Skip to main content
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering logoLink to Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering
. 2022 Oct 25;39(5):909–918. [Article in Chinese] doi: 10.7507/1001-5515.202205002

全反式维甲酸诱导分化的HL-60在佛波酯刺激下产生中性粒细胞胞外诱捕网的特性

The characteristics of neutrophil extracellular traps produced by all-trans retinoic acid-induced dHL-60 under PMA stimulation

Wang LIU 1, Jinhua FANG 2, Tiantian HONG 1,2, Jiaqi HUANG 1, Baisong ZHAO 3, Ying FANG 1, Jianhua WU 1, Jiangguo LIN 2,4,*
PMCID: PMC9927711  PMID: 36310479

Abstract

Extracellular traps released by neutrophils (neutrophil extracellular traps, NETs) are a double-edged sword, and understanding the mechanism of NET formation is of great significance for disease treatment. However, the short lifespan, the large individual differences, and the inability to perform gene editing render it difficult to decipher NET formation using neutrophils. It is necessary to find a model cell to replace neutrophils to study the mechanism of NET formation. In this study, we used different concentrations (0, 0.1, 1, and 10 μmol/L) of all-trans retinoic acid (ATRA) to differentiate HL-60 cells for different days (1, 3, 5, and 7 days). By detecting the cell viability and nuclear morphology of cells, we confirmed that HL-60 cells were differentiated to neutrophil-like cells (dHL-60) after treated with ATRA for at least 5 days. Using immunofluorescence staining to detect the formation of NETs, we demonstrated that dHL-60 cells differentiated for 5 days with 1 μmol/L ATRA could generate NETs comparable to those produced by neutrophils upon phorbol 12-myristate 13-acetate (PMA) stimulation, without histone H3 citrullination. Furthermore, the formation of NETs by dHL-60 cells were NADPH-dependent and PAD4-independent, consistent with neutrophils. Taken together, these observations suggest that dHL-60 cells differentiated with 1 μmol/L ATRA for 5 days can be used as a model cell for neutrophils to study the mechanism of NET formation.

Keywords: Neutrophil extracellular traps, HL-60, All-trans retinoic acid, Differentiation

引言

中性粒细胞通过不同的机制清除入侵机体的微生物,包括吞噬、脱颗粒和形成中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)[1]。NETs是镶嵌着多种抗菌蛋白的DNA网络,包括瓜氨酸化组蛋白、弹性蛋白、过氧化物酶和肽酰基精氨酸脱亚氨酶4(peptidylarginine deiminase 4,PAD4)[2]。越来越多的证据表明NETs参与了多种疾病的发生发展,例如癌症[3]、系统性红斑狼疮[4]和血栓[5]等。

多种刺激剂被报道可以引起NETs,包括佛波脂(phorbol 12-myristate 13-acetate,PMA)、脂多糖(lipopolysaccharide,LPS)、活化的血小板和离子霉素[6-9]。值得注意的是,NETs形成的信号通路因刺激剂的不同而不同。PMA活化中性粒细胞的烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)产生活性氧(reactive oxygen species,ROS),导致核膜和细胞膜的破裂,最终导致NETs释放到胞外[10]。中性粒细胞的这一特殊死亡方式被称为NETosis。NADPH依赖的NETs形成往往超过2 h,被称为自杀型NETosis(suicidal NETosis)。相反,金黄色葡萄球菌可以在5 ~ 60 min内以非NADPH依赖的方式诱导NETs形成[11]。在这一快速过程中,DNA通过囊泡的方式被释放到胞外,而细胞膜保持完整,被称为活力型NETosis(vital NETosis)。

除了化学信号外,中性粒细胞所处的力学微环境也参与调控NETosis。血流动力学触发无菌血栓性闭塞中的中性粒细胞快速产生NETs[12]。基底硬度通过黏着斑激酶的活化引起NETs形成[13]。力敏感蛋白整合素[14]、选择素[15]、CD44[16]和细胞骨架蛋白[8,10]均被报道参与调控NETs形成。然而,力学信号和化学信号是如何协同介导NETs产生的,尚未完全清楚。其中一个原因是,中性粒细胞是终末分化细胞,不能进行基因改造,因而难以阐明不同蛋白在NETosis不同阶段中的作用。因此,有必要利用一种合适的中性粒细胞细胞系模型来进一步破解NETs形成的机制。

HL-60细胞系是人早幼粒白血病细胞,可通过多种试剂[如全反式维甲酸(all-trans retinoic acid,ATRA)、二甲基亚砜(dimethyl sulfoxide,DMSO)、次黄嘌呤或二甲基甲酰胺(dimethylformamide,DMF)]诱导分化为中性粒细胞样细胞(dHL-60)[17-18]。dHL-60已被广泛用于研究中性粒细胞的滚动、黏附、迁移和信号传导等过程[19-20]。dHL-60也被用于NETs形成机制的研究[21-25]。DMSO诱导分化的HL-60(DMSO-dHL-60)在Ca2+刺激下产生的NETs依赖于PAD4,而在PMA刺激下产生的NETs依赖于NADPH[26]。然而,也有报道指出,DMSO-dHL-60在钙离子载体A23187刺激下能释放出NETs,而PMA刺激则不能产生NETs[27]。这可能是由于dHL-60的分化程度不同,从而导致不同的实验结果。因此,本研究的目的是寻找一种合适的分化条件,在这种条件下,dHL-60可以作为中性粒细胞的模式细胞来研究NETs的形成。

DMSO和DMF都是有机试剂,会增加细胞的通透性,不利于NETs形成的研究[27]。ATRA是美国食品药品监督管理局批准的治疗急性早幼粒细胞白血病的药物,被用于诱导分化HL-60细胞[28-29]。此外,ATRA诱导分化的HL-60细胞(ATRA-dHL-60)的吞噬能力与中性粒细胞相似,而DMSO-dHL-60与中性粒细胞相比没有表现出类似的抗菌活性[30]。因此,我们使用了不同浓度(0、0.1、1和10 μmol/L)的ATRA对HL-60细胞进行不同时间(1、3、5和7天)的分化,以探索dHL-60产生NETs的条件。

1. 材料与方法

1.1. 细胞

HL-60细胞购自美国模式培养物集存库(American Type Culture Collection,ATCC)。中性粒细胞均分离自健康志愿者外周静脉血。所有志愿者对此项研究知情,并签署知情同意书。

1.2. 主要试剂

RPMI1640细胞培养基、胎牛血清(fetal bovine serum,FBS)、磷酸盐缓冲液(phosphate buffered saline,PBS)(Gibco,美国);台盼蓝、吉姆萨染色液(碧云天,中国);Hoechst 33342、Sytox Green(Invitrogen,美国);抗瓜氨酸化组蛋白H3(citrullination histone 3,CitH3)抗体、山羊抗兔IgG H&L(Abcam,英国);中性粒细胞分离液1119和1077、红细胞裂解液、聚-L-赖氨酸(poly-L-lysine,PLL)、ATRA、PMA、二亚苯基碘鎓氯化物(diphenyleneiodonium chloride,DPI)、牛血清蛋白(bovine serum albumin,BSA)(Sigma,美国);GSK484(Cayman Chemical Company,美国);µ-slide 8孔腔室载玻片(Ibidi,德国)。

1.3. 细胞培养和ATRA分化

在37 ℃、含5%二氧化碳的细胞培养箱中,用含10% FBS的RPMI1640培养基培养HL-60细胞。为分化HL-60细胞,将HL-60细胞与0.1、1或10 μmol/L ATRA分别培养1、3、5和7天,每天定时更换培养基。用不含ATRA(0 μmol/L)的培养基培养的HL-60细胞作为阴性对照。

1.4. 细胞活力和核形态评估

在第1、3、5、7天,收集细胞分别用台盼蓝和吉姆萨染色法评估分化细胞的活力和细胞核形态。细胞用0.4%台盼蓝室温染色5 min,吸取10 μL样品制成临时封片,显微镜观察并计算HL-60细胞生存率。此外,将细胞以4×106个/孔的密度接种到提前孵育有PLL的载玻片上,待玻片风干后用吉姆萨染色液染色,100倍物镜下随机拍摄dHL-60细胞图像,观察细胞形态。

1.5. 人中性粒细胞的分离

将中性粒细胞分离液1119和1077加入15 mL离心管底部,贴壁将人外周血缓慢加到分离液上层,室温下700 g离心30 min。吸取中性粒细胞层,加入红细胞裂解液在37 ℃裂解10 min,去除残留红细胞。最后用含10% FBS的RPMI1640培养基将细胞稀释至3×106#/mL。

1.6. PMA诱导NETs形成和抑制试验

将dHL-60细胞或中性粒细胞分别接种到PLL预处理的Ibidi 8孔板内,在细胞培养箱中培养30 min确保细胞稳定黏附。用100 ng/mL PMA刺激实验组细胞4 h;同时,用含10% FBS的RPMI1640培养基孵育细胞用作阴性对照。在37 ℃下用2% BSA封闭1 h,以便进行免疫荧光染色。为定量精氨酸(R2+R8+R17)被瓜氨酸化的组蛋白H3含量,先用抗CitH3一抗(1∶200)孵育1 h,再用偶联Alexa Fluor 594的山羊抗兔二抗(1∶200)孵育30 min。在非细胞渗透性DNA染料(Sytox Green)染色20 min后,加入细胞渗透性DNA染料(Hoechst 33342)染色20 min。用Nikon Ti2-U倒置荧光显微镜观察并随机拍摄细胞。在60倍镜下,每孔至少拍摄10个视野,每个视野都拍摄明场白光和蓝色(DAPI)、绿色(FITC)及红色(Texared)荧光通道各一张。为探索NADPH和PAD4对dHL-60形成NETs的影响,在细胞黏附前用DPI(10 μmol/L)或GSK484(10 μmol/L)预处理细胞30 min。其余实验步骤同上。

1.7. NETs定量

为量化细胞形成的NETs,使用ImageJ软件统计明场视野中的细胞个数,并分析免疫荧光图片中Sytox Green或CitH3阳性信号的面积和荧光强度。为排除细胞数量的影响,NETs或CitH3的面积和荧光强度均除以细胞总数。此外,为排除个体差异性,所有实验结果均用阴性对照的平均值进行归一化处理,用NETs或CitH3的相对面积和相对荧光强度表示。

1.8. 统计学方法

使用 GraphPad Prism 7.0处理所有数据,数据表示为均数±标准误(mean ± SEM)。采用单因素方差分析(one-way ANOVA)、双因素方差分析(two-way ANOVA)和Tukey多重比较,以及曼-惠特尼U检验(Mann Whitney test)分析各组数据间的差异。检验水准为0.05。

2. 结果

2.1. ATRA诱导HL-60细胞向粒细胞样分化

为了探索HL-60细胞形成NETs的适宜分化条件,我们用不同浓度(0、0.1、1和10 μmol/L)的ATRA处理HL-60细胞不同天数(1、3、5和7天)。未处理组(0 μmol/L)第7天的活细胞数量为第1天的10倍(见图1a)。在0.1或1 μmol/L ATRA处理下,第7天活细胞数量仅为第1天的4倍左右。值得注意的是,在10 μmol/L ATRA处理下,HL-60细胞的数量几乎保持恒定,表明高浓度的ATRA干扰了HL-60细胞的增殖能力(见图1a)。

图 1.

HL-60 cells were differentiated to neutrophil-like cells by ATRA

使用ATRA将HL-60细胞分化为中性粒细胞样细胞

HL-60细胞分别用0、0.1、1、10 μmol/L的ATRA处理1、3、5和7天。a. 台盼蓝染色检测细胞数量和细胞活力;b. 分化1、3、5、7天后的HL-60细胞,吉姆萨染色后的细胞形态,比例尺为30 µm;c. 细胞在分化过程中的5种类型。数据代表至少3次独立实验的平均值±标准误

HL-60 cells were treated with 0, 0.1, 1, and 10 μmol/L ATRA for 1, 3, 5, and 7 days respectively. a. the cell numbers and viability of the cells were measured by the trypan blue method. b. cell morphology was shown by Giemsa stain after 1-, 3-, 5-, and 7-day differentiation. The scale bar was 30 µm. c. cells were classified into 5 types during the differentiation process. The data represent the mean ± SEM from at least 3 independent experiments

图 1

处于不同分化阶段的HL-60细胞可分为早幼粒细胞、髓细胞、后髓细胞、带状细胞和多形核白细胞(polymorphonuclear leukocyte,PMN)[31]。正如预期的那样,HL-60细胞的分化程度具有时间依赖性。在1 μmol/L和10 μmol/L ATRA处理条件下,第3天有37.52%的HL-60细胞开始变成PMN(见图1b);随着分化时间的进一步增加,PMN在第5天分别增加到66.43%和70.46%,而在第7天则分别达到75.37%和74.68%(见图1c)。相比之下,HL-60细胞的核形态在未诱导组(0 μmol/L组)从第1天到第7天都没有显著变化(见图1b~c)。这些数据表明,在1或10 μmol/L ATRA的诱导下大多数HL-60细胞在5天后成功分化为中性粒细胞样细胞。

2.2. 1 μmol/L ATRA处理5天是dHL-60细胞在PMA刺激下有效形成NETs的最佳分化条件

为了探究不同分化条件下的HL-60细胞产生NETs的能力,我们利用100 ng/mL的PMA刺激dHL-60细胞产生NETs。分化1天后的HL-60细胞受到PMA刺激后,只有少数细胞呈现Sytox Green阳性且细胞形态变圆,但是没有观察到弥散的DNA结构。分化3天后的HL-60在受到PMA刺激后有部分细胞产生了NETs。然而,只有10 μmol/L ATRA组的NETs面积显著高于未分化组,其余ATRA浓度组与未分化组之间没有显著差异。

与分化1天和3天后的HL-60细胞相比,分化5天后的HL-60细胞受到PMA刺激后能产生更强的Sytox Green信号,且在1 μmol/L和10 μmol/L ATRA组中均观察到云雾状的NET-DNA结构(见图2a)。定量分析结果显示,NET-DNA的面积和荧光强度随着ATRA浓度的升高而升高。值得注意的是,与未分化组相比,1 μmol/L ATRA组和10 μmol/L ATRA组的NET-DNA面积分别增加至约7倍和8倍(见图2b),NET-DNA荧光强度分别增加至约3倍和4倍(见图2c)。这些数据表明,用1 μmol/L或10 μmol/L的ATRA分化处理5天后的HL-60细胞在受到PMA刺激时能产生明显的NETs。我们同样定量分析了分化5天后的HL-60细胞受PMA刺激后CitH3的形成情况(见图2d)。与NET-DNA不同,分化组的CitH3面积和荧光强度与未分化组相比没有显著差异(见图2e~f)。

图 2.

Five-day differentiated and PMA-stimulated HL-60 cells formed NETs

分化5天后PMA刺激HL-60细胞形成NETs

HL-60细胞用不同浓度的ATRA(0、0.1、1和10 μmol/L)处理5天,并用100 ng/mL PMA 刺激4 h。a. HL-60细胞形成NETs的免疫荧光代表性图片,比例尺为50 μm;b和c. PMA刺激后NETs相对面积和相对荧光强度的定量结果;d. HL-60细胞CitH3的免疫荧光代表性图片,比例尺为50 μm;e和f. PMA刺激后CitH3相对面积和相对荧光强度的定量结果。数据代表至少3次独立实验的平均值±SEM。采用one-way ANOVA进行统计学分析,Tukey检验进行多重比较。NS,无显著差异;*,P < 0.05;**,P < 0.01

HL-60 cells were treated with different concentrations of ATRA (0, 0.1, 1, and 10 μmol/L) for five days, and stimulated by 100 ng/mL PMA for 4 h. a. the representative immunofluorescent images of NET formation by HL-60 cells, the scale bar was 50 μm; b and c. the quantitative results of relative NETs area and relative NETs fluorescent intensity after PMA stimulated; d. the representative immunofluorescent images of CitH3, the scale bar was 50 μm; e and f. the quantitative results of relative CitH3 area and relative CitH3 fluorescent intensity after PMA stimulated. The data represent the mean ± SEM from at least 3 independent experiments. Statistical significance was analyzed by one-way ANOVA for multiple comparisons with Tukey’s test. NS, no significance; *, P < 0.05; **, P < 0.01

图 2

接着,我们想探究延长分化时间是否有利于增强dHL-60细胞形成NETs的能力。意外的是分化处理7天的HL-60细胞在PMA刺激4 h后并没有观察到云雾状DNA结构。定量结果表明,1 μmol/L和10 μmol/L ATRA组的NET-DNA与CitH3的荧光面积和荧光强度与未分化组相比差异没有统计学意义。考虑到分化处理7天后HL-60活细胞的比例会下降(见图1a),分化7天后HL-60细胞NETs形成能力的减弱可能是由于长时间孵育时ATRA的细胞毒性所导致的。

当将所有分化条件下的数据放在一起时,可观察到以1 μmol/L或10 μmol/L ATRA分化处理5天的HL-60细胞的NET-DNA面积显著高于其他分化条件组(见图3a~b)。所有分化条件组之间的CitH3面积和荧光强度均没有显著差异(见图3c~d)。用1 μmol/L或10 μmol/L ATRA分化处理5天的HL-60细胞的NETs形成能力相当,但1 μmol/L ATRA组具有更低的细胞毒性(见图3a图1a)。因此,在本研究中分化HL-60的最优条件为1 μmol/L ATRA处理5天。

图 3.

NET formation of HL-60 cells after different days of differentiation treatment with different concentrations of ATRA upon PMA stimulation

用不同浓度ATRA进行不同天数的分化处理后HL-60细胞在PMA刺激下的NETs形成

HL-60细胞分别用0、0.1、1、10 μmol/L的ATRA处理1、3、5和7天,用100 ng/mL PMA 刺激4 h。a和b. 不同分化条件下dHL-60细胞形成的NETs相对面积和相对荧光强度的定量结果;c和d. 不同分化条件下dHL-60细胞形成的CitH3相对面积和相对荧光强度的定量结果。数据代表至少3次独立实验的平均值±SEM。采用two-way ANOVA 分析,Tukey检验进行多重比较。*,P < 0.05;**,P < 0.01;***,P < 0.001

HL-60 cells were treated with 0, 0.1, 1, and 10 μmol/L ATRA for 1, 3, 5, and 7 days respectively, and then stimulated by 100 ng/mL PMA for 4 h. a and b. the summary quantification results of relative NETs area and relative NETs fluorescent intensity formed by dHL-60 cells under different differentiation conditions; c and d. the summary quantitative results of relative CitH3 area and relative CitH3 fluorescent intensity formed by dHL-60 cells under different differentiation conditions. The data represent the mean ± SEM from at least 3 independent experiments. Statistical significance was analyzed by two-way ANOVA for multiple comparisons with Tukey’s test. *, P < 0.05; **, P < 0.01; ***, P < 0.001

图 3

为了验证ATRA-dHL-60细胞是否适合作为中性粒细胞的模式细胞用于研究NETs形成机制,我们比较了最优分化条件下的HL-60细胞和中性粒细胞在PMA刺激下的NETs形成能力。与各自的未刺激组相比,dHL-60细胞和中性粒细胞在受到PMA刺激后产生的NET-DNA面积分别增加至3倍和6倍,NET-DNA荧光强度分别增加至10倍和12倍(见图4a~c)。与中性粒细胞相似,PMA刺激下的dHL-60呈现低水平的CitH3,且与未刺激组相比没有显著差异(见图4d~f)。这些数据表明,以1 μmol/L ATRA处理5天获得的dHL-60细胞在受到PMA刺激时产生NETs的能力与中性粒细胞相当。

图 4.

NET formation of dHL-60 cells compared to neutrophils stimulated by PMA

PMA刺激下dHL-60细胞形成的NETs与中性粒细胞相当

dHL-60细胞(1 μmol/L ATRA分化5天)用PMA刺激并与中性粒细胞进行比较。a. NETs的代表性荧光图像,比例尺为50 μm;b和c. PMA刺激后dHL-60细胞和中性粒细胞产生的NETs相对面积和相对荧光强度的定量结果;d. CitH3的代表性荧光图像,比例尺为50 μm;e和f. PMA刺激后dHL-60细胞和中性粒细胞产生的相对CitH3面积和相对CitH3荧光强度的定量结果。数据代表至少3次独立实验的平均值± SEM。采用Mann Whitney检验进行统计学分析。NS,无显著差异;**,P < 0.01

dHL-60 cells (1 μmol/L ATRA differentiated for 5 days) were stimulated with PMA and compared to blood-derived neutrophils (PMN). a. the representative immunofluorescent images of NETs, the scale bar was 50 μm; b and c. the quantitative results of relative NETs area and relative NETs fluorescent intensity for dHL-60 cells and neutrophils after PMA stimulated; d. the representative immunofluorescent images of CitH3, the scale bar was 50 μm; e and f. the quantitative results of relative CitH3 area and relative CitH3 fluorescent intensity for dHL-60 cells and neutrophils after PMA stimulated. The data represent the mean ± SEM from at least 3 independent experiments. Statistical significance was analyzed by Mann Whitney test. NS, no significance; **, P < 0.01

图 4

2.3. NADPH在PMA诱导的dHL-60细胞NETs形成中起着重要作用

研究表明NADPH在PMA诱导的NETs形成中起着重要作用[32-33]。为了探究NADPH是否同样在dHL-60细胞NETs形成中起着重要作用,我们使用NADPH抑制剂DPI预处理最佳分化条件下的dHL-60细胞30 min,然后使用PMA诱导其产生NETs。结果表明,经过DPI预处理后能显著降低dHL-60细胞产生的NET-DNA面积(下降至未处理组的16.38%)和NET-DNA荧光强度(下降至未处理组的19.13%)。未处理组与溶剂对照组之间没有显著差异(见图5)。这些数据表明PMA刺激dHL-60细胞产生NETs依赖于NADPH。

图 5.

NADPH participated in the formation of NETs stimulated by PMA

NADPH参与PMA刺激的NETs的形成

HL-60细胞用1 μmol/L ATRA处理5天,用100 ng/mL PMA 刺激4 h。a. PMA刺激的dHL-60细胞(Ctrl)、PMA刺激的dHL-60细胞在溶剂(DMSO)或DPI(NADPH抑制剂)存在下的NETs荧光图像,比例尺为50 μm;b和c. 相对NETs面积和相对NETs荧光强度的定量结果;d. PMA刺激的dHL-60细胞(Ctrl)、PMA刺激的dHL-60细胞在溶剂(DMSO)或DPI存在下的CitH3荧光图像,比例尺为50 μm;e和f. 相对CitH3面积和相对CitH3荧光强度的定量结果。数据代表至少3次独立实验的平均值±SEM。采用one-way ANOVA进行统计学分析,Tukey检验进行多重比较。NS,无显著性差异;*,P < 0.05;**,P < 0.01;****,P < 0.000 1

HL-60 cells were treated with 1 μmol/L ATRA for 5 days and then stimulated by 100 ng/mL PMA for 4 h. a. the representative NETs images of PMA stimulated dHL-60 cells (Ctrl), PMA stimulated dHL-60 cells in presence of the vehicle (DMSO) or DPI (NADPH inhibitor), the scale bar was 50 μm; b and c. the quantitative results of relative NETs area and relative NETs fluorescent intensity; d. the representative CitH3 images of PMA stimulated dHL-60 cells (Ctrl), PMA stimulated dHL-60 cells in presence of the vehicle (DMSO) or DPI, the scale bar was 50 μm; e and f. the quantitative results of relative CitH3 area and relative CitH3 fluorescent intensity. The data represent the mean ± SEM from at least 3 independent experiments. Statistical significance was analyzed by one-way ANOVA for multiple comparisons with Tukey’s test. NS, no significance; *, P < 0.05; **, P < 0.01; ****, P < 0.000 1

图 5

2.4. PMA刺激dHL-60细胞形成NETs不依赖于PAD4

研究报道PAD4参与NETs的形成,其机制是PAD4能将组蛋白上的精氨酸转变为瓜氨酸,使组蛋白表面正电荷减少,从而促进染色质的解聚[34-35]。因此,CitH3的水平被用于反映PAD4的活性和作为NETs形成的标志物[22]。然而,同样有文献报道存在不依赖于PAD4的NETs形成机制[36]。为了探究PMA诱导的dHL-60细胞NETs形成是否依赖于PAD4,我们使用PAD4抑制剂GSK484预处理最优分化条件下的dHL-60细胞30 min,再使用PMA诱导NETs形成。结果表明,抑制PAD4对NET-DNA的面积和荧光强度没有影响(见图6a~c)。与未处理组相比,PAD4抑制组的CitH3面积和荧光强度均显著降低(分别降低至21.33%和10.55%)(见图6d~f)。这些数据表明PAD4没有参与PMA刺激dHL-60-细胞的NETs形成。

图 6.

PAD4 was not involved in the formation of NETs stimulated by PMA

PAD4不参与PMA刺激的NETs的形成

HL-60细胞用1 μmol/L ATRA处理5天,用100 ng/mL PMA 刺激4 h。a. PMA刺激的dHL-60细胞(Ctrl)、PMA刺激的dHL-60细胞在溶剂(DMSO)或GSK484(PAD4抑制剂)存在下的NETs荧光图像,比例尺为50 μm;b和c. 相对NETs面积和相对NETs荧光强度的定量结果;d. PMA刺激的dHL-60细胞(Ctrl)、PMA刺激的dHL-60细胞在溶剂(DMSO)或GSK484存在下的CitH3荧光图像,比例尺为50 μm;e和f. 相对CitH3面积和相对CitH3荧光强度的定量结果。数据代表至少3次独立实验的平均值±SEM。采用one-way ANOVA进行统计学分析,Tukey检验进行多重比较。NS,无显著差异;*,P < 0.05

HL-60 cells were treated with 1 μmol/L ATRA for 5 days and then stimulated by 100 ng/mL PMA for 4 h. a. the representative NETs images of PMA stimulated dHL-60 cells (Ctrl), PMA stimulated dHL-60 cells in presence of the vehicle (DMSO) or GSK484 (PAD4 inhibitor), the scale bar was 50 μm; b and c. the quantitative results of relative NETs area and relative NETs fluorescent intensity; d. the representative CitH3 images of PMA stimulated dHL-60 cells (Ctrl), PMA stimulated dHL-60 cells in presence of the vehicle (DMSO) or GSK484, the scale bar was 50 μm; e and f. the quantitative results of relative CitH3 area and relative CitH3 fluorescent intensity. The data represent the mean ± SEM from at least 3 independent experiments. Statistical significance was analyzed by one-way ANOVA for multiple comparisons with Tukey’s test. NS, no significance; *, P < 0.05

图 6

3. 讨论

NETs可以保护机体免受微生物入侵,然而它是把双刃剑,正如在自身免疫性疾病、凝血障碍、癌症转移、败血症和COVID-19研究中报道的那样,过多的NETs产生是有害的[37-38]。因此,了解NETs形成和降解的机制对于有效治疗细菌感染和NETs相关疾病具有重要意义。

从新鲜血液中获得的中性粒细胞数目有限,供体个体间的差异可能会影响研究结果。此外,中性粒细胞处于终末分化状态,无法进一步进行基因改造,使得NETs形成的机制研究存在困难。尽管基因动物模型及其中性粒细胞被用于探索NETs的形成,但由于物种差异,动物研究中的一些发现可能无法直接反映到人类身上。因此,有必要利用人中性粒细胞样细胞模型来研究NETs形成的机制。为此,我们在本研究中采用ATRA来诱导分化HL-60,并用PMA刺激dHL-60以研究NETs的形成。我们用不同浓度(0、0.1、1和10 μmol/L)的ATRA对HL-60进行不同天数(1、3、5和7天)的分化。通过分析细胞活力和核形态,我们发现HL-60细胞在分化5天后成为中性粒细胞样细胞(见图1)。我们的结果还表明,dHL-60细胞在100 ng/mL PMA刺激下可以形成NETs。

此前的一项研究使用不同的诱导剂对HL-60细胞进行诱导分化5天,结果表明,ATRA-dHL-60细胞仅在PMA刺激下释放NETs,DMSO-dHL-60细胞仅在A23187刺激下释放NETs,而DMF-dHL-60细胞在上述两种刺激剂下均能释放NETs[27]。Kawakami等[21]用1 μmol/L的ATRA诱导分化HL-60细胞3天,然而在PMA刺激4小时后,只有少数dHL-60细胞产生云雾状的NETs结构,这与本研究的结果一致。类似地,最近一项研究表明,当HL-60细胞用DMSO诱导分化3天时,在PMA或金黄色葡萄球菌刺激下,dHL-60细胞产生NETs的能力受到限制[30]。这些观察结果表明无论是用ATRA还是DMSO,分化3天的dHL-60细胞在PMA刺激下产生的NETs有限。这可能是因为分化时间不够所导致的。然而,由于ATRA存在细胞毒性,HL-60分化超过6天后细胞活力显著降低[24],NETs形成的能力下降。Guo等[24]根据细胞表面标记物和细胞活力判断,ATRA诱导分化HL-60细胞5天是最佳条件,这与我们的结果一致(见图1)。我们的研究结果还表明:1 μmol/L的ATRA处理HL-60细胞5天是获得dHL-60细胞的最佳条件,这一条件下处理的细胞在PMA刺激时能产生大量的NETs(见图2图3a)。

NADPH氧化酶产生ROS在自杀型NETosis中扮演着重要的角色。在PMA引起的NETosis中,NADPH活性和ROS生成显著增加[27,39]。DPI处理几乎完全消除了ROS的产生和NETs的形成[40]。在我们的研究中,DPI抑制了PMA刺激下dHL-60细胞NETs的形成,表明这一过程依赖于NADPH。此前的研究也表明,在PMA刺激下,不同诱导剂诱导分化的dHL-60产生NETs依赖于NADPH[21,26]

PAD4在NETosis中具有重要作用[34-35]。PAD4将组蛋白中带正电荷的精氨酸转化为不带电荷的瓜氨酸,导致染色质解聚和NETosis[22]。值得注意的是,PMA引起的NETs形成既可以依赖于PAD4[41],也可以不依赖于PAD4[14,42-43]。本研究显示,PMA刺激ATRA-dHL-60产生的NETs不依赖于PAD4(见图4),尽管PAD4的抑制剂GSK484抑制了H3的瓜氨酸化(见图6)。这些结果与此前报道的一致,PMA刺激人中性粒细胞和dHL-60并未导致组蛋白瓜氨酸化水平增加[24,27]

4. 总结

我们发现1 μmol/L的ATRA诱导分化HL-60细胞5天是获得dHL-60的最佳条件,此条件处理后的dHL-60在PMA刺激下可以产生足够的NETs。在PMA刺激下,ATRA-dHL-60产生NETs依赖于NADPH而不依赖于PAD4,这与人中性粒细胞一致。因此,dHL-60可以作为中性粒细胞的模型细胞研究NETs形成,便于用来探索细菌感染和NETs相关疾病的分子机制。

重要声明

利益冲突声明:本文全体作者均声明不存在利益冲突。

作者贡献声明:林蒋国和刘望设计了实验;刘望、方金花、洪天添和黄嘉祺负责实数据收集和数据分析。林蒋国和刘望撰写论文初稿;刘望、方金花、赵柏松、方颖、吴建华和林蒋国修改和完善论文手稿。

伦理声明:本研究通过了广州市妇女儿童医疗中心伦理委员会的审批(批文编号:2019-37001)。

Funding Statement

国家自然科学基金项目(32071303,31771012,12072117,12172137)

The National Natural Science Foundation of China

References

  • 1.Brinkmann V, Reichard U, Goosmann C, et al Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi: 10.1126/science.1092385. [DOI] [PubMed] [Google Scholar]
  • 2.Kaplan M J, Radic M Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–2695. doi: 10.4049/jimmunol.1201719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cools-Lartigue J, Spicer J, Mcdonald B, et al Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–3458. doi: 10.1172/JCI67484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Hakkim A, Furnrohr B G, Amann K, et al Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107(21):9813–9818. doi: 10.1073/pnas.0909927107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Fuchs T A, Brill A, Duerschmied D, et al Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci. 2010;107(36):15880–15885. doi: 10.1073/pnas.1005743107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Wadehn H, Raluy L P, Kolman J, et al Time- and dose-dependent inhibition of neutrophil extracellular trap formation by blocking of the interleukin-1 receptor. Cent Eur J Immunol. 2021;46(4):419–426. doi: 10.5114/ceji.2021.111493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Saisorn W, Saithong S, Phuengmaung P, et al Acute kidney injury induced lupus exacerbation through the enhanced neutrophil extracellular traps (and apoptosis) in Fcgr2b deficient lupus mice with renal ischemia reperfusion injury. Front Immunol. 2021;12:669162. doi: 10.3389/fimmu.2021.669162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.洪天添, 刘望, 黄嘉祺, 等 LPS刺激稳定黏附于ICAM-1上的中性粒细胞形成胞外诱捕网依赖于整合素Mac-1和细胞骨架蛋白. 生物医学工程学杂志. 2021;38(5):903–910. [Google Scholar]
  • 9.Telerman A, Granot G, Leibovitch C, et al Neutrophil extracellular traps are increased in chronic myeloid leukemia and are differentially affected by tyrosine kinase inhibitors. Cancers. 2021;14(119):1–10. doi: 10.3390/cancers14010119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Thiam H R, Wong S L, Qiu R, et al NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci USA. 2020;117(13):7326–7337. doi: 10.1073/pnas.1909546117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Pilsczek F H, Salina D, Poon K, et al A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185(12):7413–7425. doi: 10.4049/jimmunol.1000675. [DOI] [PubMed] [Google Scholar]
  • 12.Yu X, Tan J, Diamond S L Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions. J Thromb Haemost. 2018;16(2):316–329. doi: 10.1111/jth.13907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Abaricia J O, Shah A H, Olivares-Navarrete R Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation. Biomaterials. 2021;271:1–24. doi: 10.1016/j.biomaterials.2021.120715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Silva J C, Rodrigues N C, Thompson-Souza G A, et al Mac-1 triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination. J Leukoc Biol. 2020;107(1):69–83. doi: 10.1002/JLB.4A0119-009RR. [DOI] [PubMed] [Google Scholar]
  • 15.Etulain J, Martinod K, Wong S L, et al P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242–246. doi: 10.1182/blood-2015-01-624023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Shao Y, Li L, Liu L, et al CD44/ERM/F-actin complex mediates targeted nuclear degranulation and excessive neutrophil extracellular trap formation during sepsis. J Cell Mol Med. 2022;26(7):2089–2103. doi: 10.1111/jcmm.17231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Collins S J The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987;70(5):1233–1244. doi: 10.1182/blood.V70.5.1233.1233. [DOI] [PubMed] [Google Scholar]
  • 18.Harris P, Ralph P Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol. 1985;37(4):407–422. doi: 10.1002/jlb.37.4.407. [DOI] [PubMed] [Google Scholar]
  • 19.Hauert A B, Martinelli S, Marone C, et al Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int J Biochem Cell B. 2002;34(7):838–854. doi: 10.1016/S1357-2725(02)00010-9. [DOI] [PubMed] [Google Scholar]
  • 20.Bing H, Ling Y, Lin J, et al Mechanical regulation of calcium signaling of HL-60 on P-selectin under flow. Biomed Eng Online. 2016;15(S2):637–646. doi: 10.1186/s12938-016-0271-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kawakami T, He J, Morita H, et al Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells. PloS One. 2014;9(1):1–11. doi: 10.1371/journal.pone.0084704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol, 2009, 184(2): 205-213.
  • 23.Liu C L, Tangsombatvisit S, Rosenberg J M, et al Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res Ther. 2012;14(1):1–14. doi: 10.1186/ar3549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Guo Y, Gao F, Wang Q, et al Differentiation of HL-60 cells in serum-free hematopoietic cell media enhances the production of neutrophil extracellular traps. Exp Ther Med. 2021;21(4):1–9. doi: 10.3892/etm.2021.9784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Koga T, Morotomi-Yano K, Sakugawa T, et al Nanosecond pulsed electric fields induce extracellular release of chromosomal DNA and histone citrullination in neutrophil-differentiated HL-60 cells. Sci Rep. 2019;9(1):1–13. doi: 10.1038/s41598-018-37186-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Vong L, Lorentz R J, Assa A, et al Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol. 2014;192(4):1870–1877. doi: 10.4049/jimmunol.1302286. [DOI] [PubMed] [Google Scholar]
  • 27.Manda-Handzlik A, Bystrzycka W, Wachowska M, et al The influence of agents differentiating HL-60 cells toward granulocyte-like cells on their ability to release neutrophil extracellular traps. Immunol Cell Biol. 2018;96(4):413–425. doi: 10.1111/imcb.12015. [DOI] [PubMed] [Google Scholar]
  • 28.Vakhrushev I V, Novikova S E, Tsvetkova A V, et al Proteomic profiling of HL-60 cells during ATRA-induced differentiation. Bull Exp Biol Med. 2018;165(4):530–543. doi: 10.1007/s10517-018-4210-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lo-Coco F, Avvisati G, Vignetti M, et al Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–121. doi: 10.1056/NEJMoa1300874. [DOI] [PubMed] [Google Scholar]
  • 30.Yaseen R, Blodkamp S, Luthje P, et al Antimicrobial activity of HL-60 cells compared to primary blood-derived neutrophils against Staphylococcus aureus. J Negat. 2017;16(1):1–7. doi: 10.1186/s12952-017-0067-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Macqueen B C, Christensen R D, Yoder B A, et al Comparing automated vs manual leukocyte differential counts for quantifying the 'left shift' in the blood of neonates. J Perinatol. 2016;36(10):843–848. doi: 10.1038/jp.2016.92. [DOI] [PubMed] [Google Scholar]
  • 32.Parker H, Dragunow M, Hampton M B, et al Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol. 2012;92(4):841–849. doi: 10.1189/jlb.1211601. [DOI] [PubMed] [Google Scholar]
  • 33.Walter S, Astrid O, Peter S, et al The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules. 2015;5(2):702–723. doi: 10.3390/biom5020702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Li P, Li M, Lindberg M R, et al PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–1862. doi: 10.1084/jem.20100239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Leshner M, Wang S, Lewis C, et al PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3(307):1–11. doi: 10.3389/fimmu.2012.00307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Neeli I, Khan S N, Radic M Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol. 2008;180(3):1895–1902. doi: 10.4049/jimmunol.180.3.1895. [DOI] [PubMed] [Google Scholar]
  • 37.Haijiao J, Xiaojing C, Shuoqi Z, et al Neutrophil extracellular traps (NETs): the role of inflammation and coagulation in COVID-19. Am J Transl Res. 2021;13(8):8575–8588. [PMC free article] [PubMed] [Google Scholar]
  • 38.Manda A, Pruchniak M P, Arazna M, et al Neutrophil extracellular traps in physiology and pathology. Cent Eur J Immunol. 2014;39(1):116–121. doi: 10.5114/ceji.2014.42136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Keshari R S, Verma A, Barthwal M K, et al Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem. 2013;114(3):532–540. doi: 10.1002/jcb.24391. [DOI] [PubMed] [Google Scholar]
  • 40.Dömer D, Walther T, Moller S, et al Neutrophil extracellular traps activate proinflammatory functions of human neutrophils. Front Immunol. 2021;12:636954. doi: 10.3389/fimmu.2021.636954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Tatsiy O, Mcdonald P P Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways. Front Immunol. 2018;9:1–12. doi: 10.3389/fimmu.2018.00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Neeli I, Radic M Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol. 2013;4:1–9. doi: 10.3389/fimmu.2013.00038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Kenny E F, Herzig A, Kruger R, et al Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:1–21. doi: 10.7554/eLife.24437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering are provided here courtesy of West China Hospital of Sichuan University

RESOURCES