Skip to main content
Mycology logoLink to Mycology
. 2022 Jul 11;14(1):11–36. doi: 10.1080/21501203.2022.2089262

Applying early divergent characters in higher rank taxonomy of Melampsorineae (Basidiomycota, Pucciniales)

Peng Zhao a, Yan Li b, Yuanjie Li a, Fang Liu a, Junmin Liang a, Xin Zhou a, Lei Cai a,
PMCID: PMC9930778  PMID: 36816773

ABSTRACT

Rust fungi in the order Pucciniales represent one of the largest groups of phytopathogens, which occur on mosses, ferns to advanced monocots and dicots. Seven suborders and 18 families have been reported so far, however recent phylogenetic studies have revealed para- or polyphyly of several morphologically defined suborders and families, particularly in Melampsorineae. In this study, a comprehensive phylogenetic framework was constructed based on a molecular phylogeny inferred from rDNA sequences of 160 species belonging to 16 genera in Melampsorineae (i.e. Chrysomyxa, Cerospora, Coleopuccinia, Coleosporium, Cronartium, Hylospora, Melampsora, Melampsorella, Melampsoridium, Milesina, Naohidemyces, Pucciniastrum, Quasipucciniastrum, Rossmanomyces, Thekopsora, Uredinopsis). Our phylogenetic inference indicated that 13 genera are monophyletic with strong supports, while Pucciniastrum is apparently polyphyletic. A new genus, Nothopucciniastrum was therefore established and segregated from Pucciniastrum, with ten new combinations proposed. At the family level, this study further demonstrates the importance of applying morphologies of spore-producing structures (basidia, spermogonia, aecia, uredinia and telia) in higher rank taxonomy, while those traditionally applied spore morphologies (basidiospores, spermatia, aeciospores, urediniospores and teliospores) represent later diverged characters that are more suitable for the taxonomy at generic and species levels. Three new families, Hyalopsoraceae, Nothopucciniastraceae and Thekopsoraceae were proposed based on phylogenetic and morphological distinctions, towards a further revision of Pucciniales in line with the phylogenetic relationships.

KEYWORDS: Family classification, Pucciniales, rust fungi, systematics, taxonomic criteria

Introduction

Plant parasitic rusts, taxonomically as members of the order Pucciniales, are one of the most diverse groups of fungal pathogens, with over 7 800 species recognised worldwide (Arthur 1934; Hiratsuka et al. 1992; Zhao et al. 2021; Aime et al. 2006; Webster and Weber 2007). Rusts are obligate parasites with up to five different spore types, including basidiospores, spermatia, aeciospores, urediniospores, teliospores, as well as different lifestyles (micro-, hemi-, demi-, or macrocyclic) that occur on a single (autoecious), or alternate between two unrelated host plants (heteroecious) (Cummins and Hiratsuka 1983). Many species are wreaking havoc on agricultural and forest crop plants, resulting in significant economic losses (Cummins and Hiratsuka 2003). Due to the serious threats posed to these crops, Puccinia spp. on wheat and Melampsora lini on flax were listed in the “top 10 most important fungal pathogens” in a recent global survey of important plant pathogens (Dean et al. 2012). Furthermore, many rust species, such as Austropuccinia psidii (myrtle rust), Cronartium ribicola (white pine blister rust), Hemileia vastatrix (coffee rust), Phakopsora pachyrhizi (Asian soybean rust) etc., are known to be among the most important and threatening species to agriculture and forestry (Ono et al. 1992; Beenken 2014, 2017). Despite the importance of rust fungi, their taxonomy is still debated due to the lack of information on host alternation, and morphological characteristics of their various spore stages (Kuprevich and Tranzschel 1957; Savile 1976; Aime 2006).

The taxonomic ranks of plant-parasitic rusts vary at the generic and suprageneric levels. Rust fungi have been classified into different classes (Basidiomycetes, Pucciniomycetes or Urediniomycetes) or orders (Pucciniales or Uredinales) at various time periods (Plowright 1889; Dietel 1928; Cummins 1971; Hiratsuka et al. 1992). Rust fungi were recently found to be monophyletic, and the order Pucciniales was proposed to accommodate these plant parasitic rusts (Aime et al. 2006; Hibbett et al. 2007; Zhao et al. 2016). At the family level, the traditional taxonomy of rust fungi changed dramatically over time, and they were divided into 2–14 families based on criteria applied at the time. At early 20th century, all rusts were initially divided into 2–4 families on the basis of the presence of teliospore pedicels and basidial formation (Dietel 1928; Arthur 1934; Hiratsuka 1955). Such a taxonomic treatment has been widely debated, as many apparently unrelated genera have been placed in the same family simply because of morphological similarities in their teliospores (Wilson and Henderson 1966; Leppik 1972; Hiratsuka and Sato 1982). Later, spermogonial morphology was introduced as criterion and the taxonomic importance of this criterion at the family level was further evaluated (Hiratsuka and Cummins 1963; Savile 1976). Hiratsuka and Cummins summarised 12 morphological types of spermogonia in rust fungi and categorised them into six major groups based on the structure of spermogonia (Cummins and Hiratsuka 1983). Thus, a taxonomic scheme with 14 families was proposed and uredinologists universally accepted this taxonomic classification (Hiratsuka and Cummins 1983; Hiratsuka et al. 1992; Cummins and Hirastuka 2003). However, several defined families, such as Chaconiaceae, Pucciniaceae, Pucciniastraceae, Pucciniosiraceae and Uropyxidaceae, have been revealed to be poly- or paraphyletic in molecular phylogenetic studies (Maier et al. 2003; Wingfield et al. 2004; Aime 2006). Aime (2006) has roughly divided the order Pucciniales into three suborders based on molecular phylogeny: Melampsorineae, Mikronegeriineae and Uredinineae, but the polyphyly of several morphologically defined families remains unresolved (Maier et al. 2003; Wingfield et al. 2004; Beenken et al. 2012; Beenken and Wood 2015; Qi et al. 2019). Thereafter, Aime and McTaggart (2021) presented a high-rank classification of the Pucciniales, in which the order was divided into seven suborders and 18 families. Among these families, all rusts with sessile teliospores were classified in the suborder Melampsorineae, with 16 genera included in four families, Coleosporiaceae, Melampsoraceae, Milesinaceae and Pucciniastraceae based on their aecial similarities. However, these families showed significant morphological differences in the structures of spermogonia and telia, which have long been employed as the main criteria for family classification (Cummins and Hiratsuka 1983, 2003). As a result, the taxonomic placement of these 16 genera remains a point of contention, and it is necessary to reassign those genera in the proper family in the suborder Melampsorineae.

In this study, we conducted molecular phylogenetic analyses and morphological reappraisal of Melampsorineae. The objectives of this study were: (1) to evaluate the monophyly of traditional morphologically defined genera and determine their familial placements and generic boundaries in Melampsorineae; (2) to propose a taxonomic amendment towards establishing monophyletic families in Melampsorineae.

Materials and methods

Molecular phylogeny and supergeneric-level delimitation

We have included sequence data from our previous taxonomic studies on genera in Melampsorineae (Zhao et al. 2014, 2015, 2016, 2017, 2020, 2021; Qi et al. 2019) as well as some newly generated sequence data from our one unpublished paper (under review), and detailed information of specimens, host species and GenBank accession numbers has been listed in Table 1. In addition, rDNA sequence data from previous taxonomic studies on Pucciniales, particularly those in Melampsorineae, were included in the final alignment (Table 1). Those sequences were acquired from taxonomic references and retrieved from NCBI (https://www.ncbi.nlm.nih.gov/) based on the accession number. To determine the phylogenetic relationships of genera in the suborder Melampsorineae, rDNA ITS and LSU sequences of representative taxa from the genera Chrysomyxa, Coleopuccinia, Coleosporium, Cronartium, Hylospora, Melampsora, Melampsorella, Melampsoridium, Milesina, Naohidemyces, Pucciniastrum, Quasipucciniastrum, Rossmanomyces, Thekopsora, and Uredinopsis were chosen for phylogenetic studies (Table 1). Two Gymnosporangium species were selected as outgroups. The majority of the sequence data came from samples that had detailed morphological information.

Table 1.

rDNA sequence data from selected genera in the Melampsorineae suborder of Pucciniales order used for phylogenetic studies.

Family Genus Species Specimen No.a Spore stage Host Country GenBank Accession No.a
Reference
ITS LSU
Cronartiaceae Cronartium Cronartium appalachianum Ca-1 0, I Pinus virginiana USA L76484 Vogler & Bruns (1998)
    Cronartium arizonicum MICH253346 II, III Castilleja linariaefolia USA MK208284 MK193824 Qi et al. (2019)
MICH301493 0, I Pinus ponderosa USA OM746343 OM746511 Present study
FSprP- 1 0, I Pinus ponderosa USA L76504 Vogler & Bruns (1998)
    Cronartium armandii ZP-R901 II, III Ribes sp. China OM746349 OM746517 Present study
HMAS45350 0, I Pinus armandii China MZ520620 MZ520623 Present study
    Cronartium bethelii MICH253453 II, III Quercus emoryi USA OM746353 OM746521 Present study
FLAS-F-16608 0, I Pinus palustris USA OM746355 OM746523 Present study
CrKor-1 0, I Pinus strobus USA L76497 Vogler & Bruns (1998)
    Cronartium coleosporioides CsSr-1 0, I Pinus contorta USA L76500 Vogler & Bruns (1998)
SHmC-9 0, I Pinus contorta USA L76511 Vogler & Bruns (1998)
SPC-21 0, I Pinus contorta var. latifolia USA L76513 Vogler & Bruns (1998)
    Cronartium comandrae HMAS24619 II, III Comandra richardsiana Canada OM746358 OM746526 Present study
ISC392261 II, III Comandra pallida USA OM746362 OM746530 Present study
MICH253330 II, III Comandra pallida USA OM746365 OM746533 Present study
MICH253516 II, III Comandra pallida USA OM746367 OM746535 Present study
MICH253517 II, III Comandra pallida USA OM746368 OM746536 Present study
UBC-F5867 II, III Comandra pallida USA OM746370 OM746538 Present study
BCpC-15 0, I Pinus contorta USA L76477 Vogler & Bruns (1998)
CPeEl-1 0, I Pinus eldarica USA L76481 Vogler & Bruns (1998)
NYBG36363 0, I Pinus sp. USA OM746374 OM746542 Present study
NYBG36381 0, I Pinus sp. USA OM746375 OM746543 Present study
    Cronartium comptoniae UBC-F5871 II, III Comptonia peregrina USA OM746377 OM746545 Present study
UBC-F5870 II, III Comptonia asplenitolia USA OM746378 OM746546 Present study
MICH253506 0, I Pinus banksiana Canada OM746382 OM746550 Present study
    Cronartium flaccidum FLAS-F-55559 II, III Paeonia officinalis Finland OM746383 OM746551 Present study
HMAS37551 II, III Paeonia lactiflora China OM746389 OM746557 Present study
HMAS89231 II, III Paeonia lactiflora China MK208289 MK193822 Present study
HMAS44164 0, I Pinus taiwanensis China MK208288 MK193816 Present study
    Cronartium floridanum MICH299992 0, I Pinus palustris USA OM746408 OM746576 Present study
MICH300092 0, I Pinus palustris USA OM746409 OM746577 Present study
    Cronartium fusiforme HMAS56356 II, III Quercus variabilis China OM746415 OM746583 Present study
HMAS71281 II, III Quercus variabilis China OM746416 OM746584 Present study
HMAS9043 II, III Quercus emoryii USA OM746418 OM746586 Present study
HMAS35526 II, III Quercus sp. China OM746419 OM746587 Present study
HMAS52087 0, I Pinus silvestris China OM746420 OM746588 Present study
    Cronartium keteleeriae HMAS638 0, I Keteleeria davidiana China OM746422 Present study
HMAS11129 0, I Keteleeria davidiana China OM746421 OM746588 Present study
HMAS638 0, I Keteleeria davidiana China OM746422 Present study
    Cronartium occidentale MICH253479 II, III Ribes gandfalii USA OM746429 OM746594 Present study
MICH253477 II, III Ribes odoratum USA OM746430 OM746595 Present study
MICH253481 II, III Ribes aureum USA OM746431 OM746596 Present study
    Cronartium orientale HMAS242642 II, III Quercus aquifolioides China OM746433 OM746599 Present study
HMAS77666 II, III Quercus liaotungensis China OM746435 OM746601 Present study
HMAS77667 II, III Quercus liaotungensis China OM746436 OM746602 Present study
HMAS82717 II, III Quercus glandulifera China MK208292 MK193817 Qi et al. (2019)
    Cronartium pini Cclone 3 II, III Melampyrum sp. Finland JF713709 Kaitera et al. (2011)
Crust 1 0, I Pinus sylvestris Finland KJ959593 Kaitera et al. (2015)
Crust 2 0, I Pinus sylvestris Finland KJ959594 Kaitera et al. (2015)
    Cronartium pyriforme MICH253420 0, I Pinus contorta USA OM746451 OM746617 Present study
MICH253360 II, III Comandra pallida USA OM746452 OM746618 Present study
    Cronartium quercuum MICH253529 II, III Quercus rubra Canada OM746455 OM746621 Present study
ISC395258 II, III Quercus imbricaria USA OM746461 OM746627 Present study
CqE9WM-FP 0, I Pinus banksiana USA JN943197 Schoch et al. (2012)
40CR-PNB-LP1 0, I Pinus sp. Canada JN943249 Schoch et al. (2012)
    Cronartium ribicola UBC-F5886 II, III Ribes bracteosum USA OM746479 OM746645 Present study
TSH-17009 II, III Ribes sativum Japan OM746480 OM746646 Present study
NYBG267056 II, III Ribes sp. Canada OM746483 OM746649 Present study
MICH253525 II, III Ribes nigrum Romania OM746484 OM746650 Present study
TSH-1094 II, III Pinus coronata Japan OM746491 OM746657 Present study
UBC-F5879 0, I Pinus monticola Canada OM746492 OM746658 Present study
    Cronartium strobilinum 807-ISFSL-FP 0, I Pinus sp. USA JN943191 Schoch et al. (2012)
G-317-HGS1-FP 0, I Pinus sp. USA JN943192 Schoch et al. (2012)
    Cronartium sp.1 HMAS41544 II, III Saussurea bullockii China OM746501 OM746667 Present study
    Cronartium sp.2 HMAS40888 II, III Ribes aureum Germany OM746665 Present study
HMAS49226 II, III Ribes aureum USA OM746500 OM746666 Present study
    Cronartium sp.3 CFB22250 0, I Pinus banksiana USA DQ206982 AY700193 Matheny et al. (2006)
PUR N11655 II, III Quercus muehlenbergii USA KY587788 Abbasi et al. (2017)
CqL-1 II, III Lithocarpus densiflorus USA L76489 Vogler & Bruns (1998)
CqQ-1 II, III Quercus agrifolia USA L76490 Vogler & Bruns (1998)
    Cronartium sp.4 MICH253424 II, III Quercus rubra Canada OM746457 OM746623 Present study
    Cronartium sp.5 HMAS244165 0, I Pinus taiwanensis China OM746503 Present study
    Cronartium sp.6 HMAS18841 II, III Castanea sp. China OM746356 OM746524 Present study
HMAS8970 0, I Pinus ponderosa USA OM746357 OM746525 Present study
    Cronartium sp.7 HMAS242639 II, III Quercus mongolica China OM746423 Present study
ZP-R7 II, III Quercus mongolica China OM746424 OM746589 Present study
    Cronartium sp.8 MICH301494 II, III Pinus murrayana USA OM746425 OM746590 Present study
    Cronartium sp.9 MICH253485 II, III Myrica asplenifolia Canada OM746427 OM746592 Present study
MICH253505 II, III Myrica gale Canada OM746428 OM746593 Present study
    Cronartium sp.10 NYBG267052 II, III Pinus sp. USA OM746443 OM746609 Present study
NYBG267053 II, III Pinus strobus Canada MK208298 MK193829 Qi et al. (2019)
NYBG267051 II, III Ribes nigrum USA MK208296 MK193828 Qi et al. (2019)
    Cronartium sp.11 HMAS56423 II, III Quercus aliena China OM746453 OM746619 Present study
HMAS74356 II, III Quercus aliena China OM746454 OM746620 Present study
    Cronartium sp.12 HMAS52871 II, III Ribes nigrum China OM746496 OM746662 Present study
HMAS172046 II, III Ribes nigrum China OM746497 OM746663 Present study
FLAS-F-16581 0, I Pinus taeda USA OM746498 OM746664 Present study
Family incertae sedis Quasipucciniastrum Quasipucciniastrum agrimoniae HMAS67301 II, III Agrimonia pilosa China MK208261 MK193832 Qi et al. (2019)
HMAS63888 II, III Agrimonia pilosa China MK208266 MK193837 Qi et al. (2019)
HMAS13479 II, III Agrimonia pilosa China MK208268 MK193839 Qi et al. (2019)
HMAS67309 II, III Agrimonia pilosa China MK208263 MK193834 Qi et al. (2019)
HMAS67306 II, III Agrimonia pilosa China MK208262 MK193833 Qi et al. (2019)
HMAS24481 II, III Agrimonia pilosa China MK208267 MK193838 Qi et al. (2019)
HMAS172173 II, III Agrimonia pilosa China MK208265 MK193836 Qi et al. (2019)
HMAS248095 II, III Agrimonia pilosa China MK208281 MK193852 Qi et al. (2019)
HMAS172175 II, III Agrimonia pilosa China MK208272 MK193843 Qi et al. (2019)
HMAS77430 II, III Agrimonia pilosa China MK208271 MK193842 Qi et al. (2019)
HMAS67302 II, III Agrimonia pilosa China MK208273 MK193844 Qi et al. (2019)
HMAS82312 II, III Agrimonia pilosa China MK208264 MK193835 Qi et al. (2019)
Chrysomyxaceae Chrysomyxa Chrysomyxa arctostaphyli CFB22246 II, III DQ200930 AY700192 AFTOL-ID 442
    Chrysomyxa cassandrae QFB 25019 II, III Chamaedaphne calyculata Canada GU049446 GU049529 Feau et al. (2011)
813CHC-PC-LP4 0, I Picea mariana Canada GU049450 GU049531 Feau et al. (2011)
    Chrysomyxa chiogenis QFB 25026 II, III Gaultheria hispidula Canada GU049452 GU049532 Feau et al. (2011)
  631CHS-GAH-ZM28 II, III Gaultheria hispidula Canada GU049453 GU049533 Feau et al. (2011)
    Chrysomyxa empetri QFB 25015 II, III Empetrum nigrum Canada GU049434 GU049526 Feau et al. (2011)
    Chrysomyxa ledi 4D10 0, I Picea abies Finland HM037711 HM037707 Kaitera et al. (2010)
240709 0, I Picea abies Finland HM037708 HM037703 Kaitera et al. (2010)
    Chrysomyxa ledicola 195CHO_PCM_X1c 0, I Picea mariana Canada GU049417 GU049520 Feau et al. (2011)
24CHO_LEG_RW1 0, I Picea mariana Canada GU049418 FJ666446 Feau et al. (2011)
    Chrysomyxa nagodhii QFB 25006 II, III Rhododendron groenlandicum Canada GU049431 GU049524 Feau et al. (2011)
201CH_LE_LE2 II, III Ledum glandulosumc Canada GU049427 J666450 Feau et al. (2011)
    Chrysomyxa neoglandulosi DAOM 229530 II, III Ledum glandulosumc Canada GU049498 GU049550 Feau et al. (2011)
    Chrysomyxa piperiana DAFVP 14997 II, III Ledum macrophyllumc Canada GU049497 GU049565 Feau et al. (2011)
    Chrysomyxa purpurea BJFC-R02299 0, I Picea purpurea Sichuan, China NR_158401 MW063518 Cao et al. (2017)
BJFC-R02300 II, III Rhododendron oreodoxa China KX225402 MW898418 Cao et al. (2017)
BJFC-R01698 II, III Rhododendron oreodoxa China KX225401 Cao et al. (2017)
BJFC-R02448 II, III Rhododendron oreodoxa China MK770362 MK874622 Cao et al. (2017)
BJFC-R01699 II, III Rhododendron oreodoxa China KX225405 Cao et al. (2017)
HMAS55188 0, I Picea purpurea China KX225403 MW898421 Yang (2015)
BJFC-R02623 II, III Rhododendron sp. China MK770364 Yang (2015)
BJFC-R02302 0, I Picea purpurea China MK770363 MK874623 Yang (2015)
    Chrysomyxa rhododendri DAFVP14606 II, III Ledum lapponicumc Canada GU049467 GU049560 Feau et al. (2011)
    Chrysomyxa vaccinii DAOM 45774 II, III Vaccinium parvifolium Canada GU049463 GU049561 Feau et al. (2011)
DAVFP 10115 II, III Vaccinium parvifolium Canada GU049465 GU049562 Feau et al. (2011)
    Chrysomyxa woroninii QFB 25025 II, III Ledum groenlandicum Canada GU049462 GU049540 Feau et al. (2011)
    Chrysomyxa zhuoniensis BJFC-R02733 II, III Rhododendron sp. China MK770374 MK874636 Yang (2015)
  Rossmanomyces Rossmanomyces monesis DAOM 221982 II, III Pyrola uniflora Canada GU049476 GU049547 Feau et al. (2011)
DAVFP 14528 0, I Picea sitchensis Canada GU049479 GU049566 Feau et al. (2011)
Rossmanomyces pyrolae Only DNA extraction II, III Pyrola asarifolia Canada GU049481 GU049558 Feau et al. (2011)
DAOM 214476 II, III Pyrola minor Canada GU049483 GU049553 Feau et al. (2011)
QFB 16517 0, I Picea sp. Canada GU049484 GU049554 Feau et al. (2011)
Herbarium 12886 0, I Picea glauca Canada GU049485 GU049555 Feau et al. (2011)
Herbarium CPP 0, I Picea glauca Canada GU049486 GU049556 Feau et al. (2011)
QFB 25055 0, I Picea glauca Canada GU049487 Feau et al. (2011)
QFB 25057 II, III Pyrola sp. Canada GU049489 Feau et al. (2011)
390CHP-PCG-VF1 II, III Pyrola sp. Canada FJ666456 Vialle et al. (2013)
Coleosporiaceae Coleosporium Coleosporium asterum BPI 879270 II, III Solidago sp. USA GU058009 Dixon (unpublished)
RS1325 II, III Solidago sp. Canada HQ317530 Beenken et al. (2017)
N43 II, III Kalimeris sp. Japan KX386012 KX386044 Zhao (unpublished)
    Coleosporium cacaliae LB09281 / ZT-Myc-58004 II, III Adenostyles aliariae Switzerland KY810462 Beenken et al. (2017)
LB09265 / ZT-Myc-58002 II, III Campanula latifolia Switzerland KY810467 Beenken et al. (2017)
    Coleosporium clematidis N81 II, III Clematis sp. Japan KX386007 KX386039 Zhao (unpublished)
N99 II, III Clematis sp. Japan KX386008 KX386040 Zhao (unpublished)
N79 II, III Clematis sp. Japan KX386010 KX386042 Zhao (unpublished)
    Coleosporium delicatulum BPI 877848 II, III Solidago sp. USA MF769637 McTaggart et al. (2018)
BPI 871731 II, III Symphyotrichum novae-angliae USA MF769638 McTaggart et al. (2018)
    Coleosporium inulae GBOL / KR-M-0024937 0, I Pinus sylvestris Germany KY783673 Beenken et al. (2017)
LB09168 / ZT-Myc-57996 II, III Inula salicina Switzerland KY810470 Beenken et al. (2017)
    Coleosporium montanum BPI 877858 II, III Solidago sp. USA MF769635 McTaggart et al. (2018)
BPI 877849 II, III Solidago sp. USA MF769636 McTaggart et al. (2018)
WU:43601 II, III Symphyotrichum novae-angliae Austria MW284589 Voglmayr (2020)
    Coleosporium petasitidis LB09254 / ZT-Myc-58000 II, III Petasites hybridus Switzerland KY810471 Beenken et al. (2017)
    Coleosporium phellodendri N7 II, III Phellodendron amurense Japan KX386015 KX386047 Zhao (unpublished)
TSH-R8823 II, III Solidago sp. Russia KX386016 KX386048 Zhao et al. (2017)
    Coleosporium plectranthi N16 II, III Phellodendron amurense Japan KX386009 KX386041 Zhao (unpublished)
N85 II, III Phellodendron amurense Japan KX386011 KX386043 Zhao (unpublished)
    Coleosporium plumeriae GDPR 2-4 II, III Plumeria sp. Caribbean KF879087 Beenken et al. (2017)
BPI 880744 II, III Plumeria sp. KY764063 Demers et al. (unpublished)
BPI 844177 II, III Plumeria sp. Guyana MF769645 McTaggart (2018)
U50 II, III Plumeria rubra Guyana MG907225 Vialle (2013)
    Coleosporium senecionis PDD-98309 II, III Senecio sp. New Zealand KJ716348 Beenken et al. (2017)
    Coleosporium solidaginis BPI 863448 II, III Solidago sp. USA DQ354559 Aime (2006)
BPI 877855 II, III Solidago sp. USA MF769649 McTaggart et al. (2018)
BPI 877852 II, III Solidago sp. USA MF769652 McTaggart et al. (2018)
    Coleosporium tussilaginis PDD 93250 II, III Brachyglottis huntii New Zealand KX985766 McTaggart et al. (2018)
BPI 843412 II, III Senecio triangularis USA MF769653 McTaggart et al. (2018)
MCA2389 II, III Sonchus sp. USA MG907228 Vialle et al. (2018)
    Coleosporium vernoniae BPI 877867 II, III Elephantopus tomentosus USA MF769654 McTaggart et al.(2017)
BPI 877869 II, III Vernonia sp. USA MF769655 McTaggart et al. (2017)
    Coleosporium zanthoxyli KUS-F29608 II, III Zanthoxylum planispinum South Korea MH465095 MH460677 Kim (unpublished)
KUS-F25423 II, III Zanthoxylum planispinum South Korea MH465096 MH460678 Kim (unpublished)
Thekopsoraceae Thekopsora Thekopsora areolata LR 4B 0, I Picea abies Norway DQ445892 Hietala et al. (2008)
SPL3 5 0, I Picea abies Norway DQ445893 Fossdal et al. (unpublished)
Spl 3 5 0, I Picea abies Norway DQ087229 Hietala et al. (2008)
Thek 2 0, I Picea abies Norway DQ087230 Hietala et al. (2008)
Ru 4 0, I Prunus padus Norway DQ087231 Hietala et al. (2008)
2_0910 0, I Picea engelmannii Finland KJ546897 KJ546894 Kaitera et al. (2010)
Melampsoraceae Ceropsora Ceropsora weirii 574CHW_X_MA7 0, I Picea sp. Canada GU049473 GU49544 Feau et al. (2011)
912CHW_PCG_BU3 0, I Picea sp. Canada GU049474 GU49545 Feau et al. (2011)
  Melampsora Melampsora abietis-canadensis 666X-TSC-SH11 II, III Canada EU808020 FJ666512 Feau et al. (2009)
1399MEA-POG-USA II, III Populus grandidentata USA JN881733 JN934918 Vialle et al. (2013)
    Melampsora aecidioides II, III Populus alba Canada EU808021 FJ666510 Feau et al. (2009)
    Melampsora albertensis BPI 0021209 II, III USA JX416848 JX416843 Vialle et al. (2013)
    Melampsora allii-populina 1260MEAP-POC-HU II, III Populus canadensis JN881728 JN934902 Vialle et al. (2013)
    Melampsora apocyni LYR3 II, III Apocynum venetum China KR296802 KR296803 Gao et al. (unpublished)
    Melampsora arctica HMAS 8629 II, III Salix iliensis China KX386083 KX386112 Zhao et al. (2017)
    Melampsora capraearum NYS-F-003819 II, III Salix caprea Germany KU550034 KU550033 Zhao et al. (2016)
    Melampsora coleosporioides HNMAP3114 II, III Salix reinii Japan KF780755 KF780638 Zhao et al. (2015)
    Melampsora epiphylla TSH-R12280 II, III Salix sachalinensis Japan KF780787 KF780670 Zhao et al. (2017)
    Melampsora epitea TNS-F-121034 II, III Salix viminalis Germany KX386070 KX386097 Zhao et al. (2017)
    Melampsora euphorbiae BPI 871135 II, III Euphorbia heterophylla DQ911599 AF426195 Deadman et al. (unpublished)
    Melampsora euphorbiae-gerardianae BRIP 39560 II, III Euphorbia peplus EF192199 Aime et al. (unpublished)
    Melampsora ferrinii PUR N6742 II, III Salix babylonica USA KJ136570 KJ136563 Toome (2015)
SAG-21943/2016 II, III Salix sp. Chile KY053852 KY053853 Zapata (2016)
    Melampsora humilis TSH-R7650 II, III Salix koriyanagi Japan KF780812 KF780695 Zhao et al. (2017)
    Melampsora iranica HMAAC4055 II, III Salix sp. China MK372158 MK372191 Wang et al. (2020)
    Melampsora kamikotica HNMAP3186 II, III Chosenia arbutifolia China KF780760 KF780643 Zhao et al. (2015)
    Melampsora laricis-miyabeana TSH-R18314 II, III Salix reinii Japan KX386071 Zhao et al. (2017)
    Melampsora laricis-pentandrae HNMAP3201 II, III Salix pentandra China KF780801 KF780684 Zhao et al. (2015c)
    Melampsora larici-tremulae PFH-99-1 II, III Populus tremula JN881744 JN934956 Vialle et al. (2013)
    Melampsora magnusiana 1426MEG-CJ-DSD II, III Chelidonium majus Sachsen GQ479845 JN934927 Vialle et al. (2013)
    Melampsora medusae f. sp. deltoidis 98D10 II, III Populus euramericana South Africa GQ479307 JN934962 Vialle et al. (2013)
    Melampsora medusae f. sp. tremuloides 1028ME-LAL-LJ II, III Larix laricina Canada GQ479883 Vialle et al. (2013)
    Melampsora microsora HH-53150 II, III Salix subfragilis Japan KF780834 KF780717 Zhao et al. (2015c)
    Melampsora microspora 97MP10a II, III Populus nigra Iraq JN881737 JN934931 Vialle et al. (2013)
    Melampsora nujiangensis AAH00-1 II, III Pinus alba England AY444772 AY444786 Pei et al. (2005)
    Melampsora occidentalis 1366MEPR-POPRURT II, III Populus diversifolia China GQ479899 JN934938 Vialle et al. (2013)
    Melampsora rostrupii O8ZK4 II, III Mercurialis annua Italy GQ479320 JN934941 Vialle et al. (2013)
    Melampsora pakistanica BA13c II, III Euphorbia helioscopia Pakistan KX237555 KX237556 Ali et al. (2016)
    Melampsora pinitorqua 1367MPI-PNI-FI 0, I Pinus sylvestris Finland GQ479897 JN934973 Vialle et al. (2013)
    Melampsora populnea PDD 98363 II, III Ricinus communis New Zealand KJ716352 Padamsee and McKenzie (2014)
    Melampsora pruinosae 1366MEPR-POPR-UR II, III Populus pruinosa Canada GQ479898 JN934939 Feau et al. (2011)
    Melampsora pulcherrima O8ZK2 II, III Mercurialis annua Canada JN934940 GQ479321 Feau et al. (2011)
    Melampsora ribesii-purpureae HMAS62584 II, III Salix purpurea China KF780766 KF780649 Zhao et al. (2017)
    Melampsora ribesii-viminalis HNMAP1968 II, III Salix viminalis China KX386069 KX386096 Zhao et al. (2017)
    Melampsora ricini PDD 98363 II, III Ricinus communis KJ716352 Padamsee (2014)
    Melampsora rostrupii PFH08-3 II, III Populus alba France JN881752 JN934981 Vialle et al. (2013)
    Melampsora salicis-albae NWC-06210 II, III Salix alba England KF780757 KF780640 Zhao et al. (2015c)
    Melampsora salicis-argyraceae HMAS52984 II, III Salix argyracea China KF780733 KF780616 Zhao et al. (2015c)
    Melampsora salicis-bakko HNMAP1710 II, III Salix sinica China KC631839 KC685596 Zhao et al. (2015c)
    Melampsora salicis-cavaleriei HMAAC4043 II, III Salix serrulatifolia China MK277296 MK277301 Wang et al. (2020)
    Melampsora salicis-futurae TSH-R9620 II, III Salix futura Japan KC631860 KC685617 Zhao et al. (2017)
    Melampsora salicis-purpureae HMAS62584 II, III Salix purpurea China KF780766 KF780649 Zhao et al. (2017)
    Melampsora salicis-sinicae HNMAP1710 II, III Salix sinica China KC631839 KC685596 Zhao et al. (2014)
HNMAP1716 II, III Salix sinica China KC631844 KC685601 Zhao et al. (2015c)
    Melampsora salicis-triandrae HNMAP3181 II, III Salix triandra China KF780829 KF780712 Zhao et al. (2017)
    Melampsora salicis-viminalis HMAS38658 II, III Salix viminalis China KF780732 KF780615 Zhao et al. (2015c)
    Melampsora x columbiana sn-35 II, III Populus angustifolia USA JQ042235 Busby et al. (2012)
    Melampsora yezoensis TSH-R1504 II, III Salix jessoensis Nagano KF780806 KF780731 Zhao et al. (2015)
TSH-R1507 II, III Salix jessoensis Nagano KF780832 KF780715 Zhao et al. (2015)
Pucciniastraceae Melampsorella Melampsorella caryophyllacearum PUR 82 II, III Cerastium sp. USA MG907233 Aime et al. (2018)
WM 1092 0, I Abies alba AF426232 Maier et al. (2003)
  Pucciniastrum Pucciniastrum circaeae TSH-R10187 II, III Circaea erubescens Japan AB221456 AB221387 Liang et al. (2006)
B 2098 II, III Circaea lutetiana Canada AY74569 Vialle (unpublished)
    Pucciniastrum epilobii MK697276 II, III Oenothera acaulis MK697276 Hietala et al. (2008)
Ru11 II, III Epilobium watsonii Norway DQ445907 Vialle et al. (2013)
Ru6 II, III Epilobium angustifolium USA DQ445906 Vialle et al. (2013)
PUR N11088 II, III Chamaenerion angustifolium MW049277 Aime & McTaggart (2021)
    Pucciniastrum guttatum PDD 91889 II, III Galium odoratum New Zealand KJ716345 Padamsee (2014)
    Pucciniastrum lanpingensis BJFC-R00355 0, I Pinus sylvestris France KF551225 KF551208 Yang et al. (2015)
    Pucciniastrum minimum LD 1081 II, III Vaccinium corymbosum Mexico HM439777 Rebollar-Alviter et al. (2011)
PREM 60245 II, III Vaccinium corymbosum South Africa GU355675 Yang et al. (2015)
    Pucciniastrum myosotidii PDD 93251 II, III Myosotidium hortensia New Zealand KJ716347 Padamsee (2014)
    Pucciniastrum nipponicum HMBF-GS-53.1 II, III Galium davuricum China KC415792 KC416001 Yang et al. (2015)
HMBF-GS-54.1 II, III Galium aparine China KC415793 KC416003 Yang et al. (2015)
    Pucciniastrum pustulatum PDD 101572 II, III Epilobium chlorifolium New Zealand KJ698631 Padamsee (2014)
    Pucciniastrum rubiae HMBF-XZ-1.1 II, III Rubia cordifolia China KC415802 KC416009 Yang (2015)
    Pucciniastrum verruculosum KUS-F29482 II, III Aster tataricus Korea MZ725013 MZ724685 Lee et al. (2021)
Nothopucciniastraceae Nothopucciniastrum Nothopucciniastrum actinidiae TSH-R23801 II, III Actinidia arguta Japan AB221446 AB221403 Liang et al. (2006)
    Nothopucciniastrum boehmeriae TSH-R21289 II, III Boehmeria tricuspis Japan AB221450 AB221393 Liang et al. (2006)
    Nothopucciniastrum corni TSH-R4273 (IBA7671) II, III Clethra kuosa Japan AB221436 AB221408 Liang et al. (2006)
    Nothopucciniastrum fagi TSH-R21254 II, III Fagus crenata Japan AB221424 AB221375 Liang et al. (2006)
TSH-R10724 II, III Fagus crenata Japan AB221425 AB221378 Liang et al. (2006)
    Nothopucciniastrum hikosanense TSH-R4287 (IBA2565) II, III Acer rufinerva Japan AB221441 AB221388 Liang et al. (2006)
TSH-R4289 (IBA8441) II, III Actinidia rufinerva Japan AB221440 AB221389 Liang et al. (2006)
    Nothopucciniastrum kusanoi HH98635 II, III Clethra barbinervis Japan AB221429 AB221400 Liang et al. (2006)
TSH-R21252 II, III Clethra barbinervis Japan AB221430 AB221401 Liang et al. (2006)
    Nothopucciniastrum miyabeanum TSH-R4281 (IBA8721) II, III Viburnum furcatum Japan AB221442 AB221394 Liang et al. (2006)
TSH-R10202 II, III Viburnum furcatum Japan AB221443 AB221397 Liang et al. (2006)
    Nothopucciniastrum styracinum TSH-R t015 II, III Styrax japonica Japan AB221431 AB221416 Liang et al. (2006)
    Nothopucciniastrum tiliae TSH-R4294 (IBA7670) II, III Tilia japonica Japan AB221453 AB221414 Liang et al. (2006)
TSH-R4295 (IBA7878) II, III Tilia japonica Japan AB221454 AB221415 Liang et al. (2006)
    Nothopucciniastrum yoshinagai TSH-R4272 (IBA8430) II, III Stewartia monadelpha Japan AB221434 AB221411 Liang et al. (2006)
TSH-R4270 (IBA8404) II, III Stewartia monadelpha Japan AB221435 AB221410 Liang et al. (2006)
Hyalopsoraceae Coleopuccinia Coleopuccinia sinensis BJFC-R02506 II, III Cotoneaster microphyllus China MF802288 MF802285 Cao et al. (2018)
BJFC-R02364 II, III Cotoneaster rubens China MF802287 MF802284 Cao et al. (2018)
BJFC-R02506 II, III Cotoneaster rubens China MF802286 MF802283 Cao et al. (2018)
  Hyalopsora Hyalopsora nodispora PR # 40 II, III Adiantum capillus-veneris Pakistan MW899330 Riaz et al. (unpublished)
BPI 893262 II, III Adiantum capillus-veneris USA KY798373 Demers (unpublished)
BPI 893261 II, III Adiantum capillus-veneris USA KY798372 Demers (unpublished)
    Hyalopsora polypodii BPI 893256 II, III Athyrium attenuatum USA KY798367 Demers (unpublished)
K187058 II, III United Kingdom MZ159483 Gaya et al. (unpublished)
PDD 71999 II, III Deparia petersenii New Zealand KJ698627 Padamsee & McKenzie (2014)
    Hyalopsora neocheilanthis BJFC-R00590 II, III China MK795975 MK795969 Liang et al. (unpublished)
    Hyalopsora japonica BJFC-R00401 II, III China MK795974 MK795968 Liang et al. (unpublished)
    Hyalopsora aspidiotus PUR N4641 II, III China MW049264 Liang et al. (unpublished)
    Hyalopsora sp. 1 BJFC-R02435 II, III China MK795976 MK795970 Liang et al. (unpublished)
  Melampsoridium Melampsoridium alni H7019539 II, III Alnus mandshurica Finland KF031557 KF031534 McKenzie et al. (2013)
Melampsoridium betulinum ZP-R490 II, III Betula sp. China MK518946 MK518638 Zhao et al. (2021)
H 6035417 II, III Betula pubescens Finland KF031556 KF031539 McKenzie et al. (2013)
PDD 102645 II, III Alnus cordata New Zealand KF031559 KF031544 McKenzie et al. (2013)
    Melampsoridium hiratsukanum PDD 77191 II, III Alnus pubescens Austria KF031564 KF031546 McKenzie et al. (2013)
PDD 78493 II, III Alnus incana Austria KF031565 KF031547 McKenzie et al. (2013)
Milesinaceae Uredinopsis Uredinopsis osmundae U856 II, III Osmunda sp. USA MG907245 Aime et al. (2018)
U1188 II, III Athyrium sp. USA MG907244 Aime et al. (2018)
    Uredinopsis pteridis U856 II, III Osmunda sp. USA KM249869 Aime et al. (2018)
    Uredinopsis filicina U1188 II, III Athyrium sp. USA MG907244 Aime et al. (2018)
BRIP 60091 II, III Pteridium esculentum Australia KM249869 McTaggart et al. (2014)
  Milesina Milesina blechni KR-M-0038519 II, III Struthiopteris spicant Germany MH908412 MK302189 Bubner et al. (2019)
    Milesina carpatica KR-M-0043192 II, III Dryopteris filix-mas Germany MH908454 Bubner et al. (2019)
    Milesina exigua KR-M-0050247 II, III Polystichum braunii Austria MH908478 MK302211 Bubner et al. (2019)
    Milesina feurichii KR-M-0043159 II, III Asplenium septentrionale Germany MH908476 Bubner et al. (2019)
    Milesina kriegeriana KR-M-0048480 II, III Dryopteris dilatata Germany MH908452 MK302207 Bubner et al. (2019)
    Milesina leviuscula BRIP 58421 II, III Nephrolepis sp. Viet Nam MW049269 KM249868 McTaggart et al. (2014)
    Milesina murariae KR-M-0048133 II, III Asplenium ruta-muraria Germany MH908422 MK302194 Bubner et al. (2019)
    Milesina philippinensis BRIP 58421 II, III Nephrolepis sp. Viet Nam MW049269 KM249868 McTaggart et al. (2014)
    Milesina polypodii KR-M-0043190 II, III Polypodium vulgare Germany MH908415 MK302190 Bubner et al. (2019)
    Milesina scolopendrii KR-M-0049051 II, III Asplenium scolopendrium Germany MH908467 MK302209 Bubner et al. (2019)
    Milesina vogesiaca KR-M-0043187 II, III Polystichum aculeatum Germany MH908440 MK302202 Bubner et al. (2019)
    Milesina whitei KR-M-0050248 II, III Polystichum aculeatum Germany MH908479 MK302212 Bubner et al. (2019)
    Milesina woodwardiana KR-M-0049033 II, III Woodwardia radicans Spain MH908474 Bubner et al. (2019)
  Naohidemyces Naohidemyces vaccinii WM 1098 II, III Vaccinium uliginosum AF426238 Maier et al. (2003)
MIN 928279 II, III Vaccinum sp. USA KJ698628 Padamsee (2014)
BPI 871754 II, III Vaccinium ovatum Washington, USA DQ354563 Padamsee (2014)

For phylogenetic analyses, raw sequence data were aligned by BioEdit v. 7.0.9 (Hall 1999), and multiple alignments were performed with MAFFT v. 7.394 (Katoh et al. 2017). Ambiguous alignment positions were manually adjusted before the final analyses. Topologies were constructed based on maximum likelihood (ML) analyses using RAxML v. 0.95 (Stamatakis 2006). Bayesian Markov Chain Monte Carlo (MCMC) analyses were performed using MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001), and Bayesian posterior probabilities (Bpp) were calculated. In ML and Bayesian analyses, the best-fit substitution model was estimated using Modeltest v. 3.7 (Posada and Crandall 1998).

Morphological comparison

The type specimens, original descriptions, and other published descriptions of the species involved were compared with detailed morphological traits of species, genus and family from previous literature (e.g. Sydow and Sydow 1915; Kuprevich and Tranzschel 1957; Arthur 1933; Wilson and Henderson 1966; Hiratsuka et al. 1992; Cummins and Hiratsuka 2003; Liang et al. 2006 Liang 2006; Yang 2015). Different spore stages of rust fungi were designated by following Roman numerals according to Cummins and Hiratsuka (1983, 2003): spermagonia/spermatia (0), aecia/aeciospores (I), uredinia/urediniospores (II), telia/teliospores (III), and basidia/basidiospore (IV). We applied the definitions of spore stage and morphological types in the whole life cycle based on Cummins and Hiratsuka (2003).

Results

For ML and Bayesian analyses, a dataset containing selected species from 16 genera in Melampsorineae was used. Phylogenetic trees using the combined dataset yielded higher confident values for the generic level than that of the single locus tree, with 570 bp nucleotide positions for ITS and 800 bp for LSU. An overview of the inferred topology is given in Figure 1. Melampsorineae is divided into 16 well-supported clades. The monophylies of several genera in Melampsorineae, i.e. Ceropsora, Chrysomyxa, Coleopuccinia, Cronartium, Coleosporium, Hylospora, Melampsorella, Melampsoridium, Naohidemyces, Quasipucciniastrum, and Thekopsora, were confirmed, in agreement with previous studies (Aime et al. 2018; Qi et al. 2019; Zhao et al. 2020; Aime and McTaggart 2021). Pucciniastrum, the type genus of the Pucciniastraceae, was split into two different clades. The type species of Pucciniastrum, P. epilobii clustered with other nine species (i.e. P. circaeae, P. guttatum, P. lanpingensis, P. minimum, P. myosotidii, P. nipponicum, P. pustulatum, P. rubiae, and P. verruculosum) in one clade, whilst 10 other Pucciniastrum species (i.e. P. actinidiae, P. boehmeriae, P. corni, P. fagi, P. hikosanense, P. kusanoi, P. miyabeanum, P. styracinum, P. tiliae and P. yoshinagai) were in another distinct clade. Species of Milesina and Uredinopsis were found in a same clade, with the later merged into the Milesina species, forming a sister clade to M. vogesiaca.

Figure 1.

Figure 1.

(Continued).

Figure 1.

Figure 1.

(Continued).

Figure 1..

Figure 1..

(Continued).

Figure 1.

Figure 1.

Multilocus phylogenetic tree of the Melampsorineae suborder in the Pucciniales order. Support values indicated at nodes. Bayesian posterior probabilities ≤ 50% and Maximum Likelihood bootstrap (ML) ≤ 50% were indicated by dash line (–). Family and generic names are listed after each taxon.

Morphological comparison of each clade is shown in Figure 1. Morphologies in spore-producing structures (i.e. spermogonia, aecia, uredinia, telia and basidia), exhibited the strongest association with the phylogeny. Based on our morphological comparisons and phylogenetic analyses of 16 genera in Melampsorineae, ten families, including three new families, Hyalopsoraceae, Nothopucciniastraceae, Thekopsoraceae, and one new genus, Nothopucciniastrum, were proposed. These families differ from their phylogenetically allied families in their spore-producing structures (basidia, spermogonia, aecia, uredinia and telia), as shown in Figure 2. Previous studies have demonstrated that spore-producing structures were phylogenetically informative at the family level (Zhao et al. 2020, 2021; Aime and McTaggart 2021), and we have further confirmed that these characters throughout the life cycle are of great importance to facilitate natural familial delimitation, especially in the suborder Melampsorineae (Figure 3).

Figure 2.

Figure 2.

Correlation of phylogeny and morphological criteria used of family delimitation. Dash line (–) in the phylogenetic tree indicated the family or genera lacks of one certain spore stage.

Figure 3.

Figure 3.

Taxonomic importance of morphological characters in different spore stages during the whole life cycle in the rust fungi is illustrated. The spore-producing structures, i.e. basidia, spermogonia, aecia, uredinia and telia are indicated in red colour and bold, while the spore morphologies, i.e. basidiospores, spermatia, aeciospores, urediniospores and teliospores, are indicated in black colour and bold.

Taxonomy

Family: Chrysomyxaceae Gäum. ex Leppik, Ann. Bot. Fenn. 9: 139. 1972

Type genus

Chrysomyxa Unger, Beitr. Vergleich. Pathologie: 24. 1840.

Type species

Chrysomyxa abietis (Wallr.) Unger, Beitr. Vergleich. Pathologie: 24. 1840. Genus included in this family. Chrysomyxa and Rossmanomyces. Spermogonia Group I (type 2), subepidermal, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, subepidermal, with well-developed peridia, aeciospores catenulate, with intercalary cells, mainly verrucose. Uredinia Caeoma-type, subepidermal, erumpent, with or without inconspicuous peridia, wiitalicthout ostiolar cells, urediniospores with intercalary cells, germ pores scattered. Telia subepidermal, erumpent, teliospores aseptate, catenulate, crowded but loosely adherent, wall thin, germination occurs without dormancy. Basidia external or without basidiospores.

Notes – Chrysomyxa was previously placed in Chrysomyxaceae, Coleosporiaceae, or Melampsoraceae by different taxonomists based on various morphological criteria in teliospores (Sydow and Sydow 1915; Dietel 1928; Leppik 1972; Savile 1976). Cummins and Hiratsuka (1983) placed Chrysomyxa in Coleosporiaceae together with Coleosporium by emphasising the importance of spermogonial and teliospore’s morphologies, however, telial differences between the two genera have been clearly demonstrated (Sydow and Sydow 1915; Crane et al. 2005). Chrysomyxa was then placed in Coleosporiaceae by Aime and McTaggart (2021), along with Coleosporium, Cronartium, Quasipucciniastrum, Rossmanomyces and Thekopsora, but these genera in this broadly defined family have high morphological variations in the structures of spermogonia and telia, which had long been used as important criteria at the familial level (Cummins and Hiratsuka 2003).

The polyphyly of the family Coleosporiaceae defined by Aime and McTaggart (2021) has been revealed by our previous molecular phylogenetic analyses (Zhao et al. 2020, 2021). Our current findings further demonstrated the phylogenetic distinction of Chrysomyxa from Coleosporium, and two genera have different spermogonial, uredinial and telial morphologies (Figure 1). Furthermore, the divergence time of two genera and their median ages were in a general range of divergent time of families in Basidiomycota (Aime et al. 2018; He et al. 2019). All these findings supported the taxonomic treatments of Dietel and Neger (1900) and Leppik (1972), who placed the genus Chrysomyxa in the Chrysomyxaceae. The family name Chrysomyxaceae is therefore resurrected here. Aime and McTaggart (2021) established a new genus Rossmanomyces, which is phylogenetic allied to Chrysomyxa but differs in forming a systemic sporothallus in telia. Here we placed genera Chrysomyxa and Rossmanomyces in the family Chrysomyxaceae.

Family: Coleosporiaceae Dietel, in Engler and Prantl, Nat. Pflanzenfam., Teil. I (Leipzig) 1(1): 548. 1900, emend. P. Zhao and L. Cai

Type genus

Coleosporium Lév., Annls Sci. Nat., Bot., Sér. 3 8: 373. 1847.

Type species

Coleosporium campanulae (Pers.) Tul., Annls Sci. Nat., Bot., Sér. 42: 137. 1854.

Genus included in this family. Coleosporium.

Spermogonia Group I (type 2), subepidermal, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, with well-developed peridia, aeciospores catenulate, with intercalary cells, verrucose. Uredinia Caeoma-type, with rudimentary peridia or none, without ostiolar cells, urediniospores echinulate, with intercalary cells, mostly verrucose. Telia erumpent as low or rarely columnar cushions, gelatinous, teliospores aseptate, sessile, catenulate, in 1-layered crusts or pseudocatenulate by intrusion of young spores among older ones. Basidia internal.

Notes – Coleosporiaceae has undergone multiple taxonomic reassignments over the years based on various morphological criteria in teliospores and spermogonia (Wilson and Henderson 1966; Hiratsuka et al. 1992; Cummins and Hiratsuka 2003). Recently, Aime and Taggart (2021) included seven genera in this family, despite the fact that the spore-producing structures (i.e. spermogonia, aecia, uredinia, telia and basidia) from those genera have broad morphological variations (Figure 1). Based on phylogenetic analyses and morphological comparisons with the spore-producing structures (Figure 1), we included two genera (i.e. Chrysomyxa, Rossmanomyces) in the newly resurrected family Chrysomyxaceae. The genus Cronartium was re-classified in the family Cronartiaceae, and genus Thekopsora was classified in the new family Thekopsoraceae. Thus, Coleosporiaceae is emended with a narrower concept based on the type genus Coleosporium, which is distinctive from other families in telia with internal basidia and unicellular teliospores in 1-layered crust, wall thick and gelatinising above (Figure 1).

Family: Cronartiaceae Dietel, in Engler and Prantl, Nat. Pflanzenfam., Teil. I (Leipzig) 1(1): 548. 1900

Type genus

Cronartium Fr., Observ. Mycol. (Havniae) 1: 220. 1815.

Type species

Cronartium asclepiadeum (Willd.) Fr., Observ. Mycol. (Havniae) 1: 220. 1815.

Genera included in this family. Cronartium.

Spermogonia Group II (type 9), intracortical, indeterminate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, the peridia large and blister-like, strongly developed, rupturing widely, aeciospores catenulate, with intercalary cells, verrucose with rod-like columns. Uredinia Milesia-type, subepidermal, opening by a pore, with ostiolar cells, urediniospores borne singly, echinulate, germ pore scattered. Telia with high variations, subepidermal, erumpent, vteliospores aseptate, crowded but loosely adherent, some catenulate, thin-walled, germination occurs without dormancy. Basidia external.

Notes – Cronartium was originally placed in the family Pucciniaceae (Dietel 1897), but then classified as a member of Cronartiaceae, Coleosporiaceae, Melampsoraceae or Pucciniastraceae in different time periods based on various morphological criteria in teliospores or spermogonia (Dietel 1928; Cummins and Hiratsuka 1983, 2003; Aime and Taggart 2021). Recent molecular phylogenetic studies confirmed the placement of Cronartium in the suborder Melampsorineae (Aime 2006; Aime et al. 2018), but its relationship with several other genera, including Chrysomyxa, Coleosporium, Diaphanopellis, Quasipucciniastrum, Rossmanomyces and Thekopsora, was still uncertain (Aime and Taggart 2021). Our current results and previous phylogenetic studies of the order Pucciniales (Zhao et al. 2020, 2021) clearly revealed the phylogenetic distinction between Cronartium and the above-mentioned genera (Figure 1), and Cronartium clade differs from other families in the spore-producing structures, especially in Group II spermonogia, Milesia-type uredinia with ostiolar cells, and telia with sessile, catenulate teliospores (Figure 1). Thus, here we resurrected the family Cronartiaceae to accommodate the genus Cronartium.

Family: Hyalopsoraceae P. Zhao and L. Cai, fam. nov. – MycoBank MB842413

Etymology

Name derived from the type genus, Hyalopsora.

Type genus

Hyalopsora Magnus, Ber. Dt. Bot. Ges. 19: 582. 1902.

Type species

Hyalopsora aspidiotus (Peck) Magnus, Ber. Dt. Bot. Ges. 19: 582. 1901.

Genus included in this family. Coleopuccinia, Hyalopsora, Melampsoridium.

Spermogonia Group I (type 2 or type 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, with peridium, subepidermal, aeciospore catenulate. Uredinia Milesia-type, subepidermal, with peridium opening by a discrete pore, with ostiolar cells, urediniospores borne singly, wall colourless, echinulate, germ pores scattered or bizonate. Telia intraepidermal, not erumpent, 2 to many-celled by septa, wall colourless, teliospores aseptate, sessile, pigmented. Basidia external.

Notes – The traditionally defined Pucciniastraceae has been revealed to be polyphyletic, with members dispersed across several distant and well-supported clades (Figure 1; Aime et al. 2018; Zhao et al. 2020). Three closely related clades, representing genera Coleopuccinia, Hyalopsora and Melampsoridium, show a high morphological consistency in the spore-producing structures with each other, and they can be distinguished from phylogenetically allied families in intraepidermal telia with sessile and unicellular teliospores with intercalary cell (Figure 1). Thus, a new family Hyalopsoraceae is proposed to accommodate Coleopuccinia, Hyalopsora and Melampsoridium. Previously, Cummins and Hiratsuka (2003) considered the genus Coleopuccinia as a synonym of Gymnosporangium (Gymnosporangiaceae) based on teliospores similarities, and Cao et al. (2018) recognised the phylogenetic distinctiveness of two genera. Here we confirm its familial position in Hyalopsoraceae for the first time, and our findings further highlight the importance of the spore-producing structures for familial delimitation.

Family: Melampsoraceae Dietel, in Engler and Prantl, Nat. Pflanzenfam., Teil. I (Leipzig) 1(1): 38. 1897

Type genus

Melampsora Castagne (1843).

Type species

Melampsora euphorbiae (Ficinus and C. Schub.) Castagne, Observ. Uréd. 2: 18.1843.

Genus included in this family. Ceropsora and Melampsora.

Spermogonia Group I (type 2 or type 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Caeoma-type, subepidermal, with rudimentary or no peridia, aeciospore catenulate, with intercalary cells. Uredinia Uredo-type, subepidermal, erumpent, without ostiolar cells, with abundant capitate paraphyses, urediniospores borne singly, echinulate, germ pores scattered or bizonate. Telia subepidermal or subcuticular, not erumpent, consisting of laterally adherent teliospores in crusts one spore deep or some species with subjacent spore-like cells, teliospores aseptate, sessile, pigmented. Basidia external.

Notes – Both Ceropsora and Melampsora are distinctive from the rest families in Caeoma-type aecia, Uredo-type uredinia, and telia with sessile and unicellular teliospores (Figure 1; Sydow and Sydow 1915; Cummins and Hiratsuka 2003; Aime and Taggart 2021). Two genera constitute the family Melampsoraceae, which is confirmed to be monophyly by Tian et al. (2004), Feau et al. (2009), and Zhao et al. (2017, 2020). This family was estimated to be diverged around 12 ~ 42 MYA (median ages 31.94 MYA), within the generally acknowledged divergent time range for families of Basidiomycota (Aime et al. 2018; He et al. 2019).

Family: Milesinaceae Aime and McTaggart, Fungal Systematics and Evolution 7: 32. 2020

Genera included in this family. Milesina, Naohidemyces and Uredinopsis.

Spermogonia Group I (type 1), subepidermal, with concave hymenia, bounding structures lacking. Aecia Peridermium-type, subepidermal, erumpent, with peridia, aeciospores catenulate, verrucose. Uredinia Milesia-type, subepidermal, urediniospores mostly echinulate, borne singly. Telia intraepidermal, consisting of spores in the epidermal cells, teliospores aseptate or multiseptate, with oblique septa. Basidia external.

Notes – Milesina, Naohidemyces and Uredinopsis were classified in Pucciniastraceae based on their teliospores that are embedded in the host tissue and the Peridermium-type aecia (Cummins and Hiratsuka 1984; Cummins and Hiratsuka 2003). Phylogenetically, Milesia, Naohidemyces and Uredinopsis clustered in one phylogenetic group, and separated from Hyalopsora, Melampsorella, Melampsoridium, Pucciniastrum and Thekopsora (Figure 1). In morphology, Milesia, Naohidemyces and Uredinopsis have similar morphological features in all spore-producing structures, but clearly differentiate themselves from other families in Milesia-type uredinia without ostiolar cells and wall colourless (Figure 1). Thus, Aime and McTaggart (2021) proposed Milesinaceae to accommodate these three genera. Our results is in agreement of Aime and McTaggart (2021).

Family: Nothopucciniastraceae P. Zhao and L. Cai, fam. nov. – MycoBank MB842414

Etymology

Notho = nothus in Greek, fake, close but different; pucciniastraceae Pucciniastraceae-like morphology.

Type genus

Nothopucciniastrum P. Zhao and L. Cai, gen. nov.

Type species

Nothopucciniastrum tiliae (Miyabe) P. Zhao and L. Cai, comb. nov.

Genera included in this family. Nothopucciniastrum.

Spermogonia Group I (type 2 and 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, or Milesia-type, with well-developed peridia, aeciospores borne singly on pedicels, verrucose. Uredinia Milesia-type, with well-developed ostiolar cells, urediniospores borne singly, verrucose. Telia subepidermal, not erumpent, consisting of laterally adherent teliospores one spore deep, teliospores sessile, aseptate or multiseptate, with vertical septa. Basidia external.

New combinations:

Nothopucciniastrum actinidiae (Hirats. f.) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum actinidiae Hirats. f., Mem. Tottori Agric. Coll. 4: 279. 1936.

Nothopucciniastrum boehmeriae ((Dietel) Syd. and P. Syd.) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum boehmeriae (Dietel) Syd. and P. Syd., Ann. Mycol. 1(1): 19. 1903.

Nothopucciniastrum corni (Dietel) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum corni Dietel, Bot. Jb. 34: 587. 1905.

Nothopucciniastrum fagi (Dietel) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum fagi G. Yamada, Bot. Mag., Tokyo 44: 280. 1930.

Nothopucciniastrum kusanoi (Dietel) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum kusanoi Dietel, Bot. Jb. 32: 629. 1903.

Nothopucciniastrum hikosanense (Hirats. f.) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum hikosanense Hirats. f., Ann. Phytopath. Soc. Japan 10: 154. 1940.

Nothopucciniastrum miyabeanum (Hirats.) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum miyabeanum Hirats., Bot. Mag., Tokyo 12: 3 (extr.). 1898.

Nothopucciniastrum styracinum (Hirats.) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum styracinum Hirats., Bot. Mag., Tokyo 12: 2 (extr.). 1898.

Nothopucciniastrum tiliae (Miyabe) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum tiliae Miyabe, in Hiratsuka, Bot. Mag., Tokyo 11: 47. 1897.

Nothopucciniastrum yoshinagae (Hirats.) P. Zhao and L. Cai, comb. nov.

Basionym. Pucciniastrum yoshinagae Hirats. f. [as “yoshinagai”], Trans. Tottori Soc. Agric. Sci. 2: 247. 1931.

Notes – The traditionally defined Pucciniastraceae with 9 genera (Cummins and Hiratsuka 1984; Cummins and Hiratsuka 2003) has been demonstrated to be highly polyphyletic (Figure 1; Aime et al. 2018; Zhao et al. 2021). Recent treatments of Pucciniastraceae have placed Milesia, Naohidemyces and Uredinopsis in Milesinaceae (Aime and McTaggart 2021), Coleopuccinia, Hyalopsora, and Melampsoridium in Hyalopsoraceae, and Thekopsora in Thekopsoraceae (this study). Furthermore, Pucciniastrum species were found to cluster in two distant clades (Figure 1). Ten species formerly classified into genus Pucciniastrum, (i.e. P. actinidiae, P. boehmeriae, P. corni, P. fagi, P. hikosanense, P. kusanoi, P. miyabeanum, P. styracinum, P. tiliae and P. yoshinagai) constituted one well-supported clade distinct from the clade of Pucciniastrum comprising the type species P. epilobii (Figure 1). This result is consistent with Qi et al. (2019), and Zhao et al. (2020). The morphological difference between these Pucciniastrum species in above two clades were discussed in Liang (2006) and Yang (2015), and those ten species different from Pucciniastrum and Melampsorella in their Milesia-type with ostiolar cells. Based on morphological and molecular evidences, we propose a new family Nothopucciniastraceae and a new genus Nothopucciniastrum to accommodate these ten species which are herein treated as new combinations. Results further emphasised the importance of uredinial morphologies for familial delimitation.

Family: Pucciniastraceae Gäum. Ex Leppik, Ann. Bot. Fenn. 9: 139. 1972, emend. P. Zhao and L. Cai

Type genus

Pucciniastrum G.H. Otth (1861).

Type species

Pucciniastrum epilobii (Pers.) G.H. Otth, Mitt. Naturf. Ges. Bern 469–496: 72. 1861.

Genera included in this family. Melampsorella and Pucciniastrum.

Spermogonia Group I (type 2 and 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, or Milesia-type, with well-developed peridia, aeciospores borne singly on pedicels, verrucose. Uredinia Milesia-type, without ostiolar cells, urediniospores borne singly, verrucose. Telia subepidermal or intraepidermal, not erumpent, consisting of laterally adherent teliospores one spore deep, teliospores sessile, aseptate or ultiseptated, with vertical septa. Basidia external.

Notes – With the segregation of Coleopuccinia, Hyalopsora, Melampsoridium silesia, Naohidemyces, Quasipucciniastrum, Thekopsora, Uredinopsis from Pucciniastraceae, we herein redefine the Pucciniastraceae with a narrower concept which include genera Melampsorella and Pucciniastrum. Pucciniastraceae is distinctive from the rest families by the absence of ostiolar cells in Milesia-type uredinia (Figure 1).

Family: Thekopsoraceae P. Zhao and L. Cai, fam. nov. – MycoBank MB842415

Etymology

Name derived from the type genus, Thekopsora.

Type genus

Thekopsora Magnus, Hedwigia 14: 123. 1875.

Type species

Thekopsora areolata (Fr.) Magnus, Sber. Gesellschaft Naturf. Freunde Berlin: 58. 1875.

Genera included in this family. Thekopsora.

Spermogonia Group I (type 2 and 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, or Milesia-type, with well-developed peridia, aeciospores borne singly on pedicels, verrucose. Uredinia Milesia-type, with well-developed ostiolar cells with apparent spines, urediniospores borne singly, verrucose. Telia intraepidermal, not erumpent, consisting of laterally adherent teliospores one spore deep, teliospores sessile, aseptate or multiseptated, with vertical septa. Basidia external.

Notes – The Thekopsora clade, including the type of the genus, Thekopsora areolata, was phylogenetically close to Cronartium but distinct from Pucciniastrum species (Figure 1), in agreement with Aime et al. (2018). In morphology, it resembles Coleopuccinia, Hylospora, Melampsoridium, and Pucciniastrum, but differs from these genera in the aecia, uredinia and telia (Figure 1; Yang 2015). It also differs from the phylogenetically allied family Cronartiaceae in the structures of spermogonia, uredinia and telia. Thus, a new family Thekopsoraceae is proposed to accommodate the genus Thekopsora.

Discussion

Phylogenetic reappraisal of rust families and genera

To date, more than 7 800 rust species have been described in 289 genera in Pucciniales (Laundon 1965; Kirk et al. 2008). Cummins and Hiratsuka (2003) in their monograph “Illustrated Genera of Rust Fungi” included 120 holomorphic genera and 13 asexual typified genera, in which most genera are traditionally morphologically defined. At the family level, since the first system proposed by Dietel (1897), different mycologists have classified 289 recognised genera into 2–14 families mainly based on morphological characters in spermogonia and teliospores (Arthur 1907, 1934; Kuprevich and Tranzschel 1957; Wilson and Henderson 1966; Azbukina 1972; Cummins and Hiratsuka 1984; Buriticá 1991; Hiratsuka et al. 1992; Cummins and Hiratsuka 2003). Although urediniologists have generally accepted Cummins and Hiratsuka (2003)’s taxonomy system, subsequent studies have found numerous inconsistencies between this system and the molecular phylogeny (Wingfield et al. 2004; Aime 2006; Aime et al. 2018; Zhao et al. 2020). A definite family level resolution has not been obtained due to the lack of a comprehensive molecular phylogenetic study within the order Pucciniales. In our previous studies on the whole order, we proposed four new families based on extensive phylogenetic and morphological comparisons, and also recognised inconsistencies between morphologically-defined families in Melampsorineae suborder and their molecular phylogenetic relationships (Zhao et al. 2020, 2021). Thus, we conducted phylogenetic studies of 16 genera in the Melampsorineae suborder, and confirmed boundaries at the familial and generic level. Traditional morphology-defined families such as Coleosporiaceae, Chrysomyxaceae, and Melampsoraceae have been shown to be monophyletic with the core of species around the type (Figure 1). Pucciniastraceae has been found to be polyphyletic and its traditional members scattered in numerous discrete lineages. This family has been redefined by emphasising the importance of traditional taxonomic criteria used by Cummins and Hiratsuka (2003) and Aime and McTaggart (2021). In this study, we further emphasised several newly recognised criteria for familial delineation, i.e. the structures of uredinia and telia, including the colour of urediniospores, the existence of peridia in uredinia and telia, the existence of ostiolar cells in uredinia and their ornamentations. Our phylogenetic studies further emphasised that morphologies throughout their life cycles, especially the uredinial and aecial morphologies, are of great diagnostic value in delineating at the familial and generic level.

Importance of applying early diverged characters in higher rank taxonomy

Hitherto, classification of the rust fungi at species, generic and family levels relies on morphological features of different spores and spore-producing structures in different stages throughout the life cycles. Spore morphologies, such as basidiospores, spermatia, aeciospores, urediniospores and teliospores, as well as spore-producing structures like basidia, spermogonia, aecia, uredinia and telia, were hitherto not seriously investigated to see if they are phylogenetically significant at particular taxonomic levels.

Our previous and current studies on the phylogeny of Pucciniales, particularly those in the Melampsorineae, have revealed that morphological characters, especially spore-producing structures throughout the whole life cycle, such as basidia spermogonia, aecia, uredinia and telia, were phylogenetically more informative at higher taxonomic ranks (family level). By contrast, spore morphologies such as basidiospores, spermatia, aeciospores, urediniospores and teliospores, were phylogenetically more informative at lower taxonomic rank (species level) (Tian et al. 2004; Crane et al. 2005; Feau et al. 2009, Beenken 2014, 2017; Zhao et al. 2015, 2017). These spore-producing structures represent early diverged morphological characters, while spore morphologies have already been proved to be recently diverged characters by our continuous investigations (Figure 1; Zhao et al. 2020, 2021). Our findings were further supported by the successive evolutionary process of rust fungi, because the structures of basidia, spermogonia, aecia, uredinia and telia might be directly influenced at early adaptation stages of rust fungi when they shifted from ferns to conifers and angiosperms (Leppik 1965). Based on these findings, taxonomic significance of morphological features in different spore stages throughout the whole life cycle in the rust fungi is proposed as shown in Figure 4. It is quite obvious that the polyphylies of many traditionally defined genera and families were resulted from the inappropriate use of recently diverged characters (particularly morphology of teliospores) at higher level taxonomy, and the use of the early diverged characters at lower-level taxonomy. Apparently these recently diverged characters have evolved more than once in different lineages during the evolutionary process.

Among the early diverged characters, the structures of spermogonia and telia have long been employed for classification at the family level, but the structures of aecia and uredinia have long been overlooked at higher taxonomic ranks (Hiratsuka and Cummins 1963; Hiratsuka and Hiratsuka 1980; Cummins and Hiratsuka 1983, 2003). Our studies indicated the importance of aecia and uredinia morphology for higher level classification, especially differences in spore ontogeny, hymenium shape, position in host tissues, presence of intercalary cells and paraphyses. Until now, fourteen different morphological types in aecial and uredinial structure have been recognised (Kenny 1970; Sato and Sato 1985). These morphological variations appear to be very useful criteria at family and generic level taxonomy in rust fungi.

Acknowledgements

We express our gratitude to curators in CUP, FLAS, HMAS, HKAS, ISC, MICH, NYBG, NYS, TSH and UBC for providing specimens for our taxonomic studies.

Funding Statement

This work was financially supported by the National Nature Science Foundation of China [31725001 and 31670017], and Biological Resources Programme, Chinese Academy of Sciences [KFJ-BRP-009].

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  1. Abbasi M. AimeMC, EamvijarnA, CreswellTC, Ruhl GE, Wright S.. 2017. First report of Cronartium rust disease on chinquapin oak. Plant Dis. Doi: 10.1094/PDIS-05-16-0757-PDN [DOI] [Google Scholar]
  2. Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begerow D, Sampaio JP, et al. 2006. An overview of the higher-level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia. 98:896–905. doi: 10.1080/15572536.2006.11832619. [DOI] [PubMed] [Google Scholar]
  3. Aime MC. 2006. Toward resolving family-level relationships in rust fungi. Uredinales. Mycoscience. 47:112–122. doi: 10.1007/S10267-006-0281-0. [DOI] [Google Scholar]
  4. Aime MC, Bell CD, Wilson AW. 2018. Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Stud Mycol. 89:143–152. doi: 10.1016/j.simyco.2018.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aime MC, McTaggart AR. 2021. A higher-rank classification for rust fungi, with notes on genera. Fungal Syst Evol. 7:21–47. doi: 10.3114/fuse.2021.07.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ali B, Sohail Y, Toome-Heller M, Mumtaz AS. 2016. Melampsora pakistanica sp. nov., a new rust fungus on Euphorbia helioscopia (Sun spurge) from Pakistan. Mycol Pro. 15:1285–1292. doi: 10.1007/s11557-016-1244-2. [DOI] [Google Scholar]
  7. Arthur JC. 1907. New genera of Uredinales. J Mycol. 13:28–32. doi: 10.2307/3752462. [DOI] [Google Scholar]
  8. Arthur JC. 1933. New genera and species of Uredinales. Bull Torrey Bot Club. 60:475–476. doi: 10.2307/2480584. [DOI] [Google Scholar]
  9. Arthur JC. 1934. Manual of the rusts in United States and Canada. Lafayette (Indiana): Purdue Research Foundation. [Google Scholar]
  10. Azbukina Z. 1972. Rust fungi of Far East. Lec. Komarovianae. Komarov Read. Vladivost. 19:15–62. [Google Scholar]
  11. Beenken L, Zoller S, Berndt R. 2012. Rust fungi on Annonaceae II: the genus Dasyspora Berk. and M. A. Curtis. Mycologia. 104:659–681. doi: 10.3852/11-068. [DOI] [PubMed] [Google Scholar]
  12. Beenken L. 2014. Pucciniales on Annona (Annonaceae), with special focus on the genus Phakopsora. Mycol Prog. 13:791–809. [Google Scholar]
  13. Beenken L, Wood W. 2015. Puccorchidium and Sphenorchidium, two new genera of Pucciniales on Annonaceae related to Puccinia psidii and the genus Dasyspora. Mycol Prog. 14:49. doi: 10.1007/s11557-015-1073-8. [DOI] [Google Scholar]
  14. Beenken L 2017. Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa. 1:53–61. [Google Scholar]
  15. Beenken L. 2017. Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa. 1: 53–61. [Google Scholar]
  16. Bubner B, Buchheit R, Friedrich F, Kummer V, Scholler M. 2019. Species identification of European forest pathogens of the genus Milesina (Pucciniales) using urediniospore morphology and molecular barcoding including M. woodwardiana sp. nov. Mycokeys. 48:1–40. doi: 10.3897/mycokeys.48.30350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Busby PE, Aime MC, Newcombe G.. 2012. Foliar pathogens of Populus angustifolia are consistent with a hypothesis of Beringian migration into North America. Fungal Biol. 116 (7): 792–801. [DOI] [PubMed] [Google Scholar]
  18. Buriticá CP. 1991. Familias del orden Uredinales con ciclo de vida completamente reducido. Rev Acad Colombiana Ciencias Exactas Físicas Naturales. 18:131–148. [Google Scholar]
  19. Cao J, Tian CM, Liang YM, You CJ. 2017. A new rust species of Diaphanopellis on Rhododendron oreodoxa from Southern China. Phytotaxa. 309:55–65. doi: 10.11646/phytotaxa.309.1.5. [DOI] [Google Scholar]
  20. Cao B, Tao SQ, Tian CM, Liang YM. 2018. Coleopuccinia in China and its relationship to Gymnosporangium. Phytotaxa. 347:235–242. doi: 10.11646/phytotaxa.347.3.4. [DOI] [Google Scholar]
  21. Crane PE, Yamaoka Y, Engkhaninum J, Kakishima M. 2005. Caeoma tsukubaense n. sp., a rhododendron rust fungus of Japan and southern Asia, and its relationship to Chrysomyxa rhododendri. Mycoscience. 46:143–147. doi: 10.1007/S10267-004-0228-2. [DOI] [Google Scholar]
  22. Cummins GB 1971. The rust fungi of cereals, grasses, and bamboos. New York, USA: Springer. [Google Scholar]
  23. Cummins GB, Hiratsuka Y. 1983. Illustrated genera of rust fungi. 2nd ed. St Paul (Minnesota): American Phytopathological Society Press. [Google Scholar]
  24. Cummins GB, Hiratsuka Y. 2003. Illustrated genera of rust fungi. 3rd ed. St Paul (Minnesota): American Phytopathological Society Press. [Google Scholar]
  25. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dietel P. 1897. Uredinales. In: Engler A, Prantl K, editors. Die Natürlichen Pflanzenfamilien. Vol. I. Leipzig (Germany): Engelmann; p. 24–81. [Google Scholar]
  27. Dietel P, Neger FW. 1900. Uredinaceae chilensis III. Botanische Jahrbücher Systematik Pflanzengeschichte Pflanzengeographie. 27:1–16. [Google Scholar]
  28. Dietel P. 1928. Uredinales. In: Engler A, Prantl K, editors. Die Natürlichen Pflanzenfamilien. Vol. II. Leipzig (Germany): Engelmann; p. 24–98. [Google Scholar]
  29. Feau N, Vialle A, Allaire M, Tanguay P, Joly DL, Frey P, Callan BE, Hamelin RC. 2009. Fungal pathogen mis-identifications: a case study with DNA barcodes on Melampsora rusts of aspen and white poplar. Mycol Res. 113:713–724. doi: 10.1016/j.mycres.2009.02.007. [DOI] [PubMed] [Google Scholar]
  30. Feau N, Vialle A, Allaire M, Maier M, Hamelin RC. 2011. DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia. 103:1250–1266. doi: 10.3852/10-426. [DOI] [PubMed] [Google Scholar]
  31. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95–98. [Google Scholar]
  32. He MQ, et al. 2019. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 99:105–367. [Google Scholar]
  33. Hibbett D, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res. 111:509–547. doi: 10.1016/j.mycres.2007.03.004. [DOI] [PubMed] [Google Scholar]
  34. Hiratsuka N 1955. Uredinological studies. Tokyo, Japan: Kasai Publishing Co. [Google Scholar]
  35. Hiratsuka Y, Cummins GB. 1963. Morphology of the spermogonia of the rust fungi. Mycologia. 55:487–507. [Google Scholar]
  36. Hiratsuka N, Sato S. 1982. Morphology and taxonomy of rust fungi. In: Scott K, Chakravorty A, editors. The Rust Fungi. New York, USA: Academic Press; pp. 1–36. [Google Scholar]
  37. Hiratsuka N, Sato S, Katsuya K, et al. 1992. The rust flora of Japan. Tsukuba Shuppankai, Tsukuba, Japan. [Google Scholar]
  38. Hietala AM, Solheim H, Fossdal CG.. Real-time PCR-based monitoring of DNA pools in the tri-trophic interaction between Norway spruce, the rust Thekopsora areolata, and an opportunistic ascomycetous Phomopsis sp. Phytopathology. 98(1): 51–58. [DOI] [PubMed] [Google Scholar]
  39. Huelsenbeck JP, Ronquist F. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics. 17:754–755. [DOI] [PubMed] [Google Scholar]
  40. Kaitera J, Tillman-Sutela E, Kauppi A. 2010. Chrysomyxa ledi, a new rust fungus sporulating in cone scales of Picea abies in Finland. Scand J Forest Res. 26:202–207. doi: 10.1080/02827581.2010.488657. [DOI] [Google Scholar]
  41. Kaitera J, Hantul J, Nevalainen S. 2011. Distribution and frequency of Cronartium flaccidum on Melampyrum spp. in permanent sample plots in Finland. Scand J Forest Res. 26:413–420. doi: 10.1080/02827581.2011.579153. [DOI] [Google Scholar]
  42. Kaitera J, Hiltunen R, Hantula J.. 2015. Cronartium rust sporulation on hemiparasitic plants. Plant Pathol. 64: 738–747. [Google Scholar]
  43. Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. doi: 10.1093/bib/bbx108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kenny MJ. 1970. Comparative morphology of the uredinia of the rust fungi [Ph.D. Dissertation]. Lafayette (Indiana): Purdue University. [Google Scholar]
  45. Kirk PM, Cannon PF, Minter DW, Stalpers J. 2008. Dictionary of the fungi. 10th ed. Wallingford (UK): CABI [Google Scholar]
  46. Kuprevich VF, Tranzschel VG. 1957. Rust fungi. I. Family Melampsoraceae. In: Savich VP, editor. Cryptogamic plants of the USSR. Vol. 4. Komarova (Russia): Botanicheskogo Instituta; p. 1–518. [Google Scholar]
  47. Laundon GF. 1965. The generic names of Uredinales. Mycol Pap. 99:1–24. [Google Scholar]
  48. Leppik EE. 1965. Some viewpoints on the phylogeny of rust fungi. V. Evolution of biological specialization. Mycologia. 57:6–22. [Google Scholar]
  49. Leppik EE. 1972. Evolutionary specialization of rust fungi (Uredinales) on the Leguminosae. Ann Bot Fenn. 9:135–148. [Google Scholar]
  50. Lee JS, Lee CK, Choi YJ, Shin HD.. Pucciniastrum verruculosum causing rust disease on Aster tataricus in Korea. New Dis Rep. 44(1): e12036. [Google Scholar]
  51. Liang YM, Tian CM, Kakishima M. 2006. Phylogenetic relationships on 14 morphologically similar species of Pucciniastrum in Japan based on rDNA sequence data. Mycoscience. 47:137–144. doi: 10.1007/S10267-006-0284-X. [DOI] [Google Scholar]
  52. Liang YM. 2006. Taxonomic evaluation of morphologically similar species of Pucciniastrum in Japan based on comparative analyses of molecular phylogeny and morphology [Ph.D. thesis]. Tsukuba (Japan): University of Tsukuba. [Google Scholar]
  53. Maier W, Begerow D, Weiss M, Oberwinkler F. 2003. Phylogeny of the rust fungi: an approach using nuclear large subunit ribosomal DNA sequences. Can J Bot. 81:12–23. doi: 10.1139/b02-113. [DOI] [Google Scholar]
  54. Matheny PB, Gossmann JA, Zalar P, Arun Kumar TK, Hibbett DS. 2006. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Bot. 84:1794–1805. doi: 10.1139/b06-128. [DOI] [Google Scholar]
  55. McTaggart AR, Aime MC.. 2018. The species of Coleosporium (Pucciniales) on Solidago in North America. Fungal Biol. 122(8): 800—809. [DOI] [PubMed] [Google Scholar]
  56. McKenzie EHC, Padamsee M, Dick M.. 2013. First report of rust on Alnus in New Zealand is Melampsoridium betulinum, not M. hiratsukanum. Plant Pathol Quar. 3(2): 59–65. [Google Scholar]
  57. Ono Y, Buriticá P, Hennen JF. 1992. Delimitation of Phakopsora, Physopella and Cerotelium and their species on Leguminosae. Mycol Res. 96:825–850. [Google Scholar]
  58. Padamsee M, McKenzie EHC. 2014. A new species of rust fungus on the New Zealand endemic plant Myosotidium from the isolated Chatham Islands. Phytotaxa. 174:223–230. doi: 10.11646/phytotaxa.174.4.3. [DOI] [Google Scholar]
  59. Padamsee M, McKenzie EHC.. A new species of rust fungus on the New Zealand endemic plant, Myosotidium, from the isolated Chatham Islands . Phytotaxa. 174 (3), 223–230. [Google Scholar]
  60. Plowright CB 1889. A monograph of the British Uredineae and Ustilagineae, with an account of their biology including the methods of observing the germination of their spores and of their experimental culture. London, UK: Paul, Trench & Co. [Google Scholar]
  61. Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics. 14:817–818. [DOI] [PubMed] [Google Scholar]
  62. Qi XH, Cai L, Zhao P. 2019. Quasipucciniastrum agrimoniae, gen. et sp. nov. on Agrimonia (Rosaceae) from China. Mycology. 10(3):141–150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Rebollar-Alviter A, Minnis AM, Dixon LJ, Castlebury LA, Ramirez-Mendoza MR, Silva-Rojas HV, Valdovinos-Ponce G.. 2011. First report of leaf rust of blueberry caused by Thekopsora minima in Mexico. Plant Dis. 95(6): 772. [DOI] [PubMed] [Google Scholar]
  64. Sato T, Sato S. 1985. Morphology of aecia of the rust fungi. Trans B Mycol Soc. 85:223–238. doi: 10.1016/S0007-1536(85)80185-6. [DOI] [Google Scholar]
  65. Savile DBO. 1976. Evolution of the rust fungi. Uredinales as reflected by their ecological problems. Evol Biol. 9:173–120. [Google Scholar]
  66. Schoch et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 109(16): 6241–6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22:2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
  68. Sydow P, Sydow H. 1915. Monographia Uredinearum. III: Melampsoraceae, Zaghouaniaceae, Coleosporiaceae. Leipzig (Berlin, Germany): Borntraeger. [Google Scholar]
  69. Tian CM, Shang YZ, Zhuang JY, Wang Q, Kakishima M. 2004. Morphological and molecular phylogenetic analysis of Melampsora species on poplars in China. Mycoscience. 45:56–66. doi: 10.1007/S10267-003-0150-Z. [DOI] [Google Scholar]
  70. Toome M, Aime MC.. 2014. Reassessment of rust fungi on weeping willows in the Americas and description of Melampsora ferrinii sp. nov. Plant Path. 64: 216–224. [Google Scholar]
  71. Vialle A, Feau N, Frey P, Bernier L, Hamelin RC. 2013. Phylogenetic species recognition reveals host-specific lineages among poplar rust fungi. Mol Phylogenet Evol. 66:628–644. doi: 10.1016/j.ympev.2012.10.021. [DOI] [PubMed] [Google Scholar]
  72. Vogler DR, Bruns TD. 1998. Phylogenetic relationships among the pine stem rust fungi (Cronartium and Peridermium spp.). Mycologia. 90:244–257. doi: 10.1080/00275514.1998.12026904. [DOI] [Google Scholar]
  73. Voglmayr H, Krisai-Greilhuber I, Kirisits T. 2020. First report of Coleosporium montanum on Symphyotrichum in Austria and Europe. New Dis Rep. 42:24–24. doi: 10.5197/j.2044-0588.2020.042.024. [DOI] [Google Scholar]
  74. Wang LL, Li KM, Liu Y, Tian CM. 2020. Melampsora salicis-michelsonii sp. nov. on Salix michelsonii and Melampsora salicis-cavaleriei on Salix serrulatifolia from China. Phytotaxa. 435:280–292. doi: 10.11646/phytotaxa.435.4.2. [DOI] [Google Scholar]
  75. Webster J, Weber RWS. 2007. Introduction to fungi. 3rd ed. Cambridge (UK): Cambridge University Press. [Google Scholar]
  76. Wilson M, Henderson DM. 1966. The British rust fungi. Cambridge (UK): Cambridge University Press. [Google Scholar]
  77. Wingfield BD, Ericson L, Szaro T, Burdor JJ. 2004. Phylogenetic patterns in the Uredinales. Australas Plant Pathol. 33:327–335. doi: 10.1071/AP04020. [DOI] [Google Scholar]
  78. Yang T. 2015. Phylogenetic and taxonomic studies of Pucciniastrum s.l [Ph.D. thesis]. Beijing (China): Beijing Forestry University. [Google Scholar]
  79. Yang T, Tian CM, Lu HY, Liang YM, Kakishima M. 2015. Two new rust fungi of Thekopsora on Cornus (Cornaceae) from western China. Mycoscience. 56:461–469. doi: 10.1016/j.myc.2015.02.001. [DOI] [Google Scholar]
  80. Zapata M. 2016. First report of Melampsora ferrinii causing willow leaf rust in Chile. New Dis Rep. 34:25–25. doi: 10.5197/j.2044-0588.2016.034.025. [DOI] [Google Scholar]
  81. Zhao P, Tian CM, Yao YJ, Wang Q, Kakishima M, Yamaoka Y. 2014. Melampsora salicis-sinicae (Melampsoraceae, Pucciniales), a new rust fungus found on willows in China. Mycoscience. 55:390–399. doi: 10.1016/j.myc.2013.12.005. [DOI] [Google Scholar]
  82. Zhao P, Wang QH, Tian CM, Yamaoka Y, Kakishima M, Papp T. 2015. Integrating a numerical taxonomic method and molecular phylogeny for species delimitation of Melampsora species. Melampsoraceae, Pucciniales on willows in China. PLoS One. 17:e0144883. doi: 10.1371/journal.pone.0144883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Zhao P, Kakishima M, Wang Q, Cai L. 2016. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants. Sci Rep. 6:29339. doi: 10.1038/srep29339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Zhao P, Kakishima M, Wang Q, Cai L. 2017. Resolving the Melampsora epitea complex. Mycologia. 109:391–407. doi: 10.1080/00275514.2017.1326791. [DOI] [PubMed] [Google Scholar]
  85. Zhao P, Qi XH, Crous PW, Duan WJ, Cai L. 2020. Gymnosporangium species on Malus: species delineation, diversity and host alternation. Persoonia. 45:68–100. doi: 10.3767/persoonia.2020.45.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Zhao P, Zhang ZF, Hu DM, Phurbu D, Gafforov Y, Cai L, Gafforov Y, Cai L. 2021. Contribution to rust flora in China I, tremendous diversity from natural reserves and parks. Fungal Divers. 110:1–58. doi: 10.1007/s13225-021-00482-w. [DOI] [Google Scholar]

Articles from Mycology are provided here courtesy of Taylor & Francis

RESOURCES