.127 0.471 0.249 −4.440 −0.057 −0.328 0.214 0.668 12.273 0.420 0.082 0.760 0.017
Southern Latin America −2.953 −0.181 −0.229 −0.134 <0.001 −2.691 −0.129 −0.206 −0.052 0.002 −3.069 −0.226 −0.296 −0.156 <0.001
Tropical Latin America 115.258 3.248 3.142 3.354 <0.001 89.802 2.770 2.649 2.892 <0.001 141.624 3.668 3.549 3.788 <0.001
High-income North America −2.392 0.022 −0.168 0.212 0.815 −7.531 −0.391 −0.584 −0.197 <0.001 1.858 0.454 0.223 0.687 <0.001
Central Sub-Saharan Africa −3.961 −0.254 −0.318 −0.190 <0.001 −1.286 −0.165 −0.228 −0.101 <0.001 −4.459 −0.275 −0.336 −0.214 <0.001
Eastern Sub-Saharan Africa −21.744 −1.194 −1.319 −1.069 <0.001 −19.306 −1.049 −1.160 −0.938 <0.001 −23.094 −1.288 −1.440 −1.137 <0.001
Southern Sub-Saharan Africa −2.270 −0.264 −0.789 0.263 0.312 5.779 −0.005 −0.523 0.516 0.984 −11.691 −0.614 −1.195 −0.029 0.040
Western Sub-Saharan Africa −17.285 −0.993 −1.146 −0.839 <0.001 −15.489 −0.978 −1.166 −0.790 <0.001 −19.677 −1.002 −1.119 −0.885 <0.001
North Africa and Middle East 0.932 0.035 −0.036 0.106 0.322 3.794 0.206 0.143 0.268 <0.001 −4.249 −0.274 −0.381 −0.167 <0.001
Oceania −29.103 −1.420 −1.555 −1.284 <0.001 −22.757 −1.021 −1.195 −0.848 <0.001 −33.942 −1.724 −1.837 −1.611 <0.001
Australasia −34.669 −1.304 −1.686 −0.920 <0.001 −37.597 −1.509 −1.890 −1.127 <0.001 −33.330 −1.185 −1.584 −0.784 <0.001
Caribbean 25.854 1.133 0.986 1.280 <0.001 38.205 1.401 1.284 1.518 <0.001 14.286 0.832 0.572 1.093 <0.001

Abbreviations: PC: percentage change; APC: annual percentage change. p < 0.001 considered significant.

Between 1990 and 2019, APC of DALYs decreased in 122 of the 195 countries, among which statistical significance was reached in 101 countries (82.79%). The top three were Bulgaria (−6.073%), American Samoa (−4.974%), and China (−4.811%). Almost one-third of the countries or territories (73/195) displayed an increasing trend during the observational period, the majority with statistical significance (72.60%). Brazil showed the most pronounced increase with an average of 3.279% per year, followed by Trinidad and Tobago (APC = 3.217%) and Armenia (APC = 0.1.995%) (Figure 4 and Table 6).

Figure 4.

Figure 4

Percentage change and annual percentage change of disability adjusted life years of urolithiasis stratified by gender and 195 Countries and territories. (A) PC of DALYs stratified 195 Countries and territories of both gender; (B) APC of DALYs stratified 195 Countries and territories of both gender; (C) PC of DALYs stratified 195 Countries and territories of male; (D) APC of DALYs stratified 195 Countries and territories of male; (E) PC of DALYs stratified 195 Countries and territories of female; (F) APC of DALYs stratified 195 Countries and territories of female.

Table 6.

Percentage change and annual percentage change of disability adjusted life years of urolithiasis stratified by gender and 195 Countries and territories.

Both Male and Female Male Female
Number Countries and Territories PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value
1 Afghanistan 15.058 0.712 0.610 0.813 <0.001 12.701 0.588 0.494 0.682 <0.001 20.151 0.927 0.809 1.046 <0.001
2 Albania −23.995 −0.891 −1.161 −0.620 <0.001 −37.147 −1.568 −2.023 −1.110 <0.001 0.662 −0.016 −0.041 0.008 0.182
3 Algeria 5.555 0.249 0.228 0.270 <0.001 3.006 0.132 0.114 0.150 <0.001 9.369 0.422 0.386 0.459 <0.001
4 American Samoa −57.879 −4.974 −6.065 −3.871 <0.001 −63.640 −5.687 −6.894 −4.463 <0.001 −49.481 −4.080 −5.072 −3.078 <0.001
5 Andorra −8.383 −0.309 −0.421 −0.198 <0.001 −10.128 −0.345 −0.413 −0.276 <0.001 −4.363 −0.158 −0.361 0.045 0.121
6 Angola −6.882 −0.471 −0.562 −0.381 <0.001 −3.606 −0.353 −0.449 −0.256 <0.001 −5.742 −0.409 −0.497 −0.320 <0.001
7 Antigua and Barbuda 28.971 1.047 0.839 1.256 <0.001 9.861 0.373 0.262 0.485 <0.001 44.867 1.578 1.246 1.910 <0.001
8 Argentina −1.901 −0.007 −0.112 0.097 0.889 −5.406 −0.163 −0.320 −0.005 0.044 1.871 0.151 0.083 0.218 <0.001
9 Armenia 50.908 1.995 1.279 2.716 <0.001 61.061 2.221 1.585 2.860 <0.001 39.743 1.669 0.877 2.467 <0.001
10 Australia −35.315 −1.425 −1.752 −1.098 <0.001 −39.554 −1.654 −1.993 −1.313 <0.001 −32.122 −1.275 −1.602 −0.946 <0.001
11 Austria −50.089 −1.786 −2.365 −1.203 <0.001 −40.020 −0.955 −1.356 −0.552 <0.001 −59.048 −2.804 −3.593 −2.007 <0.001
12 Azerbaijan 23.858 0.821 0.638 1.003 <0.001 10.600 0.414 0.373 0.454 <0.001 32.914 1.083 0.770 1.396 <0.001
13 Bahrain 5.745 −0.134 −0.361 0.093 0.235 4.565 0.143 0.101 0.186 <0.001 2.802 −0.805 −1.339 −0.268 0.005
14 Bangladesh −16.943 −0.491 −0.615 −0.367 <0.001 −6.171 0.045 −0.129 0.218 0.601 −29.580 −1.239 −1.341 −1.138 <0.001
15 Barbados −4.192 0.201 0.055 0.347 0.009 −4.387 0.078 −0.053 0.209 0.234 −6.469 0.252 −0.079 0.584 0.130
16 Belarus −31.658 −1.956 −2.133 −1.779 <0.001 −20.341 −1.298 −1.449 −1.147 <0.001 −41.282 −2.606 −2.816 −2.396 <0.001
17 Belgium 28.074 1.353 1.041 1.665 <0.001 27.147 1.251 0.944 1.559 <0.001 27.233 1.404 1.086 1.722 <0.001
18 Belize 41.679 1.259 1.023 1.495 <0.001 47.698 1.181 0.892 1.472 <0.001 35.897 1.269 1.012 1.526 <0.001
19 Benin −17.242 −1.019 −1.178 −0.860 <0.001 −20.757 −1.373 −1.610 −1.136 <0.001 −9.717 −0.421 −0.494 −0.347 <0.001
20 Bermuda −6.617 −0.057 −0.235 0.122 0.521 1.328 0.316 0.232 0.401 <0.001 −12.465 −0.349 −0.643 −0.054 0.022
21 Bhutan −20.917 −0.897 −0.931 −0.863 <0.001 −19.047 −0.699 −0.762 −0.635 <0.001 −24.403 −1.193 −1.257 −1.129 <0.001
22 Bolivia −21.064 −0.619 −0.781 −0.457 <0.001 −23.808 −0.697 −0.856 −0.538 <0.001 −17.851 −0.523 −0.699 −0.347 <0.001
23 Bosnia and Herzegovina −22.795 −1.381 −1.636 −1.126 <0.001 −23.227 −1.377 −1.639 −1.114 <0.001 −24.058 −1.500 −1.763 −1.237 <0.001
24 Botswana −3.975 −0.072 −0.220 0.075 0.321 −17.143 −0.848 −0.910 −0.786 <0.001 15.300 0.932 0.655 1.209 <0.001
25 Brazil 116.654 3.279 3.170 3.387 <0.001 91.467 2.815 2.689 2.941 <0.001 142.686 3.686 3.565 3.808 <0.001
26 Brunei −23.121 −1.015 −1.279 −0.750 <0.001 −24.840 −1.126 −1.421 −0.830 <0.001 0.425 0.020 −0.050 0.089 0.564
27 Bulgaria −75.459 −6.073 −7.056 −5.080 <0.001 −76.813 −6.330 −7.323 −5.326 <0.001 −73.777 −5.784 −6.760 −4.799 <0.001
28 Burkina Faso −13.408 −0.692 −0.827 −0.557 <0.001 −14.846 −0.880 −1.083 −0.676 <0.001 −8.763 −0.328 −0.386 −0.271 <0.001
29 Burundi −24.946 −1.398 −1.569 −1.228 <0.001 −29.735 −1.651 −1.828 −1.474 <0.001 −25.138 −1.403 −1.575 −1.231 <0.001
30 Cambodia −23.372 −0.995 −1.090 −0.901 <0.001 −21.376 −0.830 −0.945 −0.715 <0.001 −24.158 −1.160 −1.245 −1.075 <0.001
31 Cameroon −22.199 −1.383 −1.593 −1.172 <0.001 −14.109 −1.106 −1.354 −0.857 <0.001 −30.550 −1.724 −1.904 −1.544 <0.001
32 Canada 8.418 0.633 0.496 0.771 <0.001 7.003 0.580 0.443 0.718 <0.001 8.398 0.639 0.491 0.788 <0.001
33 Cape Verde 6.343 0.233 0.200 0.265 <0.001 5.101 0.147 0.125 0.169 <0.001 5.483 0.237 0.180 0.293 <0.001
34 Central African Republic 2.214 0.054 −0.014 0.122 0.115 5.567 0.127 0.045 0.210 0.004 −2.899 −0.073 −0.143 −0.002 0.044
35 Chad −17.860 −1.071 −1.270 −0.872 <0.001 −19.333 −1.272 −1.537 −1.005 <0.001 −19.760 −0.988 −1.125 −0.851 <0.001
36 Chile −12.798 −0.870 −1.069 −0.670 <0.001 −5.288 −0.471 −0.663 −0.279 <0.001 −18.618 −1.207 −1.453 −0.960 <0.001
37 China −66.979 −4.811 −5.084 −4.538 <0.001 −63.542 −4.229 −4.472 −3.985 <0.001 −72.305 −5.788 −6.200 −5.374 <0.001
38 Colombia 25.487 1.495 1.064 1.928 <0.001 13.824 1.114 0.713 1.516 <0.001 39.262 1.896 1.419 2.376 <0.001
39 Comoros −15.419 −0.813 −0.969 −0.657 <0.001 −13.760 −0.746 −0.947 −0.545 <0.001 −14.269 −0.760 −0.869 −0.650 <0.001
40 Congo −6.931 −0.410 −0.500 −0.320 <0.001 −11.980 −0.634 −0.748 −0.519 <0.001 −2.571 −0.239 −0.342 −0.136 <0.001
41 Costa Rica 43.455 1.843 1.609 2.078 <0.001 13.993 0.591 0.525 0.657 <0.001 81.502 3.173 2.741 3.606 <0.001
42 Cote d’Ivoire −15.270 −0.974 −1.168 −0.780 <0.001 −14.881 −1.092 −1.328 −0.856 <0.001 −14.963 −0.756 −0.937 −0.574 <0.001
43 Croatia −6.659 0.145 −0.264 0.555 0.474 −18.495 −0.620 −1.021 −0.217 0.004 4.232 0.771 0.357 1.187 0.001
44 Cuba 26.970 1.134 0.791 1.479 <0.001 47.845 1.511 1.189 1.833 <0.001 10.222 0.729 0.263 1.197 0.003
45 Cyprus −5.585 −0.379 −0.473 −0.286 <0.001 −11.608 −0.702 −0.914 −0.490 <0.001 2.182 0.028 −0.099 0.156 0.651
46 Czech Republic −71.761 −4.669 −5.529 −3.801 <0.001 −73.941 −4.850 −5.775 −3.915 <0.001 −70.806 −4.668 −5.480 −3.849 <0.001
47 Democratic Republic of the Congo −3.776 −0.224 −0.304 −0.144 <0.001 −0.375 −0.101 −0.167 −0.035 0.004 −4.935 −0.286 −0.372 −0.201 <0.001
48 Denmark −2.850 0.091 −0.174 0.357 0.486 11.165 0.555 0.258 0.853 0.001 −19.951 −0.587 −0.903 −0.270 0.001
49 Djibouti 0.286 −0.376 −0.521 −0.232 <0.001 −2.195 −0.479 −0.620 −0.338 <0.001 1.441 −0.285 −0.435 −0.134 0.001
50 Dominica 40.114 1.326 1.256 1.397 <0.001 37.017 1.210 1.119 1.302 <0.001 33.026 1.136 1.045 1.227 <0.001
51 Dominican Republic 1.664 −0.073 −0.337 0.191 0.573 −1.139 −0.212 −0.690 0.269 0.373 6.721 0.111 −0.041 0.264 0.145
52 Ecuador 9.434 0.691 0.442 0.941 <0.001 8.115 0.687 0.450 0.925 <0.001 11.862 0.713 0.391 1.036 <0.001
53 Egypt 8.930 0.390 0.356 0.424 <0.001 6.212 0.287 0.256 0.319 <0.001 13.391 0.557 0.512 0.602 <0.001
54 El Salvador 1.623 −0.119 −0.306 0.069 0.205 −7.075 −0.568 −0.890 −0.244 0.001 15.091 0.440 0.350 0.530 <0.001
55 Equatorial Guinea −10.710 −0.510 −0.651 −0.368 <0.001 −19.258 −1.013 −1.273 −0.752 <0.001 3.719 0.148 0.086 0.210 <0.001
56 Eritrea −15.875 −1.047 −1.186 −0.908 <0.001 −20.252 −1.339 −1.529 −1.148 <0.001 −4.624 −0.374 −0.444 −0.303 <0.001
57 Estonia −61.106 −4.732 −5.227 −4.234 <0.001 −59.551 −4.761 −5.354 −4.164 <0.001 −64.200 −4.875 −5.344 −4.403 <0.001
58 Ethiopia −44.034 −2.491 −2.662 −2.319 <0.001 −47.116 −2.668 −2.873 −2.464 <0.001 −39.946 −2.255 −2.415 −2.096 <0.001
59 Federated States of Micronesia −34.393 −1.723 −1.849 −1.597 <0.001 −26.199 −1.289 −1.410 −1.168 <0.001 −40.328 −2.056 −2.231 −1.881 <0.001
60 Fiji 25.048 1.178 0.967 1.390 <0.001 27.600 1.216 1.016 1.416 <0.001 24.654 1.230 0.885 1.576 <0.001
61 Finland −11.289 −0.444 −0.667 −0.221 <0.001 1.896 0.212 0.036 0.388 0.020 −23.446 −1.133 −1.407 −0.859 <0.001
62 France −12.134 −0.400 −0.458 −0.341 <0.001 −18.534 −0.654 −0.793 −0.514 <0.001 −5.881 −0.179 −0.281 −0.077 0.001
63 Gabon 4.662 0.103 −0.018 0.223 0.091 6.645 0.146 0.065 0.228 0.001 −0.965 −0.069 −0.257 0.118 0.454
64 Georgia 14.420 0.541 0.272 0.810 <0.001 9.658 0.355 0.126 0.585 0.004 18.756 0.717 0.385 1.050 <0.001
65 Germany 1.008 0.469 0.246 0.693 <0.001 8.277 0.650 0.474 0.827 <0.001 −9.405 0.106 −0.187 0.400 0.462
66 Ghana −3.956 −0.350 −0.477 −0.223 <0.001 −1.070 −0.299 −0.457 −0.140 0.001 2.449 0.057 0.009 0.105 0.022
67 Greece 1.048 0.050 −0.014 0.114 0.123 0.799 0.019 −0.045 0.084 0.542 0.761 0.073 0.002 0.145 0.046
68 Greenland −6.682 −0.370 −0.476 −0.265 <0.001 −20.369 −1.109 −1.340 −0.878 <0.001 3.067 0.129 0.108 0.149 <0.001
69 Grenada 27.548 1.232 1.029 1.435 <0.001 3.555 0.458 0.075 0.843 0.021 83.321 2.577 1.900 3.258 <0.001
70 Guam −45.456 −3.492 −4.224 −2.754 <0.001 −33.399 −2.084 −2.531 −1.634 <0.001 −55.967 −4.844 −5.853 −3.824 <0.001
71 Guatemala −30.566 −2.093 −2.535 −1.650 <0.001 −21.607 −1.362 −1.723 −0.999 <0.001 −37.111 −2.654 −3.181 −2.124 <0.001
72 Guinea −5.443 −0.339 −0.475 −0.204 <0.001 −1.498 −0.231 −0.374 −0.089 0.003 −10.203 −0.488 −0.622 −0.355 <0.001
73 Guinea-Bissau −29.523 −1.596 −1.783 −1.410 <0.001 −29.331 −1.667 −1.878 −1.457 <0.001 −26.518 −1.341 −1.498 −1.183 <0.001
74 Guyana 37.366 1.355 1.046 1.665 <0.001 36.173 1.443 1.048 1.839 <0.001 39.750 1.254 0.940 1.569 <0.001
75 Haiti 19.893 0.842 0.744 0.940 <0.001 23.367 1.013 0.866 1.160 <0.001 17.824 0.707 0.646 0.768 <0.001
76 Honduras 13.799 0.080 −0.198 0.359 0.559 −0.859 −0.265 −0.475 −0.055 0.016 36.640 0.484 0.108 0.861 0.014
77 Hungary −66.925 −4.065 −4.742 −3.382 <0.001 −64.592 −3.837 −4.430 −3.240 <0.001 −68.963 −4.292 −5.042 −3.535 <0.001
78 Iceland −32.983 −1.057 −1.175 −0.939 <0.001 −29.684 −1.017 −1.178 −0.856 <0.001 −37.661 −1.115 −1.280 −0.950 <0.001
79 India −13.762 −0.536 −0.660 −0.412 <0.001 −13.901 −0.475 −0.571 −0.379 <0.001 −10.155 −0.469 −0.679 −0.259 <0.001
80 Indonesia −39.727 −1.912 −2.058 −1.766 <0.001 −41.372 −2.014 −2.187 −1.840 <0.001 −31.422 −1.414 −1.503 −1.324 <0.001
81 Iran 13.478 0.546 0.295 0.797 <0.001 12.096 0.509 0.279 0.740 <0.001 16.618 0.652 0.366 0.939 <0.001
82 Iraq −47.971 −3.087 −3.377 −2.796 <0.001 −43.436 −2.759 −3.018 −2.499 <0.001 −54.267 −3.554 −3.911 −3.195 <0.001
83 Ireland −15.086 −0.565 −0.761 −0.370 <0.001 −26.184 −1.091 −1.453 −0.729 <0.001 4.495 0.130 −0.018 0.278 0.084
84 Israel 29.734 0.356 −0.096 0.811 0.118 29.298 0.493 0.115 0.873 0.012 30.053 0.155 −0.457 0.771 0.608
85 Italy −37.806 −1.542 −1.795 −1.288 <0.001 −42.264 −1.914 −2.177 −1.651 <0.001 −33.939 −1.182 −1.454 −0.909 <0.001
86 Jamaica 49.334 1.658 1.343 1.973 <0.001 65.546 1.873 1.334 2.414 <0.001 24.847 1.166 0.899 1.434 <0.001
87 Japan 18.230 0.921 0.817 1.024 <0.001 10.197 0.579 0.507 0.651 <0.001 27.160 1.295 1.147 1.444 <0.001
88 Jordan −13.413 −0.912 −1.121 −0.703 <0.001 −0.877 −0.029 −0.051 −0.007 0.012 −28.806 −2.061 −2.540 −1.580 <0.001
89 Kazakhstan −48.206 −3.577 −4.094 −3.058 <0.001 −46.692 −3.373 −3.850 −2.893 <0.001 −52.573 −4.008 −4.572 −3.442 <0.001
90 Kenya 1.419 −0.086 −0.233 0.061 0.238 12.178 0.355 0.183 0.527 <0.001 −8.524 −0.563 −0.703 −0.422 <0.001
91 Kiribati −14.146 −0.598 −0.670 −0.526 <0.001 −24.167 −0.993 −1.117 −0.870 <0.001 −1.074 −0.196 −0.432 0.040 0.100
92 Kuwait −4.534 −0.061 −0.117 −0.006 0.032 2.149 0.207 0.118 0.297 <0.001 −11.842 −0.360 −0.556 −0.165 0.001
93 Kyrgyzstan −47.085 −2.382 −2.751 −2.012 <0.001 −40.727 −1.931 −2.261 −1.600 <0.001 −58.852 −3.359 −3.874 −2.841 <0.001
94 Laos −32.871 −1.584 −1.701 −1.466 <0.001 −33.167 −1.573 −1.679 −1.466 <0.001 −33.025 −1.653 −1.802 −1.505 <0.001
95 Latvia −41.423 −2.890 −3.303 −2.475 <0.001 −31.099 −2.611 −3.192 −2.027 <0.001 −49.674 −3.279 −3.671 −2.887 <0.001
96 Lebanon 8.621 0.396 0.361 0.431 <0.001 6.520 0.323 0.284 0.361 <0.001 10.250 0.457 0.418 0.496 <0.001
97 Lesotho 12.904 0.670 0.578 0.763 <0.001 16.230 0.729 0.579 0.879 <0.001 11.289 0.703 0.576 0.831 <0.001
98 Liberia −17.119 −0.828 −1.035 −0.620 <0.001 −18.339 −0.959 −1.170 −0.747 <0.001 −13.551 −0.543 −0.747 −0.339 <0.001
99 Libya 17.284 0.741 0.673 0.809 <0.001 11.056 0.444 0.411 0.478 <0.001 33.826 1.332 1.233 1.432 <0.001
100 Lithuania −47.842 −3.349 −3.858 −2.838 <0.001 −48.493 −3.631 −4.157 −3.102 <0.001 −48.086 −3.148 −3.675 −2.618 <0.001
101 Luxembourg −6.809 −0.215 −0.327 −0.103 0.001 −10.999 −0.432 −0.540 −0.323 <0.001 −5.709 −0.077 −0.196 0.043 0.201
102 Macedonia −0.982 −0.008 −0.047 0.031 0.678 −0.244 0.008 −0.030 0.045 0.679 −1.651 −0.021 −0.061 0.019 0.283
103 Madagascar −12.057 −0.596 −0.672 −0.521 <0.001 −7.941 −0.360 −0.415 −0.305 <0.001 −14.583 −0.784 −0.890 −0.678 <0.001
104 Malawi 0.153 −0.418 −0.647 −0.189 0.001 14.368 0.144 −0.083 0.372 0.203 −13.592 −1.049 −1.298 −0.798 <0.001
105 Malaysia 16.685 0.449 0.339 0.559 <0.001 3.164 0.018 −0.172 0.208 0.847 35.040 0.974 0.783 1.166 <0.001
106 Maldives −40.651 −2.037 −2.250 −1.824 <0.001 −33.213 −1.556 −1.715 −1.396 <0.001 −50.703 −2.815 −3.057 −2.573 <0.001
107 Mali −28.485 −1.442 −1.659 −1.225 <0.001 −26.824 −1.353 −1.602 −1.105 <0.001 −30.630 −1.545 −1.734 −1.355 <0.001
108 Malta −12.206 −0.148 −0.363 0.068 0.170 −14.035 −0.211 −0.385 −0.038 0.019 −12.604 −0.204 −0.494 0.087 0.161
109 Marshall Islands −22.149 −1.361 −1.567 −1.155 <0.001 −32.532 −1.686 −1.822 −1.549 <0.001 −16.266 −1.231 −1.557 −0.905 <0.001
110 Mauritania −35.008 −1.965 −2.156 −1.774 <0.001 −33.062 −1.911 −2.155 −1.666 <0.001 −37.553 −2.064 −2.217 −1.911 <0.001
111 Mauritius −5.955 <0.001 −0.295 0.295 0.999 −14.964 −0.360 −0.704 −0.014 0.042 7.802 0.489 0.188 0.791 0.003
112 Mexico 4.368 0.326 −0.043 0.696 0.081 −6.273 −0.036 −0.407 0.336 0.843 17.910 0.713 0.336 1.093 0.001
113 Moldova −6.416 0.074 −0.336 0.486 0.714 −13.379 −0.478 −0.836 −0.120 0.011 1.525 0.685 0.138 1.235 0.016
114 Mongolia −53.422 −4.520 −5.291 −3.743 <0.001 −14.020 −1.099 −1.330 −0.868 <0.001 −69.981 −6.773 −7.858 −5.675 <0.001
115 Montenegro 1.741 0.069 0.056 0.082 <0.001 1.878 0.063 0.044 0.082 <0.001 0.881 0.053 0.039 0.068 <0.001
116 Morocco 9.513 0.431 0.393 0.468 <0.001 5.685 0.267 0.240 0.294 <0.001 15.483 0.681 0.620 0.742 <0.001
117 Mozambique 15.313 0.529 0.411 0.647 <0.001 17.373 0.648 0.535 0.760 <0.001 19.983 0.577 0.433 0.722 <0.001
118 Myanmar −23.528 −0.869 −0.944 −0.793 <0.001 −21.745 −0.787 −0.865 −0.709 <0.001 −22.179 −0.808 −0.886 −0.730 <0.001
119 Namibia −10.046 −0.631 −0.809 −0.452 <0.001 −8.798 −0.583 −0.757 −0.409 <0.001 −8.622 −0.570 −0.757 −0.382 <0.001
120 Nepal −3.278 0.056 −0.262 0.376 0.719 2.461 0.288 −0.028 0.606 0.073 −7.507 −0.145 −0.491 0.202 0.397
121 Netherlands −31.996 −1.599 −1.764 −1.435 <0.001 −28.690 −1.203 −1.321 −1.085 <0.001 −36.399 −2.067 −2.303 −1.829 <0.001
122 New Zealand −31.326 −0.822 −1.421 −0.219 0.009 −27.960 −0.849 −1.436 −0.259 0.007 −35.417 −0.890 −1.535 −0.242 0.009
123 Nicaragua −3.632 −0.228 −0.409 −0.046 0.016 −10.879 −0.767 −0.964 −0.570 <0.001 4.232 0.366 0.061 0.672 0.020
124 Niger −28.859 −1.614 −1.832 −1.395 <0.001 −30.570 −1.758 −2.010 −1.505 <0.001 −26.264 −1.345 −1.518 −1.172 <0.001
125 Nigeria −19.199 −1.143 −1.318 −0.968 <0.001 −17.416 −1.109 −1.307 −0.911 <0.001 −21.918 −1.194 −1.372 −1.015 <0.001
126 North Korea −6.676 −0.287 −0.341 −0.233 <0.001 −9.133 −0.378 −0.424 −0.333 <0.001 −10.659 −0.498 −0.571 −0.424 <0.001
127 Northern Mariana Islands −55.683 −4.148 −4.922 −3.368 <0.001 −16.670 −0.981 −1.260 −0.701 <0.001 −70.243 −5.838 −6.832 −4.833 <0.001
128 Norway −16.129 −0.384 −0.596 −0.172 0.001 −14.935 −0.277 −0.510 −0.042 0.022 −23.330 −0.827 −1.019 −0.634 <0.001
129 Oman 4.628 0.205 0.124 0.287 <0.001 2.123 0.101 0.076 0.125 <0.001 2.420 0.103 0.055 0.151 <0.001
130 Pakistan 13.588 0.260 0.147 0.374 <0.001 17.216 0.418 0.300 0.537 <0.001 11.256 0.093 −0.023 0.209 0.110
131 Palestine −6.057 −0.206 −0.238 −0.174 <0.001 −3.489 −0.128 −0.150 −0.107 <0.001 −12.683 −0.422 −0.499 −0.344 <0.001
132 Panama 9.629 0.448 0.169 0.728 0.003 12.047 0.583 0.423 0.744 <0.001 7.124 0.302 −0.180 0.786 0.209
133 Papua New Guinea −33.681 −1.629 −1.746 −1.512 <0.001 −26.695 −1.206 −1.364 −1.047 <0.001 −38.621 −1.935 −2.016 −1.854 <0.001
134 Paraguay 48.563 1.575 1.354 1.797 <0.001 15.725 0.346 0.121 0.572 0.004 88.890 2.749 2.413 3.085 <0.001
135 Peru −16.371 −0.781 −0.953 −0.609 <0.001 −18.986 −0.858 −0.988 −0.728 <0.001 −13.357 −0.700 −0.919 −0.481 <0.001
136 Philippines 190.856 1.316 0.107 2.539 0.034 175.645 1.039 −0.179 2.273 0.092 241.267 2.107 0.889 3.340 0.001
137 Poland −47.909 −2.451 −2.856 −2.044 <0.001 −42.002 −2.023 −2.351 −1.693 <0.001 −53.679 −2.958 −3.446 −2.468 <0.001
138 Portugal 8.691 0.631 0.335 0.928 <0.001 −5.501 0.033 −0.300 0.368 0.838 27.336 1.307 1.022 1.592 <0.001
139 Puerto Rico 23.834 0.761 0.614 0.908 <0.001 29.975 1.209 1.061 1.356 <0.001 18.493 0.333 0.053 0.615 0.022
140 Qatar −0.915 −0.049 −0.074 −0.024 <0.001 −2.979 −0.127 −0.151 −0.102 <0.001 −2.666 −0.322 −0.416 −0.228 <0.001
141 Romania −2.319 −0.084 −0.143 −0.026 0.006 2.075 0.102 0.076 0.127 <0.001 −7.684 −0.329 −0.429 −0.229 <0.001
142 Russian Federation −26.499 −1.568 −2.014 −1.120 <0.001 −33.817 −1.941 −2.383 −1.497 <0.001 −25.272 −1.521 −2.007 −1.032 <0.001
143 Rwanda −27.563 −1.702 −1.942 −1.461 <0.001 −24.589 −1.594 −1.830 −1.358 <0.001 −27.309 −1.609 −1.889 −1.328 <0.001
144 Saint Lucia 26.887 0.713 0.503 0.925 <0.001 9.420 0.280 0.221 0.338 <0.001 37.191 0.973 0.707 1.240 <0.001
145 Saint Vincent and the Grenadines 10.513 0.744 0.418 1.072 <0.001 2.150 0.533 0.159 0.909 0.007 3.426 0.119 −0.058 0.296 0.179
146 Samoa −29.618 −1.749 −1.933 −1.566 <0.001 −21.364 −1.101 −1.251 −0.952 <0.001 −34.408 −2.152 −2.368 −1.935 <0.001
147 Sao Tome and Principe 5.229 0.064 −0.003 0.132 0.061 −1.076 −0.032 −0.134 0.070 0.524 10.786 0.131 <0.001 0.262 0.050
148 Saudi Arabia 3.974 0.205 0.184 0.226 <0.001 2.717 0.146 0.122 0.170 <0.001 8.682 0.399 0.365 0.434 <0.001
149 Senegal −24.148 −1.349 −1.573 −1.124 <0.001 −25.833 −1.486 −1.747 −1.225 <0.001 −19.669 −1.084 −1.260 −0.909 <0.001
150 Serbia −1.160 −0.086 −0.146 −0.026 0.007 −10.382 −0.606 −0.731 −0.481 <0.001 8.550 0.417 0.324 0.511 <0.001
151 Seychelles 21.264 0.523 0.414 0.632 <0.001 13.555 0.110 −0.063 0.282 0.203 30.352 1.029 0.929 1.129 <0.001
152 Sierra Leone −13.421 −0.749 −0.872 −0.627 <0.001 −18.198 −1.069 −1.242 −0.896 <0.001 −5.769 −0.288 −0.376 −0.200 <0.001
153 Singapore −38.987 −1.374 −1.787 −0.959 <0.001 −30.130 −1.010 −1.523 −0.495 <0.001 −48.980 −1.891 −2.239 −1.542 <0.001
154 Slovakia −37.259 −1.915 −2.121 −1.709 <0.001 −30.151 −1.486 −1.609 −1.363 <0.001 −43.955 −2.396 −2.698 −2.093 <0.001
155 Slovenia −32.461 −1.609 −1.776 −1.441 <0.001 −29.799 −1.437 −1.749 −1.123 <0.001 −35.433 −1.739 −1.922 −1.556 <0.001
156 Solomon Islands −33.033 −1.705 −1.795 −1.616 <0.001 −26.227 −1.193 −1.304 −1.081 <0.001 −38.303 −2.091 −2.241 −1.940 <0.001
157 Somalia −10.495 −0.820 −0.981 −0.658 <0.001 −4.693 −0.637 −0.809 −0.464 <0.001 −17.587 −1.021 −1.179 −0.862 <0.001
158 South Africa −9.211 −0.577 −1.145 −0.006 0.048 −2.765 −0.357 −0.842 0.130 0.144 −15.556 −0.805 −1.514 −0.091 0.029
159 South Korea 3.609 −0.322 −0.648 0.005 0.053 −13.445 −1.326 −1.791 −0.859 <0.001 20.322 0.435 0.145 0.725 0.005
160 South Sudan −11.502 −0.778 −0.916 −0.639 <0.001 −6.562 −0.587 −0.734 −0.439 <0.001 −18.410 −1.030 −1.148 −0.912 <0.001
161 Spain −9.064 −0.240 −0.351 −0.130 <0.001 −9.884 −0.275 −0.377 −0.174 <0.001 −9.827 −0.273 −0.410 −0.136 <0.001
162 Sri Lanka 3.644 0.134 0.054 0.213 0.002 1.927 −0.049 −0.141 0.043 0.284 14.376 0.666 0.431 0.902 <0.001
163 Sudan 14.619 0.668 0.604 0.733 <0.001 11.517 0.561 0.505 0.617 <0.001 18.767 0.812 0.727 0.896 <0.001
164 Suriname 44.523 1.363 1.170 1.556 <0.001 51.903 1.487 1.264 1.712 <0.001 31.581 1.233 1.068 1.399 <0.001
165 Swaziland 2.024 0.050 −0.271 0.373 0.751 8.815 0.210 −0.146 0.567 0.236 −5.086 −0.129 −0.428 0.170 0.382
166 Sweden −21.578 −0.570 −0.923 −0.216 0.003 −22.929 −0.605 −0.971 −0.237 0.002 −22.721 −0.663 −1.009 −0.315 0.001
167 Switzerland −7.694 −0.314 −0.372 −0.257 <0.001 5.803 0.132 −0.015 0.279 0.076 −23.675 −1.010 −1.131 −0.889 <0.001
168 Syria −9.702 −0.601 −0.734 −0.468 <0.001 −11.364 −0.710 −0.853 −0.567 <0.001 −5.874 −0.379 −0.505 −0.253 <0.001
169 Taiwan 28.380 1.310 0.703 1.920 <0.001 32.427 1.394 0.711 2.082 <0.001 25.861 1.294 0.790 1.801 <0.001
170 Tajikistan 20.951 0.268 0.069 0.468 0.010 19.429 0.188 −0.034 0.411 0.094 17.959 0.236 0.051 0.421 0.014
171 Tanzania −10.783 −0.742 −0.966 −0.519 <0.001 −10.671 −0.760 −0.956 −0.563 <0.001 −9.031 −0.631 −0.905 −0.356 <0.001
172 Thailand −23.780 −1.923 −2.601 −1.239 <0.001 −36.433 −2.975 −3.868 −2.073 <0.001 23.666 0.511 0.302 0.720 <0.001
173 The Bahamas −5.994 0.063 −0.207 0.333 0.636 0.425 0.191 0.099 0.284 <0.001 −10.400 −0.060 −0.469 0.351 0.767
174 The Gambia −22.084 −1.192 −1.351 −1.033 <0.001 −22.031 −1.272 −1.475 −1.068 <0.001 −20.764 −1.028 −1.135 −0.921 <0.001
175 Timor-Leste −8.322 −0.318 −0.455 −0.181 <0.001 −2.333 −0.027 −0.182 0.128 0.723 −16.726 −0.746 −0.887 −0.604 <0.001
176 Togo −17.189 −0.952 −1.109 −0.794 <0.001 −14.130 −0.967 −1.172 −0.760 <0.001 −15.614 −0.612 −0.777 −0.448 <0.001
177 Tonga −13.978 −0.675 −0.735 −0.615 <0.001 −12.523 −0.559 −0.613 −0.505 <0.001 −13.946 −0.761 −0.852 −0.670 <0.001
178 Trinidad and Tobago 73.595 3.217 2.522 3.916 <0.001 89.509 3.420 2.728 4.115 <0.001 49.287 2.817 2.004 3.636 <0.001
179 Tunisia 4.453 0.183 0.167 0.199 <0.001 4.510 0.180 0.160 0.199 <0.001 6.291 0.266 0.249 0.283 <0.001
180 Turkey −4.198 −0.117 −0.273 0.039 0.135 13.771 0.784 0.609 0.960 <0.001 −23.465 −1.305 −1.579 −1.029 <0.001
181 Turkmenistan 49.829 1.866 1.660 2.073 <0.001 41.404 1.594 1.358 1.830 <0.001 58.536 2.136 1.939 2.334 <0.001
182 Uganda 7.245 −0.036 −0.236 0.164 0.711 30.255 0.743 0.511 0.976 <0.001 −13.041 −0.894 −1.085 −0.703 <0.001
183 Ukraine −32.710 −2.339 −2.761 −1.914 <0.001 −19.735 −1.613 −2.016 −1.209 <0.001 −44.467 −3.128 −3.580 −2.673 <0.001
184 United Arab Emirates 33.989 1.320 1.228 1.411 <0.001 28.952 1.175 1.098 1.252 <0.001 46.874 1.674 1.512 1.836 <0.001
185 United Kingdom 11.018 0.893 0.635 1.152 <0.001 9.065 0.908 0.641 1.177 <0.001 11.624 0.837 0.576 1.098 <0.001
186 United States −3.427 −0.046 −0.247 0.156 0.645 −9.073 −0.507 −0.718 −0.295 <0.001 1.354 0.438 0.196 0.682 0.001
187 Uruguay 14.666 0.597 0.477 0.718 <0.001 20.629 0.935 0.766 1.104 <0.001 10.553 0.346 0.167 0.525 0.001
188 Uzbekistan 5.954 0.277 0.220 0.333 <0.001 6.659 0.336 0.245 0.426 <0.001 4.335 0.178 0.145 0.211 <0.001
189 Vanuatu −24.385 −1.178 −1.343 −1.013 <0.001 −15.132 −0.592 −0.723 −0.461 <0.001 −32.431 −1.737 −1.948 −1.525 <0.001
190 Venezuela −5.479 −0.839 −1.222 −0.455 <0.001 1.209 −0.587 −0.994 −0.177 0.007 −11.266 −1.097 −1.560 −0.633 <0.001
191 Vietnam −5.790 −0.072 −0.206 0.063 0.281 −7.583 −0.181 −0.298 −0.063 0.004 −6.086 −0.043 −0.203 0.116 0.582
192 Virgin Islands, U.S. 58.206 1.935 1.618 2.253 <0.001 130.464 2.954 2.217 3.695 <0.001 17.516 0.875 0.709 1.041 <0.001
193 Yemen 11.817 0.498 0.461 0.535 <0.001 10.135 0.452 0.413 0.492 <0.001 14.898 0.598 0.556 0.639 <0.001
194 Zambia −18.643 −1.413 −1.683 −1.142 <0.001 −4.385 −0.808 −1.071 −0.544 <0.001 −33.386 −2.181 −2.691 −1.669 <0.001
195 Zimbabwe 24.168 0.786 0.218 1.358 0.009 37.611 1.146 0.412 1.886 0.003 4.828 0.174 0.050 0.298 0.008

Abbreviations: PC: percentage change; APC: annual percentage change. p < 0.001 considered significant.

The associations between global burden estimates of urolithiasis and SDI levels for each of the 21 GBD regions for all individual years between 1990 and 2019 are illustrated in Figure 3 and Table 7. In general, a decreasing trend was observed at all SDI levels, and there was an approximate positive linear association that existed between the decrease in APC and SDI except at the high SDI levels. High-middle SDI (APC, −3.096%) contributed most significantly to the decreasing trends. Both male and female demonstrated a similar demographic pattern.

Table 7.

Percentage change and annual percentage change of disability adjusted life years of urolithiasis stratified by gender and SDI level.

Both Male and Female Male Female
PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value PC APC 95%CI 95%CI p-Value
Global −35.862 −1.898 −2.117 −1.679 <0.001 −35.043 −1.812 −1.973 −1.650 <0.001 −37.959 −2.078 −2.383 −1.773 <0.001
Low SDI −16.723 −0.720 −0.851 −0.589 <0.001 −14.591 −0.569 −0.677 −0.461 <0.001 −17.297 −0.821 −1.013 −0.629 <0.001
Low-middle SDI −22.509 −1.053 −1.166 −0.940 <0.001 −20.969 −0.898 −0.985 −0.812 <0.001 −22.656 −1.185 −1.370 −0.999 <0.001
Middle SDI −43.070 −2.494 −2.705 −2.283 <0.001 −42.137 −2.376 −2.535 −2.216 <0.001 −44.517 −2.679 −3.004 −2.352 <0.001
High-middle SDI −50.297 −3.096 −3.413 −2.777 <0.001 −50.098 −3.004 −3.254 −2.753 <0.001 −52.281 −3.343 −3.748 −2.936 <0.001
High SDI −15.837 −0.480 −0.694 −0.266 <0.001 −17.428 −0.628 −0.821 −0.435 <0.001 −16.001 −0.381 −0.635 −0.127 0.005

Abbreviations: PC: percentage change; APC: annual percentage change; SDI: sociodemographic index. p < 0.001 considered significant.

4. Discussion

Based on the GBD 2019 data, we comprehensively assessed the recent burden estimates as well as temporal trends in urolithiasis from 1990 to 2019 at the global, regional, and national levels. During the study period, the global urolithiasis burden decreased as measured by ASIR and DALYs. However, the temporal trends of these burden estimates varied considerably by SDI levels and regions. The ASIR decrease in urolithiasis was observed in the middle, high middle, and high SDI countries, but an increase was shown in low and low middle SDI countries. A decline in DALYs was observed in all SDI levels. Additionally, an approximate positive linear association existed between the decreased APC of burden estimates and SDI, except for at the high SDI levels.

This study showed a slight decline in the incidence of urolithiasis globally for both genders, consistent with several previous evaluations of regional trends in urolithiasis. A recent population-based study from Rochester showed the incidence rates might have decreased in males and reached a plateau in females since 1990 [23]. This study reported relatively stable incidence rates from 1970 to 2000 and a downward trend in the overall incidence of kidney stones in the Caucasian population [23]. Numerous previous data reported that urolithiasis prevalence in most countries has been rising in recent decades [3,7,8,24,25], such as the United States, New Zealand, Germany, and Japan. While the incidence trend was slightly decreased or stable, it implies that new urolithiasis cases increased more slowly.

Although the consequences are not life-threatening in most stone patients, it is a significant cause of morbidity, hospitalization, and days lost from work [26]. There has been a significant decrease in the DALYs of urolithiasis globally, and it decreased linearly with SDI except for high SDI countries. From 1990 to 2019, Global DALYs of urolithiasis, with 122 of 195 countries or territories, had improved. Over the last three decades, this decreasing pattern in the age-standardized DALY rate of urolithiasis may be partly attributable to surgical innovations and better treatment guidelines [27]. These advances have made interventions safe, effective, and associated with shorter recovery duration and lesser discomfort [28].

There is significant geographic variation in urolithiasis incidence worldwide. Even though throughout a country, the incidence may have a drastic range [5]. The variation in demography is impacted by many factors, such as climate, ethnicity, environmental factors, availability of medical practice, dietary styles, and age distribution; these factors interact in complex ways. This study observed a decreasing trend in 12 of 21 regions. The most significant decrease in APC was observed in Eastern Asia, followed by high-income Eastern Europe and high-income North America, collectively contributing to 73.130% of the decreasing trend. In addition, the APC of ASIR decreased in 53 of the 195 countries; the top three were China, Indonesia, and New Zealand. This decreasing trend has been influenced by some regions, particularly in populous East Asia. For example, as the most populous country in the world, China has experienced a remarkable decline. In the last decades, the diet structure of China has greatly changed, and the consumption of fruits and vegetables is on the rise, which are protective factors for urolithiasis development [29]. This could partially help to explain the decreasing trend.

However, an increasing trend was observed in the other nine regions. The most significant increase in APC was detected in South Asia, followed by Andean Latin America and Western Europe. These three regions contributed 58.815% of the overall increasing trend. In addition, between 1990 and 2019, almost three-fourths of the countries or territories displayed a rising trend during the observational period, the majority with statistical significance. The territories of Taiwan (a part of China) showed the most pronounced increase, followed by Ecuador and Belgium. The progress in diagnostic procedures, such as sonography, has led to a significant improvement in early diagnosis of asymptomatic urolithiasis, which may increase the trend in low and low-middle SDI nations [30]. Significant changes in nutritional and environmental factors might also lead to progress in the burden of urolithiasis [30].

While most countries in the low and low-middle SDI quintiles showed an increase in ASIR, these values declined in the middle, high-middle, and high SDI quintile countries. Between-country variations in factors, such as socioeconomic status (per-capita income, fertility, and education levels), access to prevention, diagnosis, and treatment facilities, and differences in clinical practice, could further lead to heterogeneity in these burden estimates. Socioeconomic status (SES) differences in health outcomes are among the most consistent epidemiological findings [31]. An earlier ecological study also reported an association of diversity of income and education levels with incidence and mortality differences of disease in each region [32], patients with higher SES levels might have less unhealthy living behavior than lower SES patients [32]. Furthermore, compared to countries with low income, high-income countries have more advocacy, media attention, and funding for the prevention and treatment of disease [33]. Therefore, to further reduce the disease burden, more regions, especially countries with low or middle SDI, should consider increasing the investment in health careers [34]. Changes in socioeconomic conditions over time, and the subsequent changes in dietary styles, have affected not only the incidence rate but also the location and composition of stones [2]. In addition, the observed variation in urolithiasis estimated burden among the SDI quintiles levels was not only due to differences in socioeconomic status but also to differences in genetic background, lifestyles, and exposure to environmental and nutritional factors.

In addition, due to global warming from climate change, it is expected that the prevalence of kidney stone disease will increase due to more significant insensible water losses, resulting in more concentrated urine and altered urinary flow. In line with this, Kaufman et al. found that an increased burden of kidney stone disease on healthcare systems attributed to climate warming is very likely [35]. Especially the burden of greenhouse gas emissions was more prominently observed in low-income countries [36], which may be another plausible reason for explaining the disease burden trend discrepancy between various income levels of regions and countries.

The Asian–Africa stone-forming belt includes the Philippines, Indonesia, Thailand, Myanmar, India, Pakistan, Iran, the United Arab Emirates, Saudi Arabia, Egypt, and Sudan. In this area, urolithiasis was detected in all age groups, with prevalence ranging from 4% to 20% [37]. The higher prevalence in these stone-forming belt countries is possibly determined by the high consanguinity among ethnic groups [38]. In the current study, we found that this stone belt still exists. However, the estimated burden of a few countries declined, and the decreased trend was significant in Indonesia, Thailand, and Sudan.

There were several limitations of the study. First, GBD estimates are a combination of data and largely depend on the quality and quantity of data used in the modeling [10]. The health surveys and other data systems in different countries result in wide uncertainty in these estimates. Several statistical procedures have been developed to address this flaw, including modeling based on regional patterns and disease-specific covariates [39]. Furthermore, differences in data collection practices and coding systems and the quality of data sources remain major challenges. However, the GBD 2019 study has made a substantial effort to solve these difficulties in the methodological framework, including applying corrections for under-registration and garbage code redistribution algorithms [40]. Secondly, given the misclassification of urolithiasis and the adoption of different disease coding systems in the input data sources, we failed to estimate temporal trends in the burden of urolithiasis stratified by stone location and composition. Thirdly, SDI utility is restricted in countries with income inequality. The applicability of SDI could therefore be enhanced by taking into account social heterogeneity within countries [41]. However, data from GBD is the most thorough and standardized when compared to other sources because it provides complete time series and outcomes at the country level. This is useful for policymakers who need to effectively distribute the limited resources in their healthcare systems.

5. Conclusions

Since urolithiasis is a common disease worldwide, elucidating the trends and burden estimates over time is essential to establish policies and accurately set priorities for action. The GBD 2019 study provides an opportunity to assess the latest evidence, and monitor these trends to determine where interventions exert an effect. Our findings collectively indicate that while progress has been made in reducing the global burden of urolithiasis in the middle, high-middle, and high-SDI countries, more effective prevention strategies are required for low and low-middle SDI countries.

Acknowledgments

We give special thanks to all the colleagues at the Department of Urology of the Third Medical Centre, Chinese PLA General Hospital for their help and support.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jcm12031048/s1, Figure S1: Flowchart, urolithiasis incidence to DALY estimation; Table S1: GATHER checklist; Table S2: The geographical coverage of urolithiasis data by measure in GBD 2019; Table S3: Covariates selected for CODEm for urolithiasis and expected direction of covariate; Table S4: Total number of site years by cause and source type for GBD 2019; Table S5: Results for CODEm model testing; Table S6: Comparison of GBD 2016 and GBD 2019 covariates used and level of covariates; Table S7: Socio-Demographic Index groupings by location, based on 2019 values. References [42,43,44,45,46] are cited in the Supplementary Materials.

Author Contributions

G.Y. had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. G.Y.: Protocol/project development; J.L., Y.Z., Z.X. and G.Y.: Data collection or management; J.L., Y.Z., Z.X. and G.Y.: Data analysis; J.L., Y.Z., Z.X. and G.Y.: Manuscript writing/editing. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki.

Informed Consent Statement

Informed consent from all eligible patients was obtained.

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the Global Health Data Exchange query tool (http://ghdx.healthdata.org/gbd-results-tool (accessed on 1 December 2021)).

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Trinchieri A., Curhan G., Karlsen S., Jun W.K. Epidemiology. In: Segura J., Conort P., Khoury S., editors. Stone Disease. ICUD; Paris, France: 2003. Distributed by Editions 21. [Google Scholar]
  • 2.Croppi E., Ferraro P.M., Taddei L., Gambaro G., GEA Firenze Study Group Prevalence of renal stones in an Italian urban population: A general practice-based study. Urol. Res. 2012;40:517–522. doi: 10.1007/s00240-012-0477-z. [DOI] [PubMed] [Google Scholar]
  • 3.Hesse A., Brändle E., Wilbert D., Köhrmann K.-U., Alken P. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur. Urol. 2003;44:709–713. doi: 10.1016/S0302-2838(03)00415-9. [DOI] [PubMed] [Google Scholar]
  • 4.Keoghane S., Walmsley B., Hodgson D. The natural history of untreated renal tract calculi. BJU Int. 2010;105:1627–1629. doi: 10.1111/j.1464-410X.2010.09389.x. [DOI] [PubMed] [Google Scholar]
  • 5.Sorokin I., Mamoulakis C., Miyazawa K., Rodgers A., Talati J., Lotan Y. Epidemiology of stone disease across the world. World J. Urol. 2017;35:1301–1320. doi: 10.1007/s00345-017-2008-6. [DOI] [PubMed] [Google Scholar]
  • 6.Sanchez-Martin F.M., Martínez-Rodríguez R. Incidence and prevalence of published studies about urolithiasis in Spain. A review. Actas Urol. Esp. 2007;31:511–520. doi: 10.1016/s0210-4806(07)73675-6. [DOI] [PubMed] [Google Scholar]
  • 7.Stamatelou K.K., Francis M.E., Jones C.A., Nyberg L.M., Jr., Curhan G.C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63:1817–1823. doi: 10.1046/j.1523-1755.2003.00917.x. [DOI] [PubMed] [Google Scholar]
  • 8.Yasui T., Iguchi M., Suzuki S., Kohri K. Prevalence and epidemiological characteristics of urolithiasis in Japan: National trends between 1965 and 2005. Urology. 2008;71:209–213. doi: 10.1016/j.urology.2007.09.034. [DOI] [PubMed] [Google Scholar]
  • 9.Boyce W.H., Garvey F.K., Strawcutter H.E. Incidence of urinary calculi among patients in general hospitals, 1948 to 1952. J. Am. Med. Assoc. 1956;161:1437–1442. doi: 10.1001/jama.1956.02970150005002. [DOI] [PubMed] [Google Scholar]
  • 10.Roth G.A., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–1788. doi: 10.1016/S0140-6736(18)32203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Qian X., Wan J., Xu J., Liu C., Zhong M., Zhang J., Zhang Y., Wang S. Epidemiological Trends of Urolithiasis at the Global, Regional, and National Levels: A Population-Based Study. Int. J. Clin. Pract. 2022;2022:6807203. doi: 10.1155/2022/6807203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li S., Huang X., Liu J., Yue S., Hou X., Hu L., Wu J. Trends in the Incidence and DALYs of Urolithiasis From 1990 to 2019: Results From the Global Burden of Disease Study 2019. Front. Public Health. 2022;10:825541. doi: 10.3389/fpubh.2022.825541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Lang J., Narendrula A., El-Zawahry A., Sindhwani P., Ekwenna O. Global Trends in Incidence and Burden of Urolithiasis from 1990 to 2019: An Analysis of Global Burden of Disease Study Data. Eur. Urol. Open Sci. 2022;35:37–46. doi: 10.1016/j.euros.2021.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.James S.L., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–1858. doi: 10.1016/S0140-6736(18)32279-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Stanaway J.D., Afshin A., Gakidou E., Lim S.S., Abate D., Abate K.H., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–1994. doi: 10.1016/S0140-6736(18)32225-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kyu H.H., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1859–1922. doi: 10.1016/S0140-6736(18)32335-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hassan B., Ahmed R., Li B., Noor A., Hassan Z.U. A comprehensive study capturing vision loss burden in Pakistan (1990–2025): Findings from the Global Burden of Disease (GBD) 2017 study. PLoS ONE. 2019;14:e0216492. doi: 10.1371/journal.pone.0216492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Mokdad A.H., Ballestros K., Echko M., Glenn S., Olsen H.E., Mullany E., Lee A., Khan A.R., Ahmadi A., Ferrari A.J., et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, and Risk Factors Among US States. JAMA. 2018;319:1444–1472. doi: 10.1001/jama.2018.0158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.McKee S. Rethinking Development and Health: Findings from the Global Burden of Disease Study. Institute for Health Metrics and Evaluation; Seattle, WA, USA: 2016. [Google Scholar]
  • 20.Hankey B.F., Ries L.A., Kosary C.L., Feuer E.J., Merrill R.M., Clegg L.X., Edwards B.K. Partitioning linear trends in age-adjusted rates. Cancer Causes Control. 2000;11:31–35. doi: 10.1023/A:1008953201688. [DOI] [PubMed] [Google Scholar]
  • 21.Liu Z., Jiang Y., Yuan H., Fang Q., Cai N., Suo C., Jin L., Zhang T., Chen X. The trends in incidence of primary liver cancer caused by specific etiologies: Results from the Global Burden of Disease Study 2016 and implications for liver cancer prevention. J. Hepatol. 2019;70:674–683. doi: 10.1016/j.jhep.2018.12.001. [DOI] [PubMed] [Google Scholar]
  • 22.Feigin V.L., Nichols E., Alam T., Bannick M.S., Beghi E., Blake N., Culpepper W.J., Dorsey E.R., Elbaz A., Ellenbogen R.G., et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–480. doi: 10.1016/S1474-4422(18)30499-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lieske J.C., De La Vega L.S.P., Slezak J.M., Bergstralh E.J., Leibson C.L., Ho K.L., Gettman M.T. Renal stone epidemiology in Rochester, Minnesota: An update. Kidney Int. 2006;69:760–764. doi: 10.1038/sj.ki.5000150. [DOI] [PubMed] [Google Scholar]
  • 24.Du J., Johnston R., Rice M. Temporal trends of acute nephrolithiasis in Auckland, New Zealand. N. Z. Med. J. 2009;122:13–20. [PubMed] [Google Scholar]
  • 25.Trinchieri A., Coppi F., Montanari E., Del Nero A., Zanetti G., Pisani E. Increase in the prevalence of symptomatic upper urinary tract stones during the last ten years. Eur. Urol. 2000;37:23–25. doi: 10.1159/000020094. [DOI] [PubMed] [Google Scholar]
  • 26.Shuster J., Scheaffer R.L. Economic impact of kidney stones in white male adults. Urology. 1984;24:327–331. doi: 10.1016/0090-4295(84)90202-4. [DOI] [PubMed] [Google Scholar]
  • 27.Türk C., Petřík A., Sarica K., Seitz C., Skolarikos A., Straub M., Knoll T. EAU Guidelines on Interventional Treatment for Urolithiasis. Eur. Urol. 2016;69:475–482. doi: 10.1016/j.eururo.2015.07.041. [DOI] [PubMed] [Google Scholar]
  • 28.Türk C., Petřík A., Sarica K., Seitz C., Skolarikos A., Straub M., Knoll T. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur. Urol. 2016;69:468–474. doi: 10.1016/j.eururo.2015.07.040. [DOI] [PubMed] [Google Scholar]
  • 29.Xiao Y., Su C., Ouyang Y., Zhang B. Trends of vegetables and fruits consumption among Chinese adults aged 18 to 44 years old from 1991 to 2011. Zhonghua Liu Xing Bing Xue Za Zhi. 2015;36:232–236. [PubMed] [Google Scholar]
  • 30.Liu Y., Chen Y., Liao B., Luo D., Wang K., Li H., Zeng G. Epidemiology of urolithiasis in Asia. Asian J. Urol. 2018;5:205–214. doi: 10.1016/j.ajur.2018.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Krieger N., Williams D.R., Moss N.E. Measuring social class in US public health research: Concepts, methodologies, and guidelines. Annu. Rev. Public Health. 1997;18:341–378. doi: 10.1146/annurev.publhealth.18.1.341. [DOI] [PubMed] [Google Scholar]
  • 32.Razi S., Ghoncheh M., Mohammadian-Hafshejani A., Aziznejhad H., Mohammadian M., Salehiniya H. The Incidence and Mortality of Ovarian Cancer and Their Relationship. Ecancermedicalscience. 2016;10:628. doi: 10.3332/ecancer.2016.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Weiderpass E., Oh J.-K., Algeri S., Bellocco R. Socioeconomic status and epithelial ovarian cancer survival in Sweden. Cancer Causes Control. 2014;25:1063–1073. doi: 10.1007/s10552-014-0407-1. [DOI] [PubMed] [Google Scholar]
  • 34.Ginsburg O., Bray F., Coleman M.P., Vanderpuye V., Eniu A., Kotha S.R., Sarker M., Huong T.T., Allemani C., Dvaladze A., et al. The global burden of women’s cancers: A grand challenge in global health. Lancet. 2017;389:847–860. doi: 10.1016/S0140-6736(16)31392-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kaufman J., Vicedo-Cabrera A.M., Tam V., Song L., Coffel E., Tasian G. The impact of heat on kidney stone presentations in South Carolina under two climate change scenarios. Sci. Rep. 2022;12:369. doi: 10.1038/s41598-021-04251-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Khan M.M.H., Havukainen J., Horttanainen M. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach. Waste Manag. Res. 2021;39:561–572. doi: 10.1177/0734242X20978277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Llanos A., Warner W.A., Luciani S., Lee T.Y., Bajracharya S., Slovacek S., Roach V., Lamont-Greene M. Gynecologic cancer mortality in Trinidad and Tobago and comparisons of mortality-to-incidence rate ratios across global regions. Cancer Causes Control. 2017;28:1251–1263. doi: 10.1007/s10552-017-0961-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Robertson W.G. Renal stones in the tropics. Semin. Nephrol. 2003;23:77–87. doi: 10.1053/snep.2003.50007. [DOI] [PubMed] [Google Scholar]
  • 39.Ali S.H., Rifat U.N. Etiological and clinical patterns of childhood urolithiasis in Iraq. Pediatr. Nephrol. 2005;20:1453–1457. doi: 10.1007/s00467-005-1971-0. [DOI] [PubMed] [Google Scholar]
  • 40.Fitzmaurice C., Abate D., Abbasi N., Abbastabar H., Abd-Allah F., Abdel-Rahman O., Abdelalim A., Abdoli A., Abdollahpour I., Abdulle A.S.M., et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2018;4:1553–1568. doi: 10.1001/jamaoncol.2018.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Ahern R.M., Lozano R., Naghavi M., Foreman K., Gakidou E., Murray C.J. Improving the public health utility of global cardiovascular mortality data: The rise of ischemic heart disease. Popul. Health Metr. 2011;9:8. doi: 10.1186/1478-7954-9-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Global Burden of Disease Study 2019 (GBD 2019) Data Input Sources Tool. Institute for Health Metrics and Evaluation; Seattle, WA, USA: 2019. [(accessed on 1 December 2022)]. Available online: https://ghdx.healthdata.org/gbd-2019/data-input-sources. [Google Scholar]
  • 43.Das Gupta P. Standardization and Decomposition of Rates: A User’s Manual. U.S. Department of Commerce, Economics and Statistics Administration, Bureau of the Census; Washington, DC, USA: 1993. pp. 19–36. [Google Scholar]
  • 44.Das Gupta P. Standardization and Decomposition of Rates from Cross-Classified Data. Genus. 1994;50:171–196. [PubMed] [Google Scholar]
  • 45.Chevan A., Sutherland M. Revisiting Das Gupta: Refinement and extension of standardization and decomposition. Demography. 2009;46:429–449. doi: 10.1353/dem.0.0060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Bowe B., Xie Y., Li T., Xian H., Al-Aly Z. Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to ESRD. J. Am. Soc. Nephrol. 2018;29:218–230. doi: 10.1681/ASN.2017030253. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the Global Health Data Exchange query tool (http://ghdx.healthdata.org/gbd-results-tool (accessed on 1 December 2021)).


Articles from Journal of Clinical Medicine are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES