Skip to main content
Springer logoLink to Springer
. 2022 Dec 31;27(2):226–250. doi: 10.1007/s10995-022-03545-9

The Architecture of Early Childhood Sleep Over the First Two Years

Sonia Marie Lenehan 1,, Leanna Fogarty 1, Cathal O’Connor 1, Sean Mathieson 1, Geraldine B Boylan 1
PMCID: PMC9925493  PMID: 36586054

Abstract

Introduction

The architecture and function of sleep during infancy and early childhood has not been fully described in the scientific literature. The impact of early sleep disruption on cognitive and physical development is also under-studied. The aim of this review was to investigate early childhood sleep development over the first two years and its association with neurodevelopment.

Methods

This review was conducted according to the 2009 PRISMA guidelines. Four databases (OVID Medline, Pubmed, CINAHL, and Web of Science) were searched according to predefined search terms.

Results

Ninety-three studies with approximately 90,000 subjects from demographically diverse backgrounds were included in this review. Sleep is the predominant state at birth. There is an increase in NREM and a decrease in REM sleep during the first two years. Changes in sleep architecture occur in tandem with development. There are more studies exploring sleep and early infancy compared to mid and late infancy and early childhood.

Discussion

Sleep is critical for memory, learning, and socio-emotional development. Future longitudinal studies in infants and young children should focus on sleep architecture at each month of life to establish the emergence of key characteristics, especially from 7–24 months of age, during periods of rapid neurodevelopmental progress.

Keywords: Infant sleep, NREM, REM, Term infants, Sleep deprivation, Sleep–wake cycle, Neurodevelopment, Early childhood

Significance Statement

Human neonates and infants spend most of the time asleep. Despite this, there is a lack of knowledge surrounding sleep, its function, and its relationship with neurodevelopment. Ninety-three studies were included in this review. Together they highlight the role sleep plays in social and emotional development as well as learning and memory. Most information on early childhood sleep relates to sleep in the first six months of life and future research should focus on the role that sleep plays in neurodevelopment between 7 and 24 months of age.

Introduction

The architecture of sleep changes markedly over the first two years of age. Despite increasing research interest, gaps remain in our knowledge of infantile sleep, its precise function, and the impact of sleep disruption in infancy and early childhood on cognitive and physical development. Few recommendations exist to educate healthcare providers and parents of young children about the importance of sleep and its impact on overall health (Mukherjee et al., 2015). The majority of research on neonatal sleep generally includes older children, adults, and animal models. Sleep studies focusing on normal sleep in early childhood are necessary to ensure greater understanding of the role sleep plays in cognitive development (Jiang, 2019; Tham et al., 2017).

Neonatal sleep is characterized by Active Sleep (AS), Quiet Sleep (QS), and Indeterminate Sleep (IS). Active Sleep is also called Paradoxical Sleep (Samson-Dollfus et al., 1983); it is characterised by rapid eye movements, irregular breathing, body and limb movements, low voltage electroencephalography (EEG), and high variability in heart rate (Barbeau & Weiss, 2017; Mirmiran et al., 1993). AS is believed to play a role in the maturation of the central nervous system (CNS) and facilitate growth and development (Denenberg & Thoman, 1981; Mirmiran et al., 1993). Evidence of the role of AS in brain development comes from research using animal models (Bertelle et al., 2005; Mirmiran, 1995; Mirmiran et al., 1983, 1988, 1993). QS is characterised by reduced eye movements, regular breathing, decreased body movements, slow wave activity on the EEG, and low variability in the heart rate (Barbeau & Weiss, 2017; Mirmiran et al., 1993). It is presumed that QS plays a role in energy maintenance, the release of growth hormones (Bertelle et al., 2005) and has a restorative function (Mirmiran, 1995). After two months of age AS becomes Rapid Eye Movement (REM) Sleep, and QS becomes non-Rapid Eye Movement (NREM) Sleep. When elements of both AS and QS are present, it is described as indeterminate sleep (Bertelle et al., 2005; Korotchikova et al., 2009). This stage is considered a transitional stage or measure of immature sleep (Louis et al., 1997).

Sleep structure in early childhood is very different to sleep in adulthood. At birth, an ultradian rhythm dominates, and infants and young children spend a greater period of time asleep in a 24 h period and have different EEG patterns to older children and adults during sleep (Barry, 2020). Rapid changes occur in sleep structure within the first 12 weeks and continue throughout childhood (Dittrichova, 1966). Throughout this period, sleep is restructuring and reorganising in parallel with rapid brain growth and neuroplasticity (Bes et al., 1988). This is best seen on EEG, where patterns of sleep undergo swift changes especially during the first few months, e.g. the disappearance of tracé alternant, the appearance of sleep spindles (Jenni et al., 2004), and the disappearance of focal sharp waves (Ellingson & Peters, 1980).

Sleep has been associated with learning and memory and emotional regulation. However the role of sleep during brain development in early childhood is not well known. (Jiang, 2019). Understanding sleep and its role in development is necessary to;

  1. Ensure caregivers have the necessary information to support normative development of infant and young children’s sleep (Paavonen et al., 2020)

  2. Understand the development of normative sleep and the range of normative sleep variables (Jiang, 2019; Paavonen et al., 2020), and

  3. Investigate the potential of sleep as a target for early intervention to optimize development (Tham et al., 2017).

The aim of this narrative review is to discuss available literature relating to sleep development and the impact of sleep on neurodevelopment in the first two years and to identify gaps in the scientific literature at this critical stage of neurodevelopment.

Methods

Search Strategy

The search strategy for this narrative review was conducted according to the 2009 Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines (Liberati et al., 2009). Inclusion and exclusion criteria were established, databases were identified, search terms and data to be collected were agreed upon by authors SL and LF. In May 2021, SL searched four databases (OVID Medline, Pubmed, CIMAHL, and Web of Science). The full search strategy is shown in Table 1. No limitations were applied to the publication years. The papers were extracted using EndNote™ Version X9. Duplicates were removed. Extracted papers were included or excluded based on title and abstract. Full articles were screened for inclusion based on the below criteria. The reference lists of all relevant articles were checked manually for papers potentially missed by the search.

Table 1.

Search strategy for the four databases used in the review

graphic file with name 10995_2022_3545_Tab1_HTML.jpg

Inclusion Criteria

Studies were included if:

  • Participants were healthy infants and young children up to the age of 2 years.

  • More than five subjects were included.

  • Objective (polysomnography, actigraphy) or subjective (self-reported) measures of sleep were recorded, such as sleep duration, night-waking, sleep latency, longest sleep period, daytime naps, sleep architecture, and sleep efficiency.

  • Sleep variables and neurodevelopmental or cognitive-developmental outcomes were reported.

Exclusion Criteria

Studies were excluded if:

  • Participants were born preterm (< 37 weeks’ gestational age) or admitted to a Neonatal Intensive Care Unit (NICU).

  • Cohort had a mean age > 24 months.

  • Behavioural interventions were performed.

  • Studies were validation of methodology or computational models, and did not contribute information on sleep.

  • Cohorts were duplicated, unless assessed at different time points.

  • Sleep data or development data were not reported in results.

  • Type of publication was a review article, book chapter, dissertation, or conference abstract.

  • No English translation was available.

Data Collection

Author, year, sample size, assessment age, sleep variables reported in the studies, and developmental assessments were collected. Reported hours of sleep were collected from each article for 24 h and/or 12 h for; total sleep time (TST), AS, QS, IS, REM, and NREM. The weighted mean was calculated for each variable that had data available using the formula: weighted mean = sum of (number x weighting factor)/sum of all the weights.

Results

Results from the search strategy are shown in Fig. 1. Ninety-three studies assessed sleep in approximately 90,000 subjects. Table 2 lists the characteristics of the studies, including sample size (male:female), cohort age, sleep variables, sleep assessment tools, and development assessment. Tools included EEG, actigraphy, questionnaires, and sleep diaries. Most studies used one tool to assess sleep, eighteen used two, and four used three tools. Forty-one studies assessed sleep using one assessment in the first year, 31 studies used multiple assessments over the first year, 6 studies used one assessment in the second year, and two studies used multiple studies over the second year. Four studies used one assessment with the cohort ranging over the first two years. Table 3 shows the weighted means of daytime sleep, night-time sleep, and TST over 24 h. Figure 2 provides a visual summary of the development of sleep in the first year, showing the appearance and disappearance of tracé alternant, the appearance of slow wave sleep and spindles, and the number of hours of sleep in a 24 h period.

Fig. 1.

Fig. 1

Flow chart indicating the results of the database search with inclusions and exclusions. Template of the flowchart was taken from Liberati et al. (2009) GA Gestational Age

Table 2.

Characteristics of included studies

Author Category Sample size (M:F) Age at assessment Sleep assessment Sleep variable Developmental assessments
(Acebo et al., 2005) Sleep Patterns 169 (84:85) 12, 18, & 24, months Sleep diaries, Actigraphy Diary: Bedtime, Rise time, TIB, Reported Wake minutes, Nap duration, No. of Naps. Actigraphy: Sleep start time, Sleep end time, Sleep period, Wake mins, SE, Mins of longest continuous sleep, Mean activity
(Adams et al., 2019) Sleep development 24 (14:10) 6, 15, & 24 weeks Actigraphy, BISQ Actigraphy: Night-time sleep interval duration, Total daytime nap duration, Total 24 h sleep duration, Sleep maintenance efficiency, Avg. nap duration, No. naps per day,
(Anders & Roffwarg, 1973) Sleep deprivation 17 (6:11) 24–96-h-old EEG % REM sleep, NREM sleep and awake
(Anders, 1978) Sleep patterns

32

2 months (16:16),

9 months (19:17)

2 & 9 months Time-lapse video Total recording period, out of crib, Awake, QS, AS
(Ashton, 1971) Behavioural sleep cycles 22 (12:10) Avg. age 72.8 h postpartum Observation & polygraph Crying, Activity, Eyes open, Mean duration of Alert state, AS & QS
(Atun-Einy & Scher, 2016) Sleep disruption 20 (14:6) 7 & 11.5–12 months Actigraphy SE & Night waking
(Bamford et al., 1990) Sleep patterns 174 6, 13, 26, & 52 weeks Diary, Questionnaire, & Interviews Mean number of episodes of sleep, TST
(Becker & Thoman, 1981) REM storms Group 1: 15 (8:7) Group 2: 14 (6:8) 2, 3, 4, & 5 weeks. 3, 6 & 12 months Sleep observation AS, QS, S-W transition. Amount of time slept. Level of REM activity on a 4-point scale Bayley Scales of Mental Development
(Bes et al., 1988) Sleep development 48 1–54 weeks EEG Qualitative evaluation, Range of the EEG parameter, Range differences within the night, Recurrence time of EEG synchronisation and desynchronisation
(Bernier et al., 2010) Sleep development 60 (36:24) 12–13, 18, & 26 months Sleep diary Total sleep duration, % of total sleep occurring at night (7am—7 pm), and sleep fragmentation (no. of night-awakenings) EF assessment, Mental Development Index of the Bayley Scales of Infant Development, MacArthur Communicative Developmental Inventory
(Blair et al., 2012) Sleep development 11,478 (5922:5556) 6, 18 months Questionnaires Night-time sleep duration, Daytime sleep, Total daily sleep, No. of night-awakenings
(Carroll et al., 1999) Sleep development 47 2 days old Motility Monitoring System AS, QS, A-Q transitional sleep, S-W transition, Wake, Periods out-of-the-crib
(Cheour et al., 2002) Learning and Memory 45 2–7 days old Mismatch Negativity (MMN) MMN recordings to analyse the responses to vowel sounds
(Coons & Guilleminault, 1984) Sleep development 30 3 & 6 weeks, 3 & 6 months EEG, EOG, EMG, ECG Longest sleep period, longest wake period, Spindles, Delta waves, REM, NREM, TST of NREM sleep spindles, Efficiency of a sleep stage, longest period of uninterrupted sleep analysed for duration, Type of onset, Position in 24 h, Stage sequence and efficiency
(Corsi-Cabrera et al., 2020) Sleep development 60 41–45 weeks post-conception Polysomnography Wakefulness, AS, QS, Transitional sleep, Quantitative EEG analysis
(D'Atri et al., 2018) Sleep development 39 (25:14)

0–48 months

0–3 n = 14,

4–12 n = 7,

13–24 n = 11,

Polysomnography Total sleep period, TST, QS/NREM, AS/REM, % WASO, Sleep spindle detection
(Denenberg & Thoman, 1981) Sleep development 21 2–5 weeks Sleep observed by researchers Waking Active, Quiet Alert, Fuss or Cry, Drowse or Transition, AS, QS
(Dittrichová et al., 1972) Sleep development 19 2, 4, 6, 9, 12, 16, 20, & 24 weeks of age EEG, EMG, EOG Duration of the REM epoch, Frequency of REMs, Intervals between single REMs
(Eaton-Evans & Dugdale, 1988) Sleep–wake patterns 132 Monthly from 1–12 months Interviews Night waking, Factors associated with night waking
(Eiselt et al., 2001) Sleep development 6 3–8 days old EEG Sleep states
(Ellingson & Peters, 1980) Sleep development 17 (5:12) 8–9 months EEG Wakefulness, drowsiness (D), QS/SWS, AS/REMS, or IS. QS or SWS, AS or REMS, and IS times as percentages of TST Behavioural Testing
(Fagioli & Salzarulo, 1982) Sleep development 13 2 weeks to 11 months & 3 months EEG, EOG, EMG QS, Paradoxical sleep, Ambiguous sleep, Waking
(Fagioli & Salzarulo, 1997) Sleep development 12 9–47 weeks Polygraphy The range (difference between the value at the beginning of the QS episode and that at the trough), the trough latency (interval between QS onset and trough), and the rate of synchronisation (range/trough latency)
(Fattinger et al., 2014) Sleep development 11 (5:6) 2, 4, 6 & 9 months Polysomnography TST, % of NREM, % of REM, WASO, SE, SWS
(Fifer et al., 2010) Learning and memory 34 10-73 h of age EEG Eye movement response data
(Figueiredo et al., 2016) Sleep development 94 (54:40) 2 weeks, 3 & 6 months The Infant Sleep Chronogram Sleep hours, Awake hours, Awakenings, Latency to sleep, longest sleep period, 24 h period sleep
(Franco et al., 2005) Sleep deprivation 16 (10:6) 8 weeks old Night-time polygraphy recording NREM, REM, Wakefulness, Movement time
(Franco et al., 2004) Sleep deprivation 14 (4:10) 8 weeks old EEG, EOG, ECG, EMG, Actigraph NREM, REM, IS, Wakefulness, Movement time, SE
(Fransson et al., 2009) Sleep development 21 (9:12) New-born Functional MRI Resting-state networks
(Freudigman & Thoman, 1994) Sleep development 31 (13:18) 2–5 days old Motility Monitoring System AS, QS, A-Q Transitional Sleep, S-W Transition, Wake, Out-of-the-crib
(Freudigman & Thoman, 1998) Sleep development 51 (23:28) 1–5 days old Motility Monitoring System AS, QS, A-Q Transitional Sleep, S-W Transition, Wake, Longest sleep period, Mean sleep period, Time in crib
(Fukuda & Ishihara, 1997) Sleep development 10 (7:3) 0–6 months Sleep log Sleep scored as 1 and wake scored as 0
(Giganti et al., 2001) Sleep development 12 2 weeks to 11 weeks & 3 months Polygraph QS, Paradoxical sleep, Ambiguous sleep, and Wakefulness
(Goodlin-Jones et al., 2001) Sleep development 80 (39:41) 3, 6, 9, & 12 months Time-lapse video Longest sleep period, % of time in AS, QS, wakefulness, & out of crib. No. and duration night-awakenings, Duration from vocalization to caregiver’s interaction. Time & duration of parent’s checking on sleeping infant, all parent interactions with wakeful infant during the night
(Harper et al., 1981) Sleep development 25 (16:9) 1 week, 1, 2, 3, 4, & 6 months EEG, EMG, ECG QS, AS, Waking and IS
(Hayes et al., 2011) Sleep development 120 6 weeks, 16 & 24 months Day Diary, Sleep Habits Inventory Diary: Sleeping, Awake & content, fussing, crying, feeding. Sleep Habits inventory: Bedtime, rise time, night waking, presence of sleep problems, ease of sleep onset, use of sleep aids Infants/Toddler Symptom Checklist
(Henderson et al., 2020) Sleep development 52 1, 3, 6, 9, & 12 months Sleep diary, The composite Sleep Scale, Sleep diary: frequency of night-waking, No. of S-W transitions over 24 h, Longest self-regulated sleep period duration, & TST/24 h. The Composite Sleep Scale: Avg. time of sleep onset or avg. bedtime, Total time slept at night, No. of waking/night, No. of nights waking/week, time awake/waking, Avg. weekly hours bedsharing (co-sleeping)
(Hoppenbrouwers et al., 1988) Sleep development 20 (11:9) 1 week, 1, 2, 3, 4, & 6 months Polygraph % TRT, % TST, No. of episodes during TRT, Mean & median duration of episode during TRT, Mean & median interval between onset of identical states, No. of epochs of sustained state, Mean duration of sustained states. Longest episode in AS, QS and Wake, AS-QS ratio. Sleep state transitions: Q–A, QS-Awake, Awake-QS, Awake-AS, AS-QS, AS- Awake
(Horne et al., 2003) Sleep development

2–3 months

21 (7:14)

5–6 months

16 (8:8)

2–3 & 5–6 months Daytime polygraph NREM, REM. Spindle frequency, duration, and density. %NREM with spindles, Arousal threshold
(Horváth et al., 2018) Learning and memory 45 (15:30) 86–122 days old Polysomnography, Sleep and Naps Oxford Research Inventory Night-time sleep, Daytime sleep, Awake time during night, Sleep time, % NREM2, % SWS, % REM, Sleep spindle density Eye-tracking assessment
(Horváth et al., 2016) Learning and memory 28 (14:16) 15–16 months Sleep and Naps Oxford Research Inventory, Actigraph Naptime, Wake time Eye-tracking assessment, Oxford Communicative Development Inventory
(Horváth et al., 2015) Learning and memory 38 (16:22) 16 months Sleep and Naps Oxford Research Inventory, Avg. sleep time, Avg. Nap time Eye-tracking assessment, Oxford Communicative Development Inventory
(Hysing et al., 2014) Sleep development 55,831 (28,507:27,324) 6, 18 months Questionnaires

6 months: Sleep duration, Nocturnal awakenings, Easy to put to bed & falls asleep quickly, Co-sleeping after birth, Co-sleeping at 2 month, Co-sleeping at 4 months, Co-sleeping at 6 months

18 months: Sleep duration, Nocturnal awakenings

(Hysing et al., 2016) Sleep development 2,012 (1039:973) 2 years old BISQ TIB, Duration of wakefulness, Nocturnal settling time, Sleep duration, No. of nocturnal awakenings, is sleep an issue? Sleep onset latency, WASO ASQ: Social-Emotional
(Iemura et al., 2016) Sleep development 300 18 months Japan Children's Study of Sleep Questionnaire Wake time, Bedtime, No. of night-waking, Nap time, Daytime sleep, TST, SE, TIB, Total nap time Neurobehavioral observation, MCHAT, KINDER Infant Development Scales
(Jacklin et al., 1980) Sleep development

161

6 months = 17,

9 months = 19,

12 months = 16, 18 months = 73, 26 months = 36

6, 9, 12, 18, 26 months old Sleep diary Longest period of sleep, longest period of wakefulness, Total sleep, No. of sleep-wakefulness transitions
(Jenni et al., 2004) Sleep development 11(5:6) 2 weeks, 2, 4, 6, & 9 months old All-night home polysomnography TRT, Total sleep of first 418.7 min of TRT, Duration and % SE, %WASO, Duration and % of QS/NREM, AS/REM, % IS, Movement time, Duration of sleep cycles, No. of cycles per subject
(Kärki et al., 2020) Sleep development 72 (34:38) 8 months old Overnight home polysomnography, Questionnaire Questionnaire: regularity of bedtime routine, typical time of falling asleep, No. & duration of daytime naps. PSG: %REM, %N1, %N2, %N3, %NREM, Wakefulness, TST, Sum of awaking & arousal index, %SE, WASO, Sleep onset latency, REM onset latency
(Karki et al., 2019) Sleep development 85 (43:42) 1 month old Overnight home polysomnography %REM, %NREM, Wakefulness, TST, Sum of awaking and arousal index, %SE, WASO, No. of times awake
(Kocevska et al., 2018) Sleep patterns 6,808 2 years old Questionnaires Bedtime, Wake time, Amount of daytime sleep, Total sleep duration
(Korotchikova et al., 2016) Sleep development 80 (42:38) Within 36 hs after birth Continuous Video-EEG AS, QS, IS, Wakefulness, Sleep–wake cycle
(Korte et al., 2004) Sleep development 57 (32:25) Birth—6 days old Actigraph Daytime sleep, night-time sleep, 24 h sleep
(Ktonas et al., 1995) Sleep development

28

2–6 weeks = 10,

7–14 weeks = 10, 16–48 weeks = 8

2–6, 7–14, 16–48 weeks Whole night polysomnography Longest phase of QS, Mean, SD, and range of the longest period of QS
(Lampl & Johnson, 2011) Sleep and growth 23 (9:14) 4–17 months old Sleep records No. of sleep bouts, No. of hours per bout, Total sleep hours
(Liefting et al., 1994) Sleep development 23 4–47 weeks old Polygraph Waking, Paradoxical sleep, QS, SWS, Tonic EMG, EMG instability
(Louis et al., 1997) Sleep development 15 (7:8) 3, 6, 9, 12, 18, & 24 months 24 h EEG Duration and % of Wakefulness, REM, NREM stages 1, 2, 3, IS & SWS. TRT, SEI
(Louis et al., 1992) Sleep development 12 (6:6) 1.5–3 months, 4.5-6 months Overnight polygraphy records IS, QS/NREM, AS/REM, Sleep spindles: Location, Density, Frequency, Amplitude, Asymmetry, Asynchrony
(Lukowski & Milojevich, 2013) Sleep development 25 10 months BISQ Night-time sleep duration, Frequency of night-waking, Daytime sleep duration, % of sleep obtained at night Elicited Imitation
(Matsuoka et al., 1991) Sleep development 33 (12:21) 8 days—4 months Sleep records Sleep, Wakefulness
(Miano et al., 2011) Sleep development 11 (7:4) 5–16 months Daytime polygraph Sleep period time, TST, Sleep latency, REM latency, SE, WASO (%), N1 (%), N2 (%), N3 (%), REM (%), CAP rate (%), CAP rate S1, S2, S3, CAP time, A1 (%), A2 (%), A3 (%), A1 index, A2 index, A3 index, A mean duration, B mean duration
(Mindell et al., 2012) Sleep development 92 (36:56) 3–18 months BISQ No. of night-waking, longest continuous sleep period, Total night-time sleep, Sleep onset latency, Number of daytime naps, how often wakes in own bed, consider sleep a problem
(Mindell et al., 2017) Sleep and socio-emotional development 117 6, 12, & 18 months BISQ Bedtime, Sleep onset latency, No. of night-waking, longest continuous sleep period, TST in a 24 h period ITSEA
(Nakagawa et al., 2016) Sleep patterns 50 1.5 years Actigraphy Naps during week, Nap duration, Bedtime, Wake Time, Sleep duration
(Navelet et al., 1982) Sleep development 42 (18:24) 1–7 months Polygraph Total sleep recording, Duration and % of AS, QS, Transitional Sleep, Wakefulness, TST
(Parmelee et al., 1961) Sleep development 75 (34:41) 1–3 days Day diary Avg. TST, Avg. longest sleeping period
(Peirano et al., 1993) Sleep development 48 1–54 weeks Polygraph Qs, Paradoxical sleep, Ambiguous sleep, Waking
(Pennestri et al., 2020) Sleep development 44 (22:22) 6 months Sleep diary Longest sleep duration, No. of nocturnal awakenings, % of 6 h. % of 8 h
(Pennestri et al., 2018) Sleep development

6 months = 388 (206:182)

12 months = 369 (193:176)

6, 12 months Questionnaires Slept through the night- 6 h, Slept through the night-8 h Bayley Scales of Infant Development-II
(Pisch et al., 2019) Learning and memory 40 (19:21) 4, 6, 8, & 10 months BISQ, Actigraph Night sleep time, WASO, Avg. night waking frequency, Avg. daytime sleep time Eye-tracking tasks assessing memory
(Ramamurthy et al., 2012) Sleep development 4602 Birth-12 months BISQ Infants’ bedtime, No. of night-waking, Duration of night-waking, No. of naps, Duration of daytime sleep, TST, Sleep latency over 30 min
(Ribner et al., 2019) Screen exposure and sleep 419 (218:211) 4 months BISQ Night-time sleep, Daytime sleep, Total sleep, No. of wakes per night IBQ very short form questionnaire
(Sankupellay et al., 2011) Sleep development 34 (16:18) 2 weeks, 3, 6, 12, & 24 months Full night polysomnography Duration of TRT, TST, Awake time, QS/NREM, NREM-N1, NREM-N2, NREM-N3, NREM-N, Movement time. %TST: SE, QS/NREM, NREM-N1, NREM-N2, NREM-N3, NREM-N, AS/REM
(Satomaa et al., 2020) Sleep development 56 (24:32) 8 months Overnight polysomnography TIB, TST, NREM, %N1, %N2, %N3, Artifact free NREM time (FFT), %REM, Awakening Index, Arousal Index Bayley Scales of Infant Development-III
(Scher, 1991) Sleep development 118 3, 6, 9, & 12 months Sleep Questionnaire Night waking, No. of interrupted nights/week, Mins to settle to sleep at bedtime, Mins to settle to sleep after awakening, No. of hours of sleep at night, No. of hours of sleep during the day
(Scher, 2005b) Sleep development 50 (26:24) 10 months Sleep Questionnaire No. of interrupted nights, No. of awakenings/night, Avg. time spent awake, Sleep onset time, Latency to fall asleep, Total sleep duration
(Scher & Cohen, 2005) Sleep and gross motor development 107 (57:50) 5–8 months Sleep Habit Questionnaire, Infant Sleep questionnaire Sleep Habit Questionnaire: No. of interrupted nights, No. of awakenings/night, Avg. time spent awake. Infant sleep questionnaire: Sleep problem score Gross Motor Checklist
(Scher, 2005a) Sleep and gross motor development 59 8 months Sleep Questionnaire, Actigraphy Sleep Questionnaire: Night-waking Index, Sleep Schedule. Actigraphy: Sleep onset time, Duration of sleep, % of activity/minute of sleep, No. of transitions from sleep–wake, longest continuous sleep period without identified wake, SE, Wake Gross Motor Checklist
(Scher & Cohen, 2015a) Sleep and gross motor development 28 (12:16) 4—11 months, visits every 2–3 weeks Actigraphy, Sleep diary Actigraphy: No of long wake episodes, Hour of sleep onset, Mins of entire sleep period, SE. Sleep diary: Bedtime, Night waking episodes (No. and duration) Motor milestone diary, Motor observations, The Infant Characteristic Questionnaire
(Scher et al., 1995) Sleep development 33 1–3 days old Sleep EEG AS, QS, IS, REMS/minute, Cycle length, EEG correlation, Arousal, Movements, % low voltage irregular active sleep segment, % Trace alternant, Delta, Theta, Alpha, Beta At 2 years: Bayley Motor and Mental Performance tests, Vineland Social Maturity Scales, Carey Temperament Questionnaire, Parental Report
(Seehagen et al., 2015) Learning and memory Exp1:120 (60:60) EXP 2:96 6 & 12 months Actigraphy, Sleep log Amount of time asleep during nap Memory task
(Simon et al., 2016) Sleep and language 37 6.5 months Nap Polysomnography, Sleep Questionnaire TST, WASO, Sleep latency, SE, NREM Stages 1, 2, and 3, REM, SWS, Theta, Alpha, Sigma, Beta Artificial Speech stream
(Spruyt et al., 2008a) Sleep development 20 (13:7) Monthly from 1–12 months Sleep diaries, Actigraphy % 24 h sleep duration, % Nocturnal sleep, % Diurnal sleep Early Infant Temperament Questionnaire (ITQ) at 3 months, Revised ITQ at 6 & 12 months, Bayley Scales of Infant Development-II at 12 months
(Sterman et al., 1977) Sleep development 10 (4:6) 4–7 days, 1, 2, 3, 4, & 6 months Polygraph AS, QS, Awake, Transitions
(Sun et al., , 2018b) Sleep and face processing 52 12 months Actigraphy TST, Daytime sleep, Night-time sleep, Sleep onset latency, WASO, Night-time SE, Circadian Rhythm activity Eye-tracking face processing task
(Sun, et al., 2018a) Sleep and development 590 (321:269) 2–30 months Chinese version of BISQ Night sleep duration, Daytime sleep duration, Total sleep duration, Duration of night-time awakenings Chinese version of Bayley Scales of Infant Development—I, The Psychomotor Developmental Index
(Sun et al., 2016) Sleep and face processing 49 (25:24) 6 months BISQ Night sleep duration, Daytime sleep duration, Total sleep duration, Mean night waking duration, Night wake frequency, % Night sleep Eye-tracking preferential looking behaviour task
(Thoman & McDowell, 1989) Sleep development 20 2, 3, 4, & 5 weeks old Sensor mattress, Sleep form Cyclicity Analysis
(Tikotzky et al., 2010b) Sleep and growth 96 (62:34) 6 months BISQ, Actigraph BISQ: Sleep onset time, Nocturnal sleep duration, Daytime sleep duration, No. of night-waking, Sleep position. Actigraph: Total sleep period, True sleep time, Sleep %, No. of night-waking Developmental Questionnaires, Growth Measures
(Tikotzky et al., 2015) Sleep development 56 3 months, 54 6 months 3 & 6 months BISQ, Actigraph, Sleep diary BISQ: Night-time involvement, Actigraph: Sleep minutes, SE, No. of long wake episodes. Sleep Diary: Infant daytime sleep duration, Infant no. of night-waking,
(Wielek et al., 2019) Sleep development 42 (27:15) 2 & 5 weeks old Polysomnography QS/NREM, AS/REM, Wake, Movement time, Transitional sleep, Power spectral density, Entropy measure
(Wooding et al., 1990) Sleep patterns 874 (432:428) 1–12 months Sleep diary and Questionnaires TST over 24 h, Night-time sleeping, Daytime sleeping, Uninterrupted night sleeping, Sleeping, Waking & Settling times, Bedtime routines
(Yoshida et al., 2015) Sleep development 34 (17:17) 3 & 4 months Actigraph, EEG, Sleep log Actigraph: Wakefulness, Light sleep, Deep sleep, EEG: Total sleep, Wake, REM, NREM stages 1–2, SWS, No. of sleep cycles
(Zhou et al., 2015) Sleep development 899 (475:424) 3, 6, 9, 12, 18, & 24 BISQ Avg. night sleep, Avg. Day sleep, Total daily sleep duration, Growth measures

AS Active Sleep, QS Active Sleep, SE Sleep Efficiency, BISQ Brief Infant Sleep Questionnaire, EEG Electroencephalogram, SWS Slow wave sleep, TIB Time in Bed, TST Total Sleep Time, WASO Wake after sleep onset, % percentage, No. number, CAP Cyclic Alternating Pattern, PSG Polysomnography, Q–A Quiet to Active, A-Q Active to Quiet

Table 3.

Weighted means of daytime sleep, night-time sleep, and total sleep time over a 24 h period

Age (Months) 1 2 3 4 5 6 7 8 9 10 11 12 18 24
Daytime Sleep (h) 6.4 2.9 4.9 3.5 2.5 2.9 3.2 2.8 2.7 1.5
Night-time Sleep (h) 6.7 8.2 8.8 9.5 9.3 10.7 11.7 9.5 10 10 9.9 9.5 11.3 7.4
TST/24 h period (h) 13.3 15.7 12.2 13.6 13.1 11.7 12.2 12.7 13

TST Total Sleep Time, h hour. Daytime weighted means calculated from (Adams et al., 2019; Blair et al., 2012; Figueiredo et al., 2016; Pisch et al., 2019; Ribner et al., 2019; Scher, 1991; Sun et al., 2018a, 2018b; Tikotzky et al., 2010b). Night-time weighted means calculated from (Adams et al., 2019; Blair et al., 2012; Fattinger et al., 2014; Figueiredo et al., 2016; Nakagawa et al., 2016; Navelet et al., 1982; Pisch et al., 2019; Ribner et al., 2019; Sankupellay et al., 2011; Scher, 1991, 2005a, 2005b; Scher & Cohen, 2015a; Sun et al., 2018a, 2018b; Sun et al., 2016; Tikotzky et al., 2010b; Tikotzky et al., 2015) TST/24 h period weighted means calculated from (Bernier et al., 2010; Blair et al., 2012; Figueiredo et al., 2016; Hysing et al., 2016; Kocevska et al., 2018; Mindell et al., 2017; Nakagawa et al., 2016; Ribner et al., 2019; Sun et al., 2018a, 2018b; Sun et al., 2016)

Fig. 2.

Fig. 2

Visual summary of the development of sleep in the first year; showing the development of sleep milestones in the EEG

Daytime Sleep

Eight studies provided daytime sleep data (see Table 3). Daytime sleep decreased from 6.5 h at 1 month to 1.5 h at 18 months (Acebo et al., 2005; Adams et al., 2019). Daytime sleep is essential for learning and memory consolidation (Cheour et al., 2002; Fifer et al., 2010; Horváth et al., 2015, 2016, 2018; Lukowski & Milojevich, 2013; Seehagen et al., 2015; Simon et al., 2016). One study suggested controlling the timing and duration of afternoon naps in 18-month-old children to promote earlier sleep onset and longer night-time sleep (Nakagawa et al., 2016). No data were available for 13–17 and 19 – 24 months.

Night-time Sleep

Data for night-time sleep were collected from 17 studies (See Table 3). Night-time sleep increased between 1–7 months (6.7 h to 11.7 h) and decreased at eight months (9.5 h). Sleep increased again at nine months (10 h) and decreased at 24 months (7.4 h). High amounts of night-awakenings were observed between 17–20 weeks (Giganti et al., 2001). Night-awakening decreased between 6–18 months (Blair et al., 2012). Infants who were crawling between 5–8 months of age had more disrupted sleep compared to their pre-crawling peers (Scher & Cohen, 2005; Scher, 2005a). At six months (n = 388) of age, 37.6% of infants slept for less than six consecutive hours at night, while 43% of infants slept for eight consecutive hours. At 12 months (n = 369), 72.4% of infants slept six consecutive hours at night and 56.6% slept eight consecutive hours (Pennestri et al., 2018). Occasional sleeping throughout the night did not prevent future night-awakenings (Pennestri et al., 2020). Swaddling resulted in decreased night-awakenings (Franco et al., 2005).

Breastfed infants had significantly more night-awakenings compared to formula-fed infants (mean (SD) 1.63 (1.24) vs 0.94 (0.87), p = 0.003 (Mindell et al., 2012)) but this resolved within the first year (Eaton-Evans & Dugdale, 1988; Mindell et al., 2012; Tikotzky et al., 2010b), and infants who were nursed back to sleep in the first year also had more night-awakenings (Ramamurthy et al., 2012). Co-sleeping was reported as a risk factor for shorter sleep duration and more frequent night-awakenings from 6–18 months (Hysing et al., 2014). One hour of exposure to electronic screen-based media at four months resulted in 13 min less nocturnal sleep (Ribner et al., 2019).

Total Sleep Time

Total sleep time over a 24 h period was available from 10 studies. The average TST was 13.13 h at one month, 15.7 h at two months, 12.2 h at one year, and 13 h at 24 months (Bamford et al., 1990; Figueiredo et al., 2016; Jacklin et al., 1980; Wooding et al., 1990). The number of sleep episodes decreased from 6.1 at two weeks to 5.2 at six months (Figueiredo et al., 2016). The duration of time awake at two weeks increased from 8.7 h to 10 h at six months, while the longest period of sleep increased from 3.2 h at two weeks to 5.6 h at six months (Figueiredo et al., 2016). Sleep efficiency (ratio of TST to time spent in bed) and periodicity increased by 12 months, with a shift towards night sleep, over daytime sleep (Louis et al., 1997; Wooding et al., 1990).

Summer born infants were reported to have shorter TST (Karki et al., 2019; Kärki et al., 2020). Parental presence at bedtime, frequency of night-awakenings, and less TST at one month of age predicted poor sleep at six and twelve months (Henderson et al., 2020). Greater parental involvement in both daytime and night-time care at three months predicted more consolidated maternal and infant sleep at six months (Tikotzky et al., 2015).

Sleep States

The duration of QS was higher on the day of birth compared to one day later in 19 infants born vaginally and 17 born by emergency Caesarean-section (CS) after a period of labour. This may be a temporary response to the stress of labour (Carroll et al., 1999). From birth, AS occupies a greater percentage of TST (Ellingson & Peters, 1980; Hoppenbrouwers et al., 1988; Korotchikova et al., 2016), with QS occupying less than half and IS occupying 5–13% of TST (Ellingson & Peters, 1980). Sleep in neonates begins in AS rather than QS/NREM sleep (Ashton, 1971; Ellingson & Peters, 1980; Hoppenbrouwers et al., 1988). As sleep matures over the first year, AS-onset gives way to QS-onset, and the percentage of TST spent in AS (between 50–80% to less than 50%) and IS decreases. The percentage of TST spent in QS increases to approximately 35–50% in the first year (Anders, 1978; Dittrichová et al., 1972; Ellingson & Peters, 1980; Fagioli & Salzarulo, 1997; Fattinger et al., 2014; Hoppenbrouwers et al., 1988; Jenni et al., 2004). After two months, AS and QS become REM sleep and NREM sleep, and the stages of NREM sleep begin to appear (Sankupellay et al., 2011).

By six months, all sleep should begin with NREM onset (Ellingson & Peters, 1980). The increase in NREM sleep duration is associated with the appearance of slow-wave sleep (SWS), or NREM stage 3, showing the maturational restructuring of sleep (Ktonas et al., 1995; Peirano et al., 1993). A potential increase in the proportion of SWS was seen in exclusively breast-fed 3–4 month old infants (Yoshida et al., 2015).

Electroencephalogram Characteristics of Sleep

Within 6–12 h of birth, the EEG of healthy term neonates shows continuous, symmetrical, and synchronous activity at amplitudes of approximately 15–150 µV across all sleep states, with well-developed sleep–wake cycles (SWC) (Korotchikova et al., 2016). Markers of sleep homeostasis (low-frequency delta activity and declining theta activity throughout the night) are present in the first months (Jenni et al., 2004). REM or AS in healthy term neonates is seen on the EEG as continuous irregular, low-voltage activity with amplitudes of 15–35 µV at frequencies between 5–8 Hz. NREM/QS is continuous and synchronous with higher amplitudes of 50–150 µV.

Tracé alternant pattern is the most frequent EEG pattern detected during QS in healthy term neonates and is present from birth. Tracé alternant is characterized by bursts of high amplitude slow-wave activity (SWA) with intermixed faster frequencies, separated by lower amplitude mixed frequency activity (Eiselt et al., 2001; Ellingson & Peters, 1980) and begins to disappear rapidly from the EEG from 2 weeks of age and is not seen after six weeks (Bes et al., 1988; Ellingson & Peters, 1980).

Sleep spindles are a hallmark of stage 2 NREM sleep. Sleep spindles should be present in NREM stage 2 on EEG recording by three months (Corsi-Cabrera et al., 2020; Ellingson & Peters, 1980; Horne et al., 2003; Jenni et al., 2004; Louis et al., 1992; Navelet et al., 1982; Sankupellay et al., 2011; Sterman et al., 1977). Spindles and SWS are believed to stimulate the development of thalamocortical networks by supplying endogenous neural signals with repetitive and co-ordinated activity (Jenni et al., 2004). The density of sleep spindles, and NREM proportions with sleep spindles was more frequent when the infant was placed supine rather than prone (Horne et al., 2003). In stage 2 NREM sleep, another characteristic waveform called the K complex can appear by as early as 5 months and although its exact function during sleep is not precisely known it is believed to play a role in sleep promotion and arousal. Vertex sharp waves usually appear in the EEG at the age of 5–6 months. Between 5–16 months, Cyclic Alternating Pattern (CAP) is present during NREM sleep as a physiologic oscillating pattern. CAP is important for the build-up and maintenance of sleep. It has 2 phases, A and B, with A having three subtypes based on EEG patterns. Subtype A1 is based on the prevalance of EEG synchrony, subtype A3 is based on the prevalence of EEG desynchronization, and subtype A2 is a combination of both. Miano et al. showed that a decreased frequency of the CAP A1 subtype may indicate maturation of the arousal system (Miano et al., 2011).

Sleep and Neurodevelopment

Increasing age leads to increased ability to self-soothe after night-time awakening (Goodlin-Jones et al., 2001). At 12 months, decreased TST during the day correlated with better emotional regulation, as measured using the Behaviour Rating Scale subtest of the Bayley Scales of Infant Development II (Spruyt et al., 2008a). Infants and young children with a higher percentage of night-time sleep had more advanced executive function (Bernier et al., 2010). Fewer night-awakenings after sleep onset were identified as markers for better performance on a working memory task (Pisch et al., 2019). Sleep onset after 22:00 h and longer daytime nap durations were associated with poor neurodevelopmental outcome (Iemura et al., 2016). REM sleep storms (intense REM bursts with increased eye and facial movements) are considered normal in the first five weeks, but if present at six months, were associated with significantly lower scores on the Bayley Scale of Infant Development at one year (Becker & Thoman, 1981). Frequent night-awakening was associated with poor cognitive function in young children aged 12–30 months (Sun et al., 2018a, 2018b). At eight months, better performance on the Bayley-III psychomotor development evaluation was associated with slow-wave activity total power on EEG (Satomaa et al., 2020).

Hayes et al. reported that sleep–wake patterns and temperament were stable over the first 24 months (Hayes et al., 2011).However, other studies reported short sleep duration, night-awakenings, sleep onset problems, and later bedtime were associated with social and emotional problems (Hysing et al., 2016; Mindell et al., 2017). Longer TST and better sleep quality were associated with social learning at six and twelve months (Sun et al., 2016, 2018a). Greater motor activity during sleep and fragmented night sleep was associated with lower mental developmental index scores on the Bayley Scales (Scher, 2005b). The emergence of motor skills was associated with sleep disruption (Atun-Einy & Scher, 2016; Scher & Cohen, 2015b).

Sleep and Growth

Between 4–17 weeks, sleep was temporally related to growth (Lampl & Johnson, 2011). Short sleep duration was linked to weight gain and obesity in young children (Tikotzky et al., 2010b). Infants who slept less than 12 h per day at three months had higher body mass index (BMI) and shorter body length (Zhou et al., 2015). The search returned only these studies investigating the relationship between sleep and growth hormone secretion suggesting there is a gap in the literature.

Sleep and Mode of Delivery

Two studies reported the influence of mode of delivery on sleep. Neonates delivered vaginally and by emergency CS (following a period of labour) showed more sleep periods in the daytime compared to neonates born by elective CS (Korte et al., 2004). A significant decrease in AS and increase of QS in the EEG recordings of neonates delivered by elective CS was observed compared to neonates born vaginally or by emergency CS (Korotchikova et al., 2016). One study reported that mode of delivery did not affect sleep (Scher et al., 1995).

Sleep Deprivation

Neonates spent more time asleep after a period of sleep deprivation (Anders & Roffwarg, 1973). Short-term sleep deprivation in 6–18 week old infants was associated with development of obstructive sleep apnoea and a significant increase in the threshold for auditory arousal in sleep immediately after sleep deprivation (Franco et al., 2004).

Discussion

Rapid changes occur in sleep architecture over the first year and this review highlights the importance of sleep for neurodevelopment. Over the first two years, AS decreases while QS increases. The number of sleep episodes, TST, and night-awakenings all decrease with age, while the longest periods of sleep and wakefulness increase. This decrease in TST is not linear, as shown in Fig. 2. This may be due to the attainment of different developmental milestones, such as crawling and pull-to-stand as mentioned in this review (Atun-Einy & Scher, 2016; Scher, 2005a). Parents often report a period of unsettled or disrupted sleep around specific developmental milestones and some experts refer to this as sleep regression (Foley, 2020).

There are inconsistencies in how sleep variables are reported in the literature. This makes comparisons between studies complex in many cases. Serious ethical concerns about studies involving sleep deprivation in infants also exist. Ander and Roffwarg used foundling infants (infants left by their parents at hospitals/churches etc. (The Foundling Museum, 2020)) in their study (Anders & Roffwarg, 1973), which raises ethical concerns. Sleep depriving 6–18 week old typically developing infants (Franco et al., 2004) also raises ethical concerns.

Some sleep studies were conducted during daytime naps, and others during nocturnal sleep. This can make it challenging to compare sleep variables between studies as daytime records are often shorter and daytime naps have disproportionately less REM as development progresses (Coons & Guilleminault, 1984). This can lead to differences in reference values (Coons & Guilleminault, 1984; Ellingson & Peters, 1980; Figueiredo et al., 2016; Louis et al., 1992).

A common limitation throughout the studies was sample size. Studies acknowledged that a small sample size might have resulted in large effect sizes being detected with a possibility of type II error (Atun-Einy & Scher, 2016; Eiselt et al., 2001; Fattinger et al., 2014; Franco et al., 2004; Jenni et al., 2004; Korotchikova et al., 2009; Louis et al., 1992; Scher & Cohen, 2015a; Spruyt et al., 2008b; Tikotzky et al., 2015). The specific population studied may also be a limitation (Franco et al., 2004; Ramamurthy et al., 2012; Tikotzky et al., 2010a, 2015), with an unevenly distributed age (Franco et al., 2004), parents from medical professions (Franco et al., 2004), middle-to-high-income families in Israel (Tikotzky et al., 2015) or highly educated parents and firstborn infants (Tikotzky et al., 2010a). Ramamurthy et al. completed a study which was solely conducted online and was therefore only available to those with internet access (Ramamurthy et al., 2012).

A limitation observed in EEG studies was that some sleep recordings did not capture a full SWC, influencing the interpretation and analysis of the different sleep stages (Dittrichova, 1966; Korotchikova et al., 2016). Korotchikova et al. observed that a complete SWC was not captured for over 50% of their neonatal cohort, despite having an hour of EEG recording for each neonate. Based on their data, the authors recommended sleep EEG recordings of 150 min to ensure capture of a complete SWC (Korotchikova et al., 2016). The number of channels used for the EEG recording and the frequency of EEG recordings was a noted limitation in some studies (Sankupellay et al., 2011; Yoshida et al., 2015). Future studies should comprehensively characterise sleep EEG biomarkers over the first two years of life and correlate them with neurodevelopmental outcomes (Ventura et al., 2022).

One study using actigraphy raised concerns about reliability (Scher & Cohen, 2015a) in infant and young children studies, with another study arguing that actigraphy should be accompanied by a sleep diary (Bernier et al., 2010). Scher et al. highlighted they captured three nights of actigraphy instead of the recommended five nights (Scher & Cohen, 2015a).

The search terms used in this paper may have limited the scope of this review and missed some elements of sleep development, for example K-Complexes and vertex waves. In a review on sleep neurophysiology and maturation in infants and young children, Dan & Boyd discussed the development of K complexes and vertex sharp waves during sleep (Dan & Boyd, 2006). K-Complexes are usually present between 5–6 months of age and are well established by 18 months (Grigg-Damberger et al., 2007; Metcalf et al., 1971; Verma & Baisakhiya, 2021). However, the search strategy used in this review did not capture any studies studying these features. This should be taken into consideration when reading this review.

A strength of this narrative review was that the search strategy was developed using the PRISMA guidelines, resulting in the search being completed in a systematic way with predefined inclusion and exclusion criteria. The narrative review allowed us to look at all methods used for assessing sleep and allowed for a wider scope for inclusion of literature in this review, as systematic reviews are often restrictive with their research question.

Conclusion

Despite a considerable volume of research on sleep in the first year, research on the impact of sleep on neurodevelopment is lacking. Infants and young children spend most of the time asleep, with QS increasing and AS decreasing during maturation (Figueiredo et al., 2016). Studies highlighted the importance of sleep for learning and memory. While it is difficult to investigate the impact of sleep disruption and sleep deprivation on neurodevelopment, infants admitted for long periods in the NICU may shed some light on the effect of sleep disruption in early life on long-term outcome (Levy et al., 2017; van den Hoogen et al., 2017). However, this cohort may have sleep disruption and poor neurodevelopmental outcomes due to underlying pathology. An example of a population which may be more suited to longitudinal study of sleep disruption and neurodevelopmental outcome are infants and young children with moderate-to-severe eczema. These young children are typically developing but have disrupted sleep due to itch (Camfferman et al., 2010).

A lack of literature documenting sleep in healthy 7–24-month-old children was found during this review. As a result, gaps in knowledge about the maturation of sleep in the first two years of age exist. Longitudinal studies require a significant commitment, and monthly appointments over a 2–3 year period may be inconvenient for participating parents. To fill in these knowledge gaps, future studies should consider assessing sleep in the second year of life, as this continues to be an important period of plasticity and development (Cusick & Georgieff, 2017).

Uniformity in scoring sleep stages is recommended, as well as a consensus on whether night-time or daytime sleep studies are best. Alternatively, it may be necessary to compare daytime sleep studies with other daytime studies and similar for nocturnal studies to ensure consistent and reliable reference values. Given the importance of sleep for neurodevelopment, future longitudinal studies may need to focus more closely on specific time points in the first two years and use EEG to identify normal sleep neuro-biomarkers.

Acknowledgements

We would like to acknowledge and thank Dr Ronit M Pressler, Great Ormond Street Hospital, London, UK for producing Figure 2 and giving permission for it to be used in this manuscript.

Author Contributions

Prof Boylan and Ms Lenehan developed the review concept and methods. Ms Lenehan searched and gathered the data for the review. Prof Boylan, Dr Mathieson, Dr O’Connor and Ms Fogarty critically reviewed the drafts and gave final approval for this version to be published.

Funding

Ms Lenehan was supported by Irish Research Council GOIPG/2020/309 and through a grant from Science Foundation Ireland (12/RC/2272). Dr O’Connor is funded by the Irish Clinical Academic Training (ICAT) program, supported by the Wellcome Trust and the Health Research Board (grant number 223047/Z/21/Z); the Health Service Executive National Doctors Training and Planning; and the Health and Social Care, Research and Development Division, Northern Ireland.

Data Availability

Not Applicable.

Code Availability

Not Applicable.

Declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Acebo C, Sadeh A, Seifer R, Tzischinsky O, Hafer A, Carskadon MA. Sleep/wake patterns derived from activity monitoring and maternal report for healthy 1-to 5-year-old children. Sleep. 2005;28(12):1568–1577. doi: 10.1093/sleep/28.12.1568. [DOI] [PubMed] [Google Scholar]
  2. Adams EL, Master L, Buxton OM, Savage JS. A longitudinal study of sleep-wake patterns during early infancy using proposed scoring guidelines for actigraphy. Sleep Medicine. 2019;63:98–105. doi: 10.1016/j.sleep.2019.05.017. [DOI] [PubMed] [Google Scholar]
  3. Anders TF. Home-recorded sleep in 2- and 9-month-old infants. J Am Acad Child Psychiatry. 1978;17(3):421–432. doi: 10.1016/s0002-7138(09)62298-6. [DOI] [PubMed] [Google Scholar]
  4. Anders TF, Roffwarg HP. The effects of selective interruption and deprivation of sleep in the human newborn. Developmental Psychobiology. 1973;6(1):77–89. doi: 10.1002/dev.420060110. [DOI] [PubMed] [Google Scholar]
  5. Ashton R. Behavioral sleep cycles in the human newborn. Child Development. 1971;42(6):2098–2100. doi: 10.2307/1127615. [DOI] [PubMed] [Google Scholar]
  6. Atun-Einy O, Scher A. Sleep disruption and motor development: Does pulling-to-stand impacts sleep-wake regulation? Infant Behavior & Development. 2016;42:36–44. doi: 10.1016/j.infbeh.2015.11.003. [DOI] [PubMed] [Google Scholar]
  7. Bamford FN, Bannister RP, Benjamin CM, Hillier VF, Ward BS, Moore WMO, Moore WM. Sleep in the first year of life. Developmental Medicine & Child Neurology. 1990;32(8):718–724. doi: 10.1111/j.1469-8749.1990.tb08432.x. [DOI] [PubMed] [Google Scholar]
  8. Barbeau DY, Weiss MD. Sleep Disturbances in Newborns. Children (basel) 2017;4(10):90. doi: 10.3390/children4100090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barry ES. What Is “Normal” Infant Sleep? Why We Still Do Not Know. Psychological Reports. 2020;124(2):651–692. doi: 10.1177/0033294120909447. [DOI] [PubMed] [Google Scholar]
  10. Becker, P. T., & Thoman, E. B. (1981). Rapid eye movement storms in infants: rate of occurrence at 6 months predicts mental development at 1 year 10.1126/science.7233232. Science, 212(4501), 1415. http://science.sciencemag.org/content/212/4501/1415.abstract [DOI] [PubMed]
  11. Bernier A, Bordeleau S, Carrier J, Carlson SM. Relations between physiological and cognitive regulatory systems: infant sleep regulation and subsequent executive functioning [Article] Child Development. 2010;81(6):1739–1752. doi: 10.1111/j.1467-8624.2010.01507.x. [DOI] [PubMed] [Google Scholar]
  12. Bertelle V, Mabin D, Adrien J, Sizun J. Sleep of preterm neonates under developmental care or regular environmental conditions. Early Human Development. 2005;81(7):595–600. doi: 10.1016/j.earlhumdev.2005.01.008. [DOI] [PubMed] [Google Scholar]
  13. Bes F, Baroncini P, Dugovic C, Fagioli I, Schulz H, Franc B, Salzarulo P. Time course of night sleep EEG in the first year of life: A description based on automatic analysis. Electroencephalography and Clinical Neurophysiology. 1988;69(6):501–507. doi: 10.1016/0013-4694(88)90161-7. [DOI] [PubMed] [Google Scholar]
  14. Blair PS, Humphreys JS, Gringras P, Taheri S, Scott N, Emond A, Henderson J, Fleming PJ. Childhood sleep duration and associated demographic characteristics in an English cohort. Sleep. 2012;35(3):353–360. doi: 10.5665/sleep.1694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Camfferman D, Kennedy JD, Gold M, Martin AJ, Lushington K. Eczema and sleep and its relationship to daytime functioning in children. Sleep Medicine Reviews. 2010;14(6):359–369. doi: 10.1016/j.smrv.2010.01.004. [DOI] [PubMed] [Google Scholar]
  16. Carroll DA, Denenberg VH, Thoman EB. A comparative study of quiet sleep, active sleep, and waking on the first 2 days of life. Developmental Psychobiology. 1999;35(1):43–48. doi: 10.1002/(sici)1098-2302(199907)35:1&#x0003c;43::Aid-dev6&#x0003e;3.3.Co;2-f. [DOI] [PubMed] [Google Scholar]
  17. Cheour M, Martynova O, Näätänen R, Erkkola R, Sillanpää M, Kero P, Raz A, Kaipio ML, Hiltunen J, Aaltonen O, Savela J, Hämäläinen H. Speech sounds learned by sleeping newborns. Nature. 2002;415(6872):599–600. doi: 10.1038/415599b. [DOI] [PubMed] [Google Scholar]
  18. Coons S, Guilleminault C. Development of consolidated sleep and wakeful periods in relation to the day/night cycle in infancy. Developmental Medicine & Child Neurology. 1984;26(2):169–176. doi: 10.1111/j.1469-8749.1984.tb04428.x. [DOI] [PubMed] [Google Scholar]
  19. Corsi-Cabrera M, Cubero-Rego L, Ricardo-Garcell J, Harmony T. Week-by-week changes in sleep EEG in healthy full-term newborns. Sleep. 2020 doi: 10.1093/sleep/zsz261. [DOI] [PubMed] [Google Scholar]
  20. Cusick, S., & Georgieff, K. M. (2017). The first 1,000 days of life: The brain’s window of opportunity. https://www.unicef-irc.org/article/958/
  21. D'Atri A, Novelli L, Ferrara M, Bruni O, De Gennaro L. Different maturational changes of fast and slow sleep spindles in the first four years of life. Sleep Medicine. 2018;42:73–82. doi: 10.1016/j.sleep.2017.11.1138. [DOI] [PubMed] [Google Scholar]
  22. Dan B, Boyd S. A neurophysiological perspective on sleep and its maturation. Developmental Medicine and Child Neurology. 2006;48:773–779. doi: 10.1017/S0012162206001654. [DOI] [PubMed] [Google Scholar]
  23. Denenberg VH, Thoman EB. Evidence for a functional role for active (REM) sleep in infancy. Sleep. 1981;4(2):185–191. [PubMed] [Google Scholar]
  24. Dittrichova J. Development of sleep in infancy. Journal of Applied Physiology. 1966;21(4):1243–1246. doi: 10.1152/jappl.1966.21.4.1243. [DOI] [PubMed] [Google Scholar]
  25. Dittrichová J, Paul K, Pavliková E. Rapid eye movements in paradoxical sleep in infants. Neuropädiatrie. 1972;3(3):248–257. doi: 10.1055/s-0028-1091764. [DOI] [PubMed] [Google Scholar]
  26. Eaton-Evans, J., & Dugdale, A. E. (1988). Sleep patterns of infants in the first year of life. Arch Dis Child, 63(6), 647–649. https://ucc.idm.oclc.org/login?URL=http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=66710616&site=ehost-livehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1778851/pdf/archdisch00685-0077.pdf [DOI] [PMC free article] [PubMed]
  27. Eiselt M, Schindler J, Arnold M, Witte H, Zwiener U, Frenzel J. Functional interactions within the newborn brain investigated by adaptive coherence analysis of EEG. Neurophysiologie Clinique/clinical Neurophysiology. 2001;31(2):104–113. doi: 10.1016/S0987-7053(01)00251-9. [DOI] [PubMed] [Google Scholar]
  28. Ellingson RJ, Peters JF. Development of EEG and daytime sleep patterns in normal full-term infants during the first 3 months of life: Longitudinal observations. Electroencephalography and Clinical Neurophysiology. 1980;49(1–2):112–124. doi: 10.1016/0013-4694(80)90357-0. [DOI] [PubMed] [Google Scholar]
  29. Fagioli I, Salzarulo P. Sleep states development in the first year of life assessed through 24 h recordings. Early Human Development. 1982;6(2):215–228. doi: 10.1016/0378-3782(82)90109-8. [DOI] [PubMed] [Google Scholar]
  30. Fagioli I, Salzarulo P. Dynamics of EEG background activity level during quiet sleep in multiple nocturnal sleep episodes in infants. Electroencephalography and Clinical Neurophysiology. 1997;103(6):621–626. doi: 10.1016/s0013-4694(97)00076-x. [DOI] [PubMed] [Google Scholar]
  31. Fattinger S, Jenni OG, Schmitt B, Achermann P, Huber R. Overnight changes in the slope of sleep slow waves during infancy. Sleep. 2014;37(2):245–253. doi: 10.5665/sleep.3390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Fifer WP, Byrd DL, Kaku M, Eigsti IM, Isler JR, Grose-Fifer J, Tarullo AR, Balsam PD. Newborn infants learn during sleep. Proc Natl Acad Sci U S A. 2010;107(22):10320–10323. doi: 10.1073/pnas.1005061107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Figueiredo, Dias, C. C., Pinto, T. M., & et al. (2016). Infant sleep-wake behaviors at two weeks, three and six months [Longitudinal study Original research]. Infant Behavior and Development, 44, 169–178. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=mwic&AN=201705193 [DOI] [PubMed]
  34. Foley, L. V., Nilong. (2020). 6-Month Sleep Regression. Retrieved 12 FEB from https://www.sleepfoundation.org/baby-sleep/6-month-sleep-regression
  35. Franco P, Seret N, Van Hees J, Scaillet S, Groswasser J, Kahn A. Influence of swaddling on sleep and arousal characteristics of healthy infants. Pediatrics. 2005;115(5):1307–1311. doi: 10.1542/peds.2004-1460. [DOI] [PubMed] [Google Scholar]
  36. Franco P, Seret N, Van Hees JN, Scaillet S, Vermeulen F, Groswasser J, Kahn A. Decreased arousals among healthy infants after short-term sleep deprivation. Pediatrics. 2004;114(2):e192–197. doi: 10.1542/peds.114.2.e192. [DOI] [PubMed] [Google Scholar]
  37. Fransson P, Skiöld B, Engström M, Hallberg B, Mosskin M, Åden U, Lagercrantz H, Blennow M. Spontaneous brain activity in the newborn brain during natural sleep—An fMRI study in infants born at full term. Pediatric Research. 2009;66(3):301–305. doi: 10.1203/PDR.0b013e3181b1bd84. [DOI] [PubMed] [Google Scholar]
  38. Freudigman K, Thoman EB. Ultradian and diurnal cyclicity in the sleep states of newborn infants during the first two postnatal days. Early Human Development. 1994;38(2):67–80. doi: 10.1016/0378-3782(94)90218-6. [DOI] [PubMed] [Google Scholar]
  39. Freudigman K, Thoman EB. Infants’ earliest sleep/wake organization differs as a function of delivery mode. Developmental Psychobiology. 1998;32(4):293–303. doi: 10.1002/(SICI)1098-2302(199805)32:4&#x0003c;293::AID-DEV4&#x0003e;3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  40. Fukuda K, Ishihara K. Development of human sleep and wakefulness rhythm during the first six months of life: Discontinuous changes at the 7th and 12th week after birth. Biological Rhythm Research. 2010;28(sup1):94–103. doi: 10.1076/brhm.28.3.5.94.13132. [DOI] [Google Scholar]
  41. Giganti F, Fagioli I, Ficca G, Salzarulo P. Polygraphic investigation of 24 h waking distribution in infants. Physiology & Behavior. 2001;73(4):621–624. doi: 10.1016/s0031-9384(01)00504-2. [DOI] [PubMed] [Google Scholar]
  42. Goodlin-Jones BL, Burnham MM, Gaylor EE, Anders TF. Night waking, sleep-wake organization, and self-soothing in the first year of life. Journal of Developmental and Behavioral Pediatrics. 2001;22(4):226–233. doi: 10.1097/00004703-200108000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Grigg-Damberger M, Gozal D, Marcus C, Quan S, Rosen C, Chervin R, Wise M, Picchietti D, Sheldon S, Iber C. The visual scoring of sleep and arousal in infants and children. Journal of Clinical Sleep Medicine. 2007;3:201–240. doi: 10.5664/jcsm.26819. [DOI] [PubMed] [Google Scholar]
  44. Harper RM, Leake B, Miyahara L, Mason J, Hoppenbrouwers T, Sterman MB, Hodgman J. Temporal sequencing in sleep and waking states during the first 6 months of life. Experimental Neurology. 1981;72(2):294–307. doi: 10.1016/0014-4886(81)90224-7. [DOI] [PubMed] [Google Scholar]
  45. Hayes MJ, McCoy SK, Fukumizu M, Wellman JD, DiPietro JA. Temperament and sleep-wake behaviour from infancy to toddlerhood. Infant and Child Development. 2011;20(5):495–508. doi: 10.1002/icd.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Henderson JMT, Blampied NM, France KG. Longitudinal study of infant sleep development: early predictors of sleep regulation across the first year. Nature and Science of Sleep. 2020;12:949–957. doi: 10.2147/nss.S240075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hoppenbrouwers T, Hodgman J, Arakawa K, Geidel SA, Sterman MB. Sleep and waking states in infancy: Normative studies. Sleep. 1988;11(4):387–401. doi: 10.1093/sleep/11.4.387. [DOI] [PubMed] [Google Scholar]
  48. Horne RSC, Egodagamage C, Cranage SM, Adamson TM. Effect of infant sleeping position on sleep spindles. Journal of Sleep Research. 2003;12(1):19–24. doi: 10.1046/j.1365-2869.2003.00338.x. [DOI] [PubMed] [Google Scholar]
  49. Horváth K, Hannon B, Ujma PP, Gombos F, Plunkett K. Memory in 3-month-old infants benefits from a short nap. Developmental Science. 2018;21(3):e12587. doi: 10.1111/desc.12587. [DOI] [PubMed] [Google Scholar]
  50. Horváth K, Liu S, Plunkett K. A daytime nap facilitates generalization of word meanings in young toddlers. Sleep. 2016;39(1):203–207. doi: 10.5665/sleep.5348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Horváth K, Myers K, Foster R, Plunkett K. Napping facilitates word learning in early lexical development. Journal of Sleep Research. 2015;24(5):503–509. doi: 10.1111/jsr.12306. [DOI] [PubMed] [Google Scholar]
  52. Hysing M, Harvey AG, Torgersen L, Ystrom E, Reichborn-Kjennerud T, Sivertsen B. Trajectories and predictors of nocturnal awakenings and sleep duration in infants. Journal of Developmental & Behavioral Pediatrics. 2014;35(5):309–316. doi: 10.1097/DBP.0000000000000064. [DOI] [PubMed] [Google Scholar]
  53. Hysing M, Sivertsen B, Garthus-Niegel S, Eberhard-Gran M. Pediatric sleep problems and social-emotional problems. A population-based study. Infant Behavior & Development. 2016;42:111–118. doi: 10.1016/j.infbeh.2015.12.005. [DOI] [PubMed] [Google Scholar]
  54. Iemura A, Iwasaki M, Yamakawa N, Tomiwa K, Anji Y, Sakakihara Y, Kakuma T, Nagamitsu S, Matsuishi T. Influence of sleep-onset time on the development of 18-month-old infants: Japan Children's cohort study. Brain & Development. 2016;38(4):364–372. doi: 10.1016/j.braindev.2015.10.003. [DOI] [PubMed] [Google Scholar]
  55. Jacklin CN, Snow ME, Gahart M, Maccoby EE. Sleep pattern development from 6 through 33 months. Journal of Pediatric Psychology. 1980;5(3):295–303. doi: 10.1093/jpepsy/5.3.295. [DOI] [PubMed] [Google Scholar]
  56. Jenni OG, Borbély AA, Achermann P. Development of the nocturnal sleep electroencephalogram in human infants. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. 2004;286(3):R528–538. doi: 10.1152/ajpregu.00503.2003. [DOI] [PubMed] [Google Scholar]
  57. Jiang F. Sleep and early brain development. Annals of Nutrition and Metabolism. 2019;75(1):44–54. doi: 10.1159/000508055. [DOI] [PubMed] [Google Scholar]
  58. Kärki A, Paavonen EJ, Satomaa AL, Saarenpää-Heikkilä O, Himanen SL. Sleep architecture is related to the season of PSG recording in 8-month-old infants. Chronobiology International. 2020;37(6):921–934. doi: 10.1080/07420528.2020.1754845. [DOI] [PubMed] [Google Scholar]
  59. Karki A, Paavonen EJ, Satomaa AL, Saarenpaa-Heikkila O, Huhtala H, Himanen SL. Sleep architecture is related to birth season in 1-month-old infants. Chronobiology International. 2019;36(9):1217–1226. doi: 10.1080/07420528.2019.1629449. [DOI] [PubMed] [Google Scholar]
  60. Korotchikova I, Connolly S, Ryan CA, Murray DM, Temko A, Greene BR, Boylan GB. EEG in the healthy term newborn within 12 hours of birth. Clinical Neurophysiology. 2009;120(6):1046–1053. doi: 10.1016/j.clinph.2009.03.015. [DOI] [PubMed] [Google Scholar]
  61. Korotchikova I, Stevenson NJ, Livingstone V, Ryan CA, Boylan GB. Sleep-wake cycle of the healthy term newborn infant in the immediate postnatal period. Clinical Neurophysiology. 2016;127(4):2095–2101. doi: 10.1016/j.clinph.2015.12.015. [DOI] [PubMed] [Google Scholar]
  62. Korte J, Hoehn T, Siegmund R. Actigraphic recordings of activity-rest rhythms of neonates born by different delivery modes. Chronobiology International. 2004;21(1):95–106. doi: 10.1081/CBI-120027980. [DOI] [PubMed] [Google Scholar]
  63. Kocevska D, Verhoeff ME, Meinderts S, Jaddoe VWV, Verhulst FC, Roza SJ, et al. Prenatal and early postnatal measures of brain development and childhood sleep patterns. Pediatric Research. 2018;83(4):760–766. doi: 10.1038/pr.2017.318. [DOI] [PubMed] [Google Scholar]
  64. Ktonas PY, Fagioli I, Salzarulo P. Delta (0.5–1.5 Hz) and sigma (11.5–15.5 Hz) EEG power dynamics throughout quiet sleep in infants. Electroencephalogr Clinical Neurophysiology. 1995;95(2):90–96. doi: 10.1016/0013-4694(95)00051-Y. [DOI] [PubMed] [Google Scholar]
  65. Lampl, M., & Johnson, M. L. (2011). Infant Growth in Length Follows Prolonged Sleep and Increased Naps [Article]. Sleep, 34(5), 641–650. <Go to ISI>://WOS:000291145800015 [DOI] [PMC free article] [PubMed]
  66. Liefting B, Bes F, Fagioli I, Salzarulo P. Electromyographic activity and sleep states in infants. Sleep. 1994;17(8):718–722. [PubMed] [Google Scholar]
  67. Levy J, Hassan F, Plegue MA, Sokoloff MD, Kushwaha JS, Chervin RD, Barks JDE, Shellhaas RA. Impact of hands-on care on infant sleep in the neonatal intensive care unit. Pediatric Pulmonology. 2017;52(1):84–90. doi: 10.1002/ppul.23513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Medicine. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Louis J, Cannard C, Bastuji H, Challamel MJ. Sleep ontogenesis revisited: A longitudinal 24 hour home polygraphic study on 15 normal infants during the first two years of life. Sleep. 1997;20(5):323–333. doi: 10.1093/sleep/20.5.323. [DOI] [PubMed] [Google Scholar]
  70. Louis J, Zhang JX, Revol M, Debilly G, Challamel MJ. Ontogenesis of nocturnal organization of sleep spindles: A longitudinal study during the first 6 months of life. Electroencephalography and Clinical Neurophysiology. 1992;83(5):289–296. doi: 10.1016/0013-4694(92)90088-Y. [DOI] [PubMed] [Google Scholar]
  71. Lukowski AF, Milojevich HM. Sleeping like a baby: Examining relations between habitual infant sleep, recall memory, and generalization across cues at 10 months. Infant Behavior & Development. 2013;36(3):369–376. doi: 10.1016/j.infbeh.2013.02.001. [DOI] [PubMed] [Google Scholar]
  72. Matsuoka M, Segawa M, Higurashi M. The development of sleep and wakefulness cycle in early infancy and its relationship to feeding habit. The Tohoku Journal of Experimental Medicine. 1991;165(2):147–154. doi: 10.1620/tjem.165.147. [DOI] [PubMed] [Google Scholar]
  73. Metcalf DR, Mondale J, Butler FK. Ontogenesis of spontaneous K-complexes. Psychophysiology. 1971;8(3):340–347. doi: 10.1111/j.1469-8986.1971.tb00464.x. [DOI] [PubMed] [Google Scholar]
  74. Miano S, Peraita-Adrados R, Montesano M, Castaldo R, Forlani M, Villa MP. Sleep cyclic alternating pattern analysis in healthy children during the first year of life: A daytime polysomnographic study. Brain & Development. 2011;33(5):421–427. doi: 10.1016/j.braindev.2010.07.008. [DOI] [PubMed] [Google Scholar]
  75. Mindell JA, Du Mond C, Tanenbaum JB, Gunn E. Long-term relationship between breastfeeding and sleep [Article] Childrens Health Care. 2012;41(3):190–203. doi: 10.1080/02739615.2012.685038. [DOI] [Google Scholar]
  76. Mindell JA, Leichman ES, DuMond C, Sadeh A. Sleep and social-emotional development in infants and toddlers. Journal of Clinical Child and Adolescent Psychology. 2017;46(2):236–246. doi: 10.1080/15374416.2016.1188701. [DOI] [PubMed] [Google Scholar]
  77. Mirmiran M. The function of fetal/neonatal rapid eye movement sleep. Behavioural Brain Research. 1995;69:13–22. doi: 10.1016/0166-4328(95)00019-P. [DOI] [PubMed] [Google Scholar]
  78. Mirmiran M, Feenstra MG, Dijcks FA, Bos NP, Van Haaren F. Functional deprivation of noradrenaline neurotransmission: Effects of clonidine on brain development. Progress in Brain Research. 1988;73:159–172. doi: 10.1016/s0079-6123(08)60503-8. [DOI] [PubMed] [Google Scholar]
  79. MIRMIRAN, M., Netherlands Institute for Brain Research, M., 1105 AZ Amsterdam, The Netherlands, SOMEREN, E., & Netherlands Institute for Brain Research, M., 1105 AZ Amsterdam, The Netherlands The importance of REM sleep for brain maturation. Journal of Sleep Research. 1993;2(4):188–192. doi: 10.1111/j.1365-2869.1993.tb00088.x. [DOI] [PubMed] [Google Scholar]
  80. Mirmiran M, Uylings HB, Corner MA. Pharmacological suppression of REM sleep prior to weaning counteracts the effectiveness of subsequent environmental enrichment on cortical growth in rats. Brain Research. 1983;283(1):102–105. doi: 10.1016/0165-3806(83)90086-X. [DOI] [PubMed] [Google Scholar]
  81. Mukherjee S, Patel SR, Kales SN, Ayas NT, Strohl KP, Gozal D, Malhotra A. An official american thoracic society statement: The importance of healthy sleep. Recommendations and future priorities. American Journal of Respiratory and Critical Care Medicine. 2015;191(12):1450–1458. doi: 10.1164/rccm.201504-0767ST. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Nakagawa M, Ohta H, Nagaoki Y, Shimabukuro R, Asaka Y, Takahashi N, Nakazawa T, Kaneshi Y, Morioka K, Oishi Y, Azami Y, Ikeuchi M, Takahashi M, Hirata M, Ozawa M, Cho K, Kusakawa I, Yoda H. Daytime nap controls toddlers’ nighttime sleep. Science and Reports. 2016 doi: 10.1038/srep27246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Navelet Y, Benoit O, Bouard G. Nocturnal sleep organization during the first months of life. Electroencephalography and Clinical Neurophysiology. 1982;54(1):71–78. doi: 10.1016/0013-4694(82)90233-4. [DOI] [PubMed] [Google Scholar]
  84. Paavonen EJ, Saarenpää-Heikkilä O, Morales-Munoz I, Virta M, Häkälä N, Pölkki P, Kylliäinen A, Karlsson H, Paunio T, Karlsson L. Normal sleep development in infants: findings from two large birth cohorts. Sleep Medicine. 2020;69:145–154. doi: 10.1016/j.sleep.2020.01.009. [DOI] [PubMed] [Google Scholar]
  85. Parmelee AH, Jr., Schulz HR, Disbrow MA. Sleep patterns of the newborn. The Journal of Pediatrics. 1961;58:241–250. doi: 10.1016/S0022-3476(61)80164-9. [DOI] [PubMed] [Google Scholar]
  86. Peirano P, Fagioli I, Bes F, Salzarulo P. The role of slow-wave sleep on the duration of quiet sleep in infants. Journal of Sleep Research. 1993;2(3):130–133. doi: 10.1111/j.1365-2869.1993.tb00075.x. [DOI] [PubMed] [Google Scholar]
  87. Pennestri MH, Burdayron R, Kenny S, Béliveau MJ, Dubois-Comtois K. Sleeping through the night or through the nights? Sleep Medicine. 2020;76:98–103. doi: 10.1016/j.sleep.2020.10.005. [DOI] [PubMed] [Google Scholar]
  88. Pennestri, M. H., Laganiere, C., Bouvette-Turcot, A. A., & et al. (2018). Uninterrupted Infant Sleep, Development, and Maternal Mood [Original research]. Pediatrics. https://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=mwic&AN=201811131 [DOI] [PubMed]
  89. Pisch M, Wiesemann F, Karmiloff-Smith A. Infant wake after sleep onset serves as a marker for different trajectories in cognitive development. Journal of Child Psychology & Psychiatry. 2019;60(2):189–198. doi: 10.1111/jcpp.12948. [DOI] [PubMed] [Google Scholar]
  90. Ramamurthy MB, Sekartini R, Ruangdaraganon N, Huynh DHT, Sadeh A, Mindell JA. Effect of current breastfeeding on sleep patterns in infants from Asia-Pacific region [Article] Journal of Paediatrics and Child Health. 2012;48(8):669–674. doi: 10.1111/j.1440-1754.2012.02453.x. [DOI] [PubMed] [Google Scholar]
  91. Ribner AD, McHarg GG, New FST. Why won't she sleep? Screen exposure and sleep patterns in young infants. Infant Behavior & Development. 2019;57:101334. doi: 10.1016/j.infbeh.2019.101334. [DOI] [PubMed] [Google Scholar]
  92. Samson-Dollfus, D., Service Explorations Neurologiques, C. H. e. U., Rouen, France, Nogues, B., Service Explorations Neurologiques, C. H. e. U., Rouen, France, Menard, J. F., Service Explorations Neurologiques, C. H. e. U., Rouen, France, Bertoldi-Lefever, I., Service Explorations Neurologiques, C. H. e. U., Rouen, France, Geffroy, D., & Service Explorations Neurologiques, C. H. e. U., Rouen, France Delta, Theta, Alpha and Beta Power Spectrum of Sleep Electroencephalogram in Infants Aged Two to Eleven Months. Sleep. 1983;6(4):376–383. doi: 10.1093/sleep/6.4.376. [DOI] [PubMed] [Google Scholar]
  93. Sankupellay M, Wilson S, Heussler HS, Parsley C, Yuill M, Dakin C. Characteristics of sleep EEG power spectra in healthy infants in the first two years of life. Clinical Neurophysiology. 2011;122(2):236–243. doi: 10.1016/j.clinph.2010.06.030. [DOI] [PubMed] [Google Scholar]
  94. Satomaa AL, Makela T, Saarenpaa-Heikkila O, Kylliainen A, Huupponen E, Himanen SL. Slow-wave activity and sigma activities are associated with psychomotor development at 8 months of age. Sleep. 2020;43(9):061. doi: 10.1093/sleep/zsaa061. [DOI] [PubMed] [Google Scholar]
  95. Scher A. A longitudinal study of night waking in the first year. Child: Care, Health and Development. 1991;17(5):295–302. doi: 10.1111/j.1365-2214.1991.tb00699.x. [DOI] [PubMed] [Google Scholar]
  96. Scher A. Crawling in and out of sleep. Infant and Child Development. 2005;14(5):491–500. doi: 10.1002/icd.427. [DOI] [Google Scholar]
  97. Scher A. Infant sleep at 10 months of age as a window to cognitive development. Early Human Development. 2005;81(3):289–292. doi: 10.1016/j.earlhumdev.2004.07.005. [DOI] [PubMed] [Google Scholar]
  98. Scher A, Cohen D. Locomotion and nightwaking [Article] Child Care Health and Development. 2005;31(6):685–691. doi: 10.1111/j.1365-2214.2005.00557.x. [DOI] [PubMed] [Google Scholar]
  99. Scher A, Cohen D. Sleep as a mirror of developmental transitions in infancy: The case of crawling. Monographs of the Society for Research in Child Development. 2015;80(1):70–88. doi: 10.1111/mono.12145. [DOI] [PubMed] [Google Scholar]
  100. Scher MS, Steppe DA, Banks DL. Postnatal adaptation of brain function in full-term neonates as assessed by EEG sleep analyses. Sleep. 1995;18(7):531–535. doi: 10.1093/sleep/18.7.531. [DOI] [PubMed] [Google Scholar]
  101. Seehagen S, Konrad C, Herbert JS, Schneider S. Timely sleep facilitates declarative memory consolidation in infants. Proc Natl Acad Sci U S A. 2015;112(5):1625–1629. doi: 10.1073/pnas.1414000112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Simon KNS, Werchan D, Goldstein MR, Sweeney L, Bootzin RR, Nadel L, Gómez RL. Sleep confers a benefit for retention of statistical language learning in 6.5 month old infants. Brain and Language. 2016 doi: 10.1016/j.bandl.2016.05.002. [DOI] [PubMed] [Google Scholar]
  103. Spruyt K, Aitken RJ, So K, Charlton M, Adamson TM, Horne RS. Relationship between sleep/wake patterns, temperament and overall development in term infants over the first year of life. Early Human Development. 2008;84(5):289–296. doi: 10.1016/j.earlhumdev.2007.07.002. [DOI] [PubMed] [Google Scholar]
  104. Spruyt K, Aitken RJ, So K, Charlton M, Adamson TM, Horne RSC. Relationship between sleep/wake patterns, temperament and overall development in term infants over the first year of life [Article] Early Human Development. 2008;84(5):289–296. doi: 10.1016/j.earlhumdev.2007.07.002. [DOI] [PubMed] [Google Scholar]
  105. Sterman MB, Harper RM, Havens B, Hoppenbrouwers T, McGinty DJ, Hodgman JE. Quantitative analysis of infant EEG development during quiet sleep. Electroencephalography and Clinical Neurophysiology. 1977;43(3):371–385. doi: 10.1016/0013-4694(77)90260-7. [DOI] [PubMed] [Google Scholar]
  106. Sun WQ, Li SX, Jiang YR, Xu XJ, Spruyt K, Zhu Q, Tseng CH, Jiang F. A community-based study of sleep and cognitive development in infants and toddlers. Journal of Clinical Sleep Medicine. 2018;14(6):977–984. doi: 10.5664/jcsm.7164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Sun WQ, Li SX, Wang G, Dong S, Jiang Y, Spruyt K, Ling J, Zhu Q, Lee TM, Jiang F. Association of sleep and circadian activity rhythm with emotional face processing among 12-month-old infants. Science and Reports. 2018;8(1):3200. doi: 10.1038/s41598-018-21448-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Sun WQ, Wang GH, Jiang YR, Song YJ, Dong SM, Lin QM, Deng YJ, Zhu Q, Jiang F. Six-month-old infant long sleepers prefer a human face. Sleep Medicine. 2016;27–28:28–31. doi: 10.1016/j.sleep.2016.08.018. [DOI] [PubMed] [Google Scholar]
  109. Tham EK, Schneider N, Broekman BF. Infant sleep and its relation with cognition and growth: A narrative review. Nature and Science of Sleep. 2017;9:135–149. doi: 10.2147/NSS.S125992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. The Foundling Museum, L. (2020). What Is A Foundling. https://foundlingmuseum.org.uk/about/our-history/what-is-a-foundling/
  111. Thoman EB, McDowell K. Sleep cyclicity in infants during the earliest postnatal weeks. Physiology & Behavior. 1989;45(3):517–522. doi: 10.1016/0031-9384(89)90067-X. [DOI] [PubMed] [Google Scholar]
  112. Tikotzky L, De Marcas G, Har-Toov J, Dollberg S, Bar-Haim Y, Sadeh A. Sleep and physical growth in infants during the first 6 months [Article] Journal of Sleep Research. 2010;19(1):103–110. doi: 10.1111/j.1365-2869.2009.00772.x. [DOI] [PubMed] [Google Scholar]
  113. Tikotzky L, De Marcas G, Har-Toov J, Dollberg S, Bar-Haim Y, Sadeh A. Sleep and physical growth in infants during the first 6 months. Journal of Sleep Research. 2010;19(1 Pt 1):103–110. doi: 10.1111/j.1365-2869.2009.00772.x. [DOI] [PubMed] [Google Scholar]
  114. Tikotzky L, Sadeh A, Volkovich E, Manber R, Meiri G, Shahar G. Infant sleep development from 3 to 6 months postpartum: Links with maternal sleep and paternal involvement. Monographs of the Society for Research in Child Development. 2015;80(1):107–124. doi: 10.1111/mono.12147. [DOI] [PubMed] [Google Scholar]
  115. van den Hoogen A, Teunis CJ, Shellhaas RA, Pillen S, Benders M, Dudink J. How to improve sleep in a neonatal intensive care unit: A systematic review. Early Human Development. 2017;113:78–86. doi: 10.1016/j.earlhumdev.2017.07.002. [DOI] [PubMed] [Google Scholar]
  116. Ventura S, Mathieson SR, O’Toole JM, Livingstone V, Ryan MA, Boylan GB. Electroencephalographic sleep macrostructure and sleep spindles in early infancy. Sleep. 2022;45(1):zsab262. doi: 10.1093/sleep/zsab262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Verma P, Baisakhiya S. Study of sleep spindle and K-complex characteristics on EEG during sleep in full-term infants from 2 weeks to 12 months of age. National Journal of Physiology, Pharmacy and Pharmacology. 2021;11(11):1221–1224. doi: 10.5455/njppp.2021.11.02063202108062021. [DOI] [Google Scholar]
  118. Wielek T, Del Giudice R, Lang A, Wislowska M, Ott P, Schabus M. On the development of sleep states in the first weeks of life. PLoS One. 2019;14(10):e0224521. doi: 10.1371/journal.pone.0224521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Wooding AR, Boyd J, Geddis DC. Sleep patterns of New Zealand infants during the first 12 months of life. Journal of Paediatrics and Child Health. 1990;26(2):85–88. doi: 10.1111/j.1440-1754.1990.tb02392.x. [DOI] [PubMed] [Google Scholar]
  120. Yoshida M, Shinohara H, Kodama H. Assessment of nocturnal sleep architecture by actigraphy and one-channel electroencephalography in early infancy [Article] Early Human Development. 2015;91(9):519–526. doi: 10.1016/j.earlhumdev.2015.06.005. [DOI] [PubMed] [Google Scholar]
  121. Zhou Y, Aris IM, Tan SS, Cai S, Tint MT, Krishnaswamy G, Meaney MJ, Godfrey KM, Kwek K, Gluckman PD, Chong YS, Yap F, Lek N, Gooley JJ, Lee YS. Sleep duration and growth outcomes across the first two years of life in the GUSTO study. Sleep Medicine. 2015;16(10):1281–1286. doi: 10.1016/j.sleep.2015.07.006. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not Applicable.

Not Applicable.


Articles from Maternal and Child Health Journal are provided here courtesy of Springer

RESOURCES