Skip to main content
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering logoLink to Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering
. 2021 Dec 25;38(6):1229–1234. [Article in Chinese] doi: 10.7507/1001-5515.202104022

生物材料表面电荷影响骨形成作用的研究进展

Research progress on the effect of surface charge of biomaterials on bone formation

绍泰 王 1,3, 东升 宋 1,3, 春燕 乔 2,3
PMCID: PMC9927129  PMID: 34970907

Abstract

随着材料学、生物学领域研究的不断进步,集合材料学和生物学双重特性的生物材料的重要性日益凸显。目前生物材料在组织工程、制药工程和再生医学等领域应用较为广泛。在因外伤、肿瘤侵袭、先天畸形等因素造成的骨缺损修复领域,已涌现出很多不同的生物材料,它们在表面电荷、表面润湿性、表面成分、免疫调节等方面各自具有不同的特性,导致修复效果各具差异。本文就生物材料表面电荷对骨形成的影响,以及在生物材料表面引入电荷的方法展开论述,为生物材料表面电荷分布促进骨形成奠定理论基础,以期今后更好地服务于临床研究。

Keywords: 生物材料, 骨缺损, 表面电荷, 表面润湿性, 表面成分, 免疫调节

引言

由炎症、外伤、肿瘤侵袭、先天畸形等原因造成的骨缺损,是临床常见的问题,严重危害患者的身心健康。目前关于修复骨缺损的方法包括自体骨移植、异体骨移植等,但是自体骨移植会造成供区二次损伤;异体骨移植存在免疫反应的隐患。随着材料学、生物学等相关领域技术的不断进步,各类具有促进骨形成作用的生物材料应运而生。从生物惰性材料到生物活性可降解材料,再到如今的细胞基因激活材料,每一代新材料均致力于逐步改善材料的生物相容性、机械强度与成骨性能,最终实现骨修复。在实现骨修复的过程中,成骨细胞起着非常重要的作用,它可以分泌骨形成因子和碱性磷酸酶,继而合成类骨质被矿化,形成骨组织。骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells,BMSCs)能在多种信号通路调控下定向分化为成骨细胞,发挥促进骨形成的作用。生物材料的植入,一方面可以为成骨细胞提供支架,有利于成骨细胞生长繁殖、相互黏附、分泌细胞外基质,修复骨缺损;另一方面,生物材料表面性质会促进BMSCs向成骨细胞分化,这些表面性质包括表面电荷、表面润湿性[1]、表面成分、免疫调节[2]、基质硬度[3-5]等。越来越多的研究结果表明,生物材料的表面电荷对促进BMSCs分化有着深远的影响。本文将对生物材料表面电荷促进骨形成作用进行综述,期望通过改变生物材料的表面电荷分布来促进骨形成,提高应用于体内骨支架材料的生物学性能,更好地服务于临床。

1. 表面电荷概述

表面电荷是指在材料界面处积聚的自由电荷,分为正电荷和负电荷。人的骨骼表面存在表面电荷,其电生理特性大多与外部载荷和应变相关,骨骼顶端的电荷密度往往更高[6]。改变骨组织周围的电荷分布,可以影响骨细胞分泌细胞外基质能力。因此,大量实验通过对骨骼修复材料表面改性,让材料表面带有不同种类、不同数量的电荷,不断改善骨骼修复材料生物性能[7-8]

根据异种电荷相互吸引的性质,包括离子、蛋白质、细胞因子、细胞黏附分子和生长因子在内的各种渗出成分被吸附在材料—生物组织界面上。这些吸附的成分诱导BMSCs向植入物迁移,最后分化为成骨细胞。其中,蛋白质的吸附水平尤为重要,成骨细胞的附着水平取决于纤连蛋白(fibronectin,FN)的吸附量[9]。正、负电荷极大影响了植入材料对FN的吸附行为[10]。此外,当电荷作用于BMSCs时,会在细胞核和细胞质之间产生电场,通过细胞膜电压门控钙通道刺激胞内Ca2+离子增加,进而增加电压门控钙通道相关基因表达,成骨基因上调并改善成骨分化[11-12]。因此,通过调节生物支架表面电荷可以增强细胞迁移、增殖和分化的能力,并改善骨诱导功能[13-15]

2. 材料表面电荷影响成骨作用

2.1. 正电荷

对于带有少量电荷的材料表面,蛋白质不会被极化,蛋白质与材料的相互作用可以通过静电吸引的方式来预测。正常人体中大多数蛋白质的等电点都小于7,如FN等电点约为5.8、骨形态发生蛋白−2(bone morphogenetic protein-2,BMP-2)等电点约为4.8。带正电的生物材料表面可以通过静电吸引与带负电的蛋白质形成早期黏附,改善了生物材料的生物性能[16]。有研究表明,表面不带电荷的磷酸胆碱材料不会引起蛋白质空间构象的变化,蛋白、细胞的黏附减少,而适当增加表面正电荷可以增加包括FN在内的蛋白质以及成骨细胞对磷酸胆碱表面的黏附,并增加磷酸钙的沉积[17]。因此,一些材料生物活性的增加就源于带负电荷的生物分子与带正电荷的材料表面产生静电相互作用。常用的带正电表面修饰物有壳聚糖,即一种甲壳素脱乙酰的多糖,作为骨传导生物聚合物[18],它可以加载在支架涂层上或组装在纳米颗粒表面[19]。壳聚糖的正电荷特性不仅增加其溶解性、生物降解性和生物相容性,还直接促进壳聚糖在支架上的黏附、止血和抗菌性能[20]。因此可以说,少量带正电荷的壳聚糖能够为骨形成创造良好的微环境。

2.2. 负电荷

与带有少量电荷的材料不同,携带大量电荷的材料表面可使带电蛋白质极化,极化的蛋白质能吸附于具有同种电荷的材料表面。有研究表明,在带有少量负电荷的材料表面,FN吸附量随材料表面负电荷增多而减少,但随着材料表面负电荷进一步增加,FN会被极化,越来越多的FN沉积在材料表面[21]。带电材料表面也能改变蛋白质的空间构象,包括层粘连蛋白在内的蛋白质可以借助氨基或羧基与生物材料相结合[22],进而调节BMSCs在材料表面的成骨分化能力。同时,带负电荷的表面还会改变细胞骨架结构,使应力纤维排列整齐,增强细胞黏附能力,借助一定手段可在材料表面观察到细胞局灶性黏附[23]

除了改变蛋白质或细胞的结构和功能,带负电材料表面自身的理化性质也对成骨作用产生影响。修饰在材料表面的负电荷多肽提供的羧基就可以成为磷灰石沉积的成核位点[24],有学者设计出可注射致密胶原(injectable dense collagen,I-DC)凝胶支架,将富含天门冬氨酸、谷氨酸等阴离子氨基酸的带负电蛋白引入I-DC凝胶中,带电蛋白提供的羧基作为钙—磷酸盐的成核位点,进而诱导磷灰石沉积,刺激BMSCs成骨分化[25]。带负电的硫酸盐离子能结合磷酸盐和钙离子,也能形成有利于成骨的微环境。因此有学者配置含不同硫酸软骨素浓度(0%、1%、5%和10%)的甲基丙烯酸化聚乙二醇/硫酸软骨素水凝胶,并移植入临界尺寸的颅骨缺损模型中,结果发现表面带负电的10%硫酸软骨素水凝胶诱导的骨质密度最高[26],证实了带负电材料表面本身的理化性质对成骨作用的影响。

2.3. 不同种类电荷比较

由于带电表面能结合体内大部分蛋白质并加速细胞的黏附,许多实验分别比较正、负电荷对骨形成的影响[27]。有学者分别用未改性的低聚乙二醇富马酸{oligo[(polyethylene glycol) fumarate],OPF}和改性的甲基丙烯酸钠(sodium methacrylate,SMA)交联的OPF、[2-(甲基丙烯酰氧基)乙基]三甲基氯化铵{[2-(methacryloyloxy) ethyl] trimethylammonium chloride,MAETAC}交联的OPF,制备了中性、带负电和带正电的水凝胶支架,发现与中性或带正电支架相比,表面带负电的支架成骨染色不仅强度更高,而且糖胺聚糖含量也高,可加强BMP-2诱导的骨形成[28-29]。除了应用表面改性的方式引入不同电荷比较成骨能力,在同种材料(如聚四氟乙烯)施加电极化处理后,同样发现骨质在负极首先形成,而后不断向正极生长。上述实验材料表面形成的负电荷均为较低密度,若材料表面引入过高密度的电荷则对骨形成作用没有显著影响,甚至会造成细胞代谢功能紊乱[30]。因此在材料表面引入较低密度的负电荷比引入正电荷更有利于成骨作用。

3. 引入表面电荷的方法

3.1. 光照处理

光照可以诱导材料表面电荷积累进而改变细胞周围的电荷分布。有研究证实,在红光照射下,材料表面电荷分布发生变化,BMSCs骨再生效率得以提高,4周后骨缺损恢复率为91%,而对照组在无红光条件下骨缺损恢复率仅为36%,这是由于光诱导产生的电荷提高胞质Ca2+的积累并促进核苷酸的合成,从而增强BMSCs的增殖分化能力[31]。光照不仅能影响细胞内部结构,同时也能改变细胞外基质电荷分布来影响骨形成作用[32]

3.2. 电极化处理

电极化处理是指在材料上施加电场使正负电荷发生相对位移,从而获得表面电位,表面电位随着电场强度的增加可明显提高。有学者在生物材料薄膜上施加不同强度的电场,引入表面电荷,通过调控FN的构象来有效地控制FN与整合素的结合状态[33],进而调节细胞成骨分化能力。除了在材料上施加电场影响骨形成作用,也可以通过施加电磁场影响超顺磁纳米粒子来调节BMSCs的成骨分化,施加电磁场后,减缓细胞内摄取的带负电荷颗粒的释放,大量粒子留在细胞内显著增强了BMSCs的成骨分化能力[34-35]

3.3. 电流刺激

在生物材料上施加电流刺激(electrical stimulation,ES)可以调节表面电荷分布,影响细胞的跨膜电位,改善细胞功能和代谢,促进成骨分化[36-39]。有研究利用聚吡咯(polypyrrole,PPY)包覆在静电纺丝聚乳酸[poly(L-lactide),PLLA]纤维上制备导电纤维。当施加ES时不仅促进蛋白质的吸附和矿物沉积,还增强BMSCs成骨分化能力,而不导电的PLLA纤维并没有这种促骨形成的能力[40]。对于本身就具有促成骨分化作用的石墨烯—纤维素支架,通过ES能进一步增强BMSCs增殖、矿物沉积能力以及骨诱导能力[41]

3.4. 表面改性处理

表面改性处理,即将离子、官能团、氨基酸[42]等直接修饰在材料表面,或者通过改变材料组成成分的比例来调节生物材料表面电荷分布[43],增强蛋白质的吸附和BMSCs的黏附、分化能力。有学者使用氢氧化钠或氢氧化钾进行热处理,使牙种植体表面形成氢氧化钛,通过表面改性的方法调节牙种植体表面电荷,极大增强了BMSCs的黏附及成骨分化能力[44]

4. 表面电荷与其他影响骨形成因素的关系

影响骨形成的材料表面性质有很多,在改变材料表面电荷的同时,还有可能改变材料表面润湿性、材料表面成分、免疫调节,这些均能影响骨形成作用。

4.1. 表面润湿性

材料表面润湿性是影响细胞功能的一个重要因素,BMSCs更适合在中度润湿性表面黏附、增殖和成骨分化。有研究表明,与携带氨基的材料表面相比,修饰羟基、羧基等基团的材料表面黏附细胞较少,且BMSCs增殖和成骨分化能力弱,这是因为氨基的引入改善了材料的表面润湿性[45]。同样,在明胶表面用儿茶素改性既能改变材料表面电位,又能使表面转变为亲水性,改善材料表面成骨能力[46]。除了引入基团等改变材料表面润湿性的方法,如果用电极化或等离子体处理的方式来引入表面电荷也能增加支架表面的亲水性,进而有利于促进骨形成[10,47]

4.2. 材料表面成分

为了使BMSCs更好地黏附、增殖、成骨分化,可以在生物材料表面修饰生物活性物质如多糖[48-49]、脂类、氨基酸[50-51]等,或者加入其他有利于骨形成的元素,如锂[52]、锶[53-54]、镓[55]、镁[56]、锌[57]等。当引入官能团、生物活性物质、金属元素等表面修饰成分时,除了表面修饰成分本身对骨形成的作用之外,还可改变材料表面电荷的数量与分布,因此表面修饰对成骨的影响作用也不容忽视[58]。有学者将四种带不同表面电荷的多肽引入水凝胶表面,结果带有过多表面负电荷的水凝胶对FN吸附减少,而四种多肽不同的空间构象也同时改变蛋白、离子的吸附,进一步影响成骨作用[22]。另有研究表明,材料表面引入携带不同电荷的铁离子和锶离子,在电荷与离子释放协同作用下,BMSCs分化程度也各不相同[59]

4.3. 免疫调节

基于骨支架良好的骨引导性和骨诱导性,骨支架广泛应用于骨再生研究领域。骨支架促进骨再生的作用机制除了骨诱导活性外,还和宿主免疫反应密切相关,主要涉及巨噬细胞极性的转变[60]。巨噬细胞主要分为M1表型和M2表型,M2表型的巨噬细胞属于抑炎因子,可以促进成骨分化;而M1表型的巨噬细胞属于促炎因子,会激活破骨细胞骨吸收[61-62]。巨噬细胞能够根据从生物材料表面接收到的信号来改变自身表型[63-65]。材料表面电荷通过改变局部电场强度,还可以调节巨噬细胞的迁移和细胞因子的产生[66]。有学者制备出纳米复合膜,以适量的表面电荷促使巨噬细胞表型从促炎M1表型转变为抑炎M2表型,诱导产生骨免疫调节作用,促进了BMSCs的成骨分化[67]。体外和体内实验结果也表明,带适量正电荷的材料表面影响一氧化氮合酶的表达,调节新骨生长,然而过高的表面电位对BMSCs产生炎症刺激,导致局部骨丢失[68]

5. 总结与展望

成骨效果是多种因素共同作用的结果。近年来大量的研究聚焦于单一材料表面性质对成骨效果的影响。本文从材料的表面电荷对骨形成的影响作用出发,探讨了不同种类表面电荷对成骨作用的影响及在材料表面引入电荷的方法,最后探究了材料表面电荷和其他材料表面性质的关系及对成骨作用的影响。

随着对骨形成生物材料表面电荷的研究不断深入,骨缺损修复材料生物性能也会随之不断改善。在临床应用中,利用生物材料表面电荷调控药物释放速率,有望实现对骨缺损患者实现个性化药物治疗。通过调节体内支架材料的表面电荷分布,也能更好地促进细胞的黏附及分泌细胞外基质的能力。未来会有大量的实验不断探究各种表面改性的方法,以期应用在体内的生物材料更好地促进骨形成,减少炎症发生及血栓形成,更好地服务于临床。

利益冲突声明:本文全体作者均声明不存在利益冲突。

Funding Statement

国家自然科学基金青年基金(81400488);吉林省卫生厅项目(2018J073);吉林省财政厅项目(JCSZ2020304-16)

Natural Science Foundation for the Youth of China; Jilin province health and health technology innovation project; Jilin Provincial Department of Finance]

References

  • 1.Andi M A, Sengo K, Satoshi O Effect of heat treatments on wettability of nacre. Mater Sci Forum. 2020;4808:86–90. [Google Scholar]
  • 2.Zhang R, Liu X, Xiong Z, et al The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1123–1130. doi: 10.1080/21691401.2018.1446442. [DOI] [PubMed] [Google Scholar]
  • 3.Sharma R I, Snedeker J G Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS One. 2012;7(2):e31504. doi: 10.1371/journal.pone.0031504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Yang C, Delrio F W, Ma H, et al Spatially patterned matrix elasticity directs stem cell fate. Proc Natl Acad Sci U S A. 2016;113(31):E4439–E4445. doi: 10.1073/pnas.1609731113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Yang C, Tibbitt M W, Basta L, et al Mechanical memory and dosing influence stem cell fate. Nat Mater. 2014;13(6):645–652. doi: 10.1038/nmat3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lin D J, Fuh L J, Chen W C Nano-morphology, crystallinity and surface potential of anatase on micro-arc oxidized titanium affect its protein adsorption, cell proliferation and cell differentiation. Mater Sci Eng C Mater Biol Appl. 2020;107:110204. doi: 10.1016/j.msec.2019.110204. [DOI] [PubMed] [Google Scholar]
  • 7.Liene P, Edijs F, Karlis A G, et al Functionalizing surface electrical potential of hydroxyapatite coatings. Adv Sci Technol. 2017;4475(204):12–17. [Google Scholar]
  • 8.Agour M, Abdal-Hay A, Hassan M K, et al Alkali-treated titanium coated with a polyurethane, magnesium and hydroxyapatite composite for bone tissue engineering. Nanomaterials. 2021;11(5):1129. doi: 10.3390/nano11051129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Isoshima K, Ueno T, Arai Y, et al The change of surface charge by lithium ion coating enhances protein adsorption on titanium. J Mech Behav Biomed Mater. 2019;100:103393. doi: 10.1016/j.jmbbm.2019.103393. [DOI] [PubMed] [Google Scholar]
  • 10.Ribeiro C, Panadero J A, Sencadas V, et al Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomed Mater. 2012;7(3):035004. doi: 10.1088/1748-6041/7/3/035004. [DOI] [PubMed] [Google Scholar]
  • 11.Long X, Wang X, Yao L, et al Graphene/Si-promoted osteogenic differentiation of BMSCs through light illumination. ACS Appl Mater Interfaces. 2019;11(47):43857–43864. doi: 10.1021/acsami.9b14679. [DOI] [PubMed] [Google Scholar]
  • 12.Petecchia L, Sbrana F, Utzeri R, et al Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca(2+)-related mechanisms. Sci Rep. 2015;5:13856. doi: 10.1038/srep13856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Nakamura M, Nagai A, Yamashita K Surface electric fields of apatite electret promote osteoblastic responses. Key Eng Mater. 2013;2050:357–360. [Google Scholar]
  • 14.Zhou Z, Li W, He T, et al Polarization of an electroactive functional film on titanium for inducing osteogenic differentiation. Sci Rep. 2016;6:35512. doi: 10.1038/srep35512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Carville N C, Collins L, Manzo M, et al Biocompatibility of ferroelectric lithium niobate and the influence of polarization charge on osteoblast proliferation and function. J Biomed Mater Res A. 2015;103(8):2540–2548. doi: 10.1002/jbm.a.35390. [DOI] [PubMed] [Google Scholar]
  • 16.Ding X, Xu S, Li S, et al Biological effects of titanium surface charge with a focus on protein adsorption. ACS Omega. 2020;5(40):25617–25624. doi: 10.1021/acsomega.0c02518. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 17.Lawton J M, Habib M, MA B, et al The effect of cationically-modified phosphorylcholine polymers on human osteoblasts in vitro and their effect on bone formation in vivo. J Mater Sci Mater Med. 2017;28(9):144. doi: 10.1007/s10856-017-5958-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Casagrande S, Tiribuzi R, Cassetti E, et al Biodegradable composite porous poly(dl-lactide-co-glycolide) scaffold supports mesenchymal stem cell differentiation and calcium phosphate deposition. Artif Cells Nanomed Biotechnol. 2018;46(sup1):219–229. doi: 10.1080/21691401.2017.1417866. [DOI] [PubMed] [Google Scholar]
  • 19.Wang Z, Dong L, Han L, et al Self-assembled biodegradable nanoparticles and polysaccharides as biomimetic ECM nanostructures for the synergistic effect of RGD and BMP-2 on bone formation. Sci Rep. 2016;6:25090. doi: 10.1038/srep25090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Aguilar A, Zein N, Harmouch E, et al Application of chitosan in bone and dental engineering. Molecules. 2019;24(16):3009. doi: 10.3390/molecules24163009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Lin J H, Chang H Y, Kao W L, et al Effect of surface potential on extracellular matrix protein adsorption. Langmuir. 2014;30(34):10328–10335. doi: 10.1021/la5020362. [DOI] [PubMed] [Google Scholar]
  • 22.Koch F, Wolff A, Mathes S, et al Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro. Int J Nanomedicine. 2018;13:6717–6733. doi: 10.2147/IJN.S173702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Marchesano V, Gennari O, Mecozzi L, et al Effects of Lithium niobate polarization on cell adhesion and morphology. ACS Appl Mater Interfaces. 2015;7(32):18113–18119. doi: 10.1021/acsami.5b05340. [DOI] [PubMed] [Google Scholar]
  • 24.Griffanti G, James-Bhasin M, Donelli I, et al Functionalization of silk fibroin through anionic fibroin derived polypeptides. Biomed Mater. 2018;14(1):015006. doi: 10.1088/1748-605X/aae745. [DOI] [PubMed] [Google Scholar]
  • 25.Griffanti G, Jiang W, Nazhat S N Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Biomater Sci. 2019;7(3):1064–1077. doi: 10.1039/C8BM01060A. [DOI] [PubMed] [Google Scholar]
  • 26.Kim H D, Lee E A, An Y H, et al Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Appl Mater Interfaces. 2017;9(26):21639–21650. doi: 10.1021/acsami.7b04114. [DOI] [PubMed] [Google Scholar]
  • 27.Tan F, Liu J, Liu M, et al Charge density is more important than charge polarity in enhancing osteoblast-like cell attachment on poly(ethylene glycol)-diacrylate hydrogel. Mater Sci Eng C Mater Biol Appl. 2017;76:330–339. doi: 10.1016/j.msec.2017.03.051. [DOI] [PubMed] [Google Scholar]
  • 28.Dadsetan M, Pumberger M, Casper M E, et al The effects of fixed electrical charge on chondrocyte behavior. Acta Biomater. 2011;7(5):2080–2090. doi: 10.1016/j.actbio.2011.01.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Olthof M G L, Kempen D H R, Liu X, et al Effect of biomaterial electrical charge on bone morphogenetic protein-2-induced in vivo bone formation. Tissue Eng Part A. 2019;25(13/14):1037–1052. doi: 10.1089/ten.tea.2018.0140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.De Luca I, Di Salle A, Alessio N, et al Positively charged polymers modulate the fate of human mesenchymal stromal cells via ephrinB2/EphB4 signaling. Stem Cell Res. 2016;17(2):248–255. doi: 10.1016/j.scr.2016.07.005. [DOI] [PubMed] [Google Scholar]
  • 31.Tiwari J N, Seo Y K, Yoon T, et al Accelerated bone regeneration by two-photon photoactivated carbon nitride nanosheets. ACS Nano. 2017;11(1):742–751. doi: 10.1021/acsnano.6b07138. [DOI] [PubMed] [Google Scholar]
  • 32.Yu P, Ning C, Zhang Y, et al Bone-inspired spatially specific piezoelectricity induces bone regeneration. Theranostics. 2017;7(13):3387–3397. doi: 10.7150/thno.19748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Tang B, Zhang B, Zhuang J, et al Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomater. 2018;74:291–301. doi: 10.1016/j.actbio.2018.04.051. [DOI] [PubMed] [Google Scholar]
  • 34.Xu C, Wang S, Liu L, et al Manipulating mesenchymal stem cells differentiation under sinusoidal electromagnetic fields using intracellular superparamagnetic nanoparticles. J Biomed Nanotechnol. 2019;15(2):301–310. doi: 10.1166/jbn.2019.2683. [DOI] [PubMed] [Google Scholar]
  • 35.Jiang Pengfei, Zhang Yixian, Zhu Chaonan, et al Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field. Acta Biomater. 2016;46:141–150. doi: 10.1016/j.actbio.2016.09.020. [DOI] [PubMed] [Google Scholar]
  • 36.Love M R, Palee S, Chattipakorn S C, et al Effects of electrical stimulation on cell proliferation and apoptosis. J Cell Physiol. 2018;233(3):1860–1876. doi: 10.1002/jcp.25975. [DOI] [PubMed] [Google Scholar]
  • 37.O'Hearn S F, Ackerman B J, Mower M M Paced monophasic and biphasic waveforms alter transmembrane potentials and metabolism of human fibroblasts. Biochem Biophys Rep. 2016;8:249–253. doi: 10.1016/j.bbrep.2016.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Wang Jing, Tian Lingling, Chen Nuan, et al The cellular response of nerve cells on poly-L-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Mater Sci Eng C. 2018;91:715–726. doi: 10.1016/j.msec.2018.06.025. [DOI] [PubMed] [Google Scholar]
  • 39.Zhu B, Li Y, Huang F, et al Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. Biomater Sci. 2019;7(11):4730–4737. doi: 10.1039/C9BM01203F. [DOI] [PubMed] [Google Scholar]
  • 40.Jing W, Huang Y, Wei P, et al Roles of electrical stimulation in promoting osteogenic differentiation of BMSCs on conductive fibers. J Biomed Mater Res A. 2019;107(7):1443–1454. doi: 10.1002/jbm.a.36659. [DOI] [PubMed] [Google Scholar]
  • 41.Li J, Liu X, Crook J M, et al Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Mater Sci Eng C Mater Biol Appl. 2020;107:110312. doi: 10.1016/j.msec.2019.110312. [DOI] [PubMed] [Google Scholar]
  • 42.Zhao Y Q, Meng L, Zhang K, et al Ultra-small nanodots coated with oligopeptides providing highly negative charges to enhance osteogenic differentiation of hBMSCs better than osteogenic induction medium. Chin Chem Lett. 2021;32(1):266–270. doi: 10.1016/j.cclet.2020.10.031. [DOI] [Google Scholar]
  • 43.Calabrese R, Raia N, Huang W, et al Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. J Tissue Eng Regen Med. 2017;11(9):2549–2564. doi: 10.1002/term.2152. [DOI] [PubMed] [Google Scholar]
  • 44.Saghiri M A, Asatourian A, Garcia-Godoy F, et al The role of angiogenesis in implant dentistry part I: review of titanium alloys, surface characteristics and treatments. Med Oral Patol Oral Cir Bucal. 2016;21(4):e514–e525. doi: 10.4317/medoral.21199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Hao L, Fu X, Li T, et al Surface chemistry from wettability and charge for the control of mesenchymal stem cell fate through self-assembled monolayers. Colloids Surf B Biointerfaces. 2016;148:549–556. doi: 10.1016/j.colsurfb.2016.09.027. [DOI] [PubMed] [Google Scholar]
  • 46.Sasayama S, Hara T, Tanaka T, et al Osteogenesis of multipotent progenitor cells using the epigallocatechin gallate-modified gelatin sponge scaffold in the rat congenital cleft-jaw model. Int J Mol Sci. 2018;19(12):3803. doi: 10.3390/ijms19123803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Cámara-Torres M, Sinha R, Scopece P, et al Tuning cell behavior on 3D scaffolds fabricated by atmospheric plasma-assisted additive manufacturing. ACS Appl Mater Interfaces. 2021;13(3):3631–3644. doi: 10.1021/acsami.0c19687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Ritz U, Eberhardt M, Klein A, et al Photocrosslinked Dextran-Based hydrogels as carrier system for the cells and cytokines induce bone regeneration in critical size defects in mice. Gels. 2018;4(3):63. doi: 10.3390/gels4030063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Fearon P V, Lind T, McCaskie A W, et al Improving osteogenesis on biomaterial surfaces-using novel biomolecules. Orthopaedic Proceedings. 2018;87-B(SIII):222. [Google Scholar]
  • 50.Luo K, Gao X, Gao Y, et al Multiple integrin ligands provide a highly adhesive and osteoinductive surface that improves selective cell retention technology. Acta Biomater. 2019;85:106–116. doi: 10.1016/j.actbio.2018.12.018. [DOI] [PubMed] [Google Scholar]
  • 51.Zhao W, He B, Zhou A, et al D-RADA16-RGD-reinforced nano-hydroxyapatite/polyamide 66 ternary biomaterial for bone formation. Tissue Eng Regen Med. 2019;16(2):177–189. doi: 10.1007/s13770-018-0171-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Ma Y, Li Y, Hao J, et al Evaluation of the degradation, biocompatibility and osteogenesis behavior of lithium-doped calcium polyphosphate for bone tissue engineering. Biomed Mater Eng. 2019;30(1):23–36. doi: 10.3233/BME-181030. [DOI] [PubMed] [Google Scholar]
  • 53.Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, et al The effect of strontium incorporation into sol-gel biomaterials on their protein adsorption and cell interactions. Colloids Surf B Biointerfaces. 2019;174:9–16. doi: 10.1016/j.colsurfb.2018.10.075. [DOI] [PubMed] [Google Scholar]
  • 54.Saeedeh Z J, Nafiseh B, Fatemeh B The effects of Strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceram Int. 2018;44(12):14217–14227. doi: 10.1016/j.ceramint.2018.05.025. [DOI] [Google Scholar]
  • 55.He F, Lu T, Fang X, et al Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption. J Biomed Mater Res A. 2019;107(6):1314–1323. doi: 10.1002/jbm.a.36644. [DOI] [PubMed] [Google Scholar]
  • 56.Gu Y, Zhang J, Zhang X, et al Three-dimensional printed Mg-doped β-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro. Tissue Eng Regen Med. 2019;16(4):415–429. doi: 10.1007/s13770-019-00192-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Wang Chenbing, Liu Jinlong, Liu Yanbo, et al Study on osteogenesis of zinc-loaded carbon nanotubes/chitosan composite biomaterials in rat skull defects. J Mater Sci Mater Med. 2020;31(2):15. doi: 10.1007/s10856-019-6338-3. [DOI] [PubMed] [Google Scholar]
  • 58.Zhou S, Pan Y, Zhang J, et al Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells. Nanoscale. 2020;12(47):24006–24019. doi: 10.1039/D0NR06570F. [DOI] [PubMed] [Google Scholar]
  • 59.Shi H, Ye X, Zhang J, et al A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium. Bioact Mater. 2021;6(5):1267–1282. doi: 10.1016/j.bioactmat.2020.10.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Shi M, Wang C, Wang Y, et al Deproteinized bovine bone matrix induces osteoblast differentiation via macrophage polarization. J Biomed Mater Res A. 2018;106(5):1236–1246. doi: 10.1002/jbm.a.36321. [DOI] [PubMed] [Google Scholar]
  • 61.Bartnikowski M, Moon H J, Ivanovski S Release of Lithium from 3D printed polycaprolactone scaffolds regulates macrophage and osteoclast response. Biomed Mater. 2018;13(6):065003. doi: 10.1088/1748-605X/aad916. [DOI] [PubMed] [Google Scholar]
  • 62.Zhao F, Lei B, Li X, et al Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 2018;178:36–47. doi: 10.1016/j.biomaterials.2018.06.004. [DOI] [PubMed] [Google Scholar]
  • 63.Zhang X, Chen Q, Mao X Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int. 2019;2019:7908205. doi: 10.1155/2019/7908205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Liu W, Li J, Cheng M, et al Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv Sci (Weinh) 2018;5(10):1800749. doi: 10.1002/advs.201800749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Lu X, Li K, Xie Y, et al Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects. J Biomed Mater Res A. 2019;107(1):12–24. doi: 10.1002/jbm.a.36456. [DOI] [PubMed] [Google Scholar]
  • 66.Hoare J I, Rajnicek A M, McCaig C D, et al Electric fields are novel determinants of human macrophage functions. J Leukoc Biol. 2016;99(6):1141–1151. doi: 10.1189/jlb.3A0815-390R. [DOI] [PubMed] [Google Scholar]
  • 67.Dai X, Heng B C, Bai Y, et al Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization. Bioact Mater. 2021;6(7):2029–2038. doi: 10.1016/j.bioactmat.2020.12.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Zhang W, Liu J, Shi H, et al Communication between nitric oxide synthase and positively-charged surface and bone formation promotion. Colloids Surf B Biointerfaces. 2016;148:354–362. doi: 10.1016/j.colsurfb.2016.08.049. [DOI] [PubMed] [Google Scholar]

Articles from Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering are provided here courtesy of West China Hospital of Sichuan University

RESOURCES