ABSTRACT
Rust fungi in the order Pucciniales represent one of the largest groups of phytopathogens, which occur on mosses, ferns to advanced monocots and dicots. Seven suborders and 18 families have been reported so far, however recent phylogenetic studies have revealed para- or polyphyly of several morphologically defined suborders and families, particularly in Melampsorineae. In this study, a comprehensive phylogenetic framework was constructed based on a molecular phylogeny inferred from rDNA sequences of 160 species belonging to 16 genera in Melampsorineae (i.e. Chrysomyxa, Cerospora, Coleopuccinia, Coleosporium, Cronartium, Hylospora, Melampsora, Melampsorella, Melampsoridium, Milesina, Naohidemyces, Pucciniastrum, Quasipucciniastrum, Rossmanomyces, Thekopsora, Uredinopsis). Our phylogenetic inference indicated that 13 genera are monophyletic with strong supports, while Pucciniastrum is apparently polyphyletic. A new genus, Nothopucciniastrum was therefore established and segregated from Pucciniastrum, with ten new combinations proposed. At the family level, this study further demonstrates the importance of applying morphologies of spore-producing structures (basidia, spermogonia, aecia, uredinia and telia) in higher rank taxonomy, while those traditionally applied spore morphologies (basidiospores, spermatia, aeciospores, urediniospores and teliospores) represent later diverged characters that are more suitable for the taxonomy at generic and species levels. Three new families, Hyalopsoraceae, Nothopucciniastraceae and Thekopsoraceae were proposed based on phylogenetic and morphological distinctions, towards a further revision of Pucciniales in line with the phylogenetic relationships.
KEYWORDS: Family classification, Pucciniales, rust fungi, systematics, taxonomic criteria
Introduction
Plant parasitic rusts, taxonomically as members of the order Pucciniales, are one of the most diverse groups of fungal pathogens, with over 7 800 species recognised worldwide (Arthur 1934; Hiratsuka et al. 1992; Zhao et al. 2021; Aime et al. 2006; Webster and Weber 2007). Rusts are obligate parasites with up to five different spore types, including basidiospores, spermatia, aeciospores, urediniospores, teliospores, as well as different lifestyles (micro-, hemi-, demi-, or macrocyclic) that occur on a single (autoecious), or alternate between two unrelated host plants (heteroecious) (Cummins and Hiratsuka 1983). Many species are wreaking havoc on agricultural and forest crop plants, resulting in significant economic losses (Cummins and Hiratsuka 2003). Due to the serious threats posed to these crops, Puccinia spp. on wheat and Melampsora lini on flax were listed in the “top 10 most important fungal pathogens” in a recent global survey of important plant pathogens (Dean et al. 2012). Furthermore, many rust species, such as Austropuccinia psidii (myrtle rust), Cronartium ribicola (white pine blister rust), Hemileia vastatrix (coffee rust), Phakopsora pachyrhizi (Asian soybean rust) etc., are known to be among the most important and threatening species to agriculture and forestry (Ono et al. 1992; Beenken 2014, 2017). Despite the importance of rust fungi, their taxonomy is still debated due to the lack of information on host alternation, and morphological characteristics of their various spore stages (Kuprevich and Tranzschel 1957; Savile 1976; Aime 2006).
The taxonomic ranks of plant-parasitic rusts vary at the generic and suprageneric levels. Rust fungi have been classified into different classes (Basidiomycetes, Pucciniomycetes or Urediniomycetes) or orders (Pucciniales or Uredinales) at various time periods (Plowright 1889; Dietel 1928; Cummins 1971; Hiratsuka et al. 1992). Rust fungi were recently found to be monophyletic, and the order Pucciniales was proposed to accommodate these plant parasitic rusts (Aime et al. 2006; Hibbett et al. 2007; Zhao et al. 2016). At the family level, the traditional taxonomy of rust fungi changed dramatically over time, and they were divided into 2–14 families based on criteria applied at the time. At early 20th century, all rusts were initially divided into 2–4 families on the basis of the presence of teliospore pedicels and basidial formation (Dietel 1928; Arthur 1934; Hiratsuka 1955). Such a taxonomic treatment has been widely debated, as many apparently unrelated genera have been placed in the same family simply because of morphological similarities in their teliospores (Wilson and Henderson 1966; Leppik 1972; Hiratsuka and Sato 1982). Later, spermogonial morphology was introduced as criterion and the taxonomic importance of this criterion at the family level was further evaluated (Hiratsuka and Cummins 1963; Savile 1976). Hiratsuka and Cummins summarised 12 morphological types of spermogonia in rust fungi and categorised them into six major groups based on the structure of spermogonia (Cummins and Hiratsuka 1983). Thus, a taxonomic scheme with 14 families was proposed and uredinologists universally accepted this taxonomic classification (Hiratsuka and Cummins 1983; Hiratsuka et al. 1992; Cummins and Hirastuka 2003). However, several defined families, such as Chaconiaceae, Pucciniaceae, Pucciniastraceae, Pucciniosiraceae and Uropyxidaceae, have been revealed to be poly- or paraphyletic in molecular phylogenetic studies (Maier et al. 2003; Wingfield et al. 2004; Aime 2006). Aime (2006) has roughly divided the order Pucciniales into three suborders based on molecular phylogeny: Melampsorineae, Mikronegeriineae and Uredinineae, but the polyphyly of several morphologically defined families remains unresolved (Maier et al. 2003; Wingfield et al. 2004; Beenken et al. 2012; Beenken and Wood 2015; Qi et al. 2019). Thereafter, Aime and McTaggart (2021) presented a high-rank classification of the Pucciniales, in which the order was divided into seven suborders and 18 families. Among these families, all rusts with sessile teliospores were classified in the suborder Melampsorineae, with 16 genera included in four families, Coleosporiaceae, Melampsoraceae, Milesinaceae and Pucciniastraceae based on their aecial similarities. However, these families showed significant morphological differences in the structures of spermogonia and telia, which have long been employed as the main criteria for family classification (Cummins and Hiratsuka 1983, 2003). As a result, the taxonomic placement of these 16 genera remains a point of contention, and it is necessary to reassign those genera in the proper family in the suborder Melampsorineae.
In this study, we conducted molecular phylogenetic analyses and morphological reappraisal of Melampsorineae. The objectives of this study were: (1) to evaluate the monophyly of traditional morphologically defined genera and determine their familial placements and generic boundaries in Melampsorineae; (2) to propose a taxonomic amendment towards establishing monophyletic families in Melampsorineae.
Materials and methods
Molecular phylogeny and supergeneric-level delimitation
We have included sequence data from our previous taxonomic studies on genera in Melampsorineae (Zhao et al. 2014, 2015, 2016, 2017, 2020, 2021; Qi et al. 2019) as well as some newly generated sequence data from our one unpublished paper (under review), and detailed information of specimens, host species and GenBank accession numbers has been listed in Table 1. In addition, rDNA sequence data from previous taxonomic studies on Pucciniales, particularly those in Melampsorineae, were included in the final alignment (Table 1). Those sequences were acquired from taxonomic references and retrieved from NCBI (https://www.ncbi.nlm.nih.gov/) based on the accession number. To determine the phylogenetic relationships of genera in the suborder Melampsorineae, rDNA ITS and LSU sequences of representative taxa from the genera Chrysomyxa, Coleopuccinia, Coleosporium, Cronartium, Hylospora, Melampsora, Melampsorella, Melampsoridium, Milesina, Naohidemyces, Pucciniastrum, Quasipucciniastrum, Rossmanomyces, Thekopsora, and Uredinopsis were chosen for phylogenetic studies (Table 1). Two Gymnosporangium species were selected as outgroups. The majority of the sequence data came from samples that had detailed morphological information.
Table 1.
rDNA sequence data from selected genera in the Melampsorineae suborder of Pucciniales order used for phylogenetic studies.
| Family | Genus | Species | Specimen No.a | Spore stage | Host | Country | GenBank Accession No.a |
Reference | |
|---|---|---|---|---|---|---|---|---|---|
| ITS | LSU | ||||||||
| Cronartiaceae | Cronartium | Cronartium appalachianum | Ca-1 | 0, I | Pinus virginiana | USA | L76484 | — | Vogler & Bruns (1998) |
| Cronartium arizonicum | MICH253346 | II, III | Castilleja linariaefolia | USA | MK208284 | MK193824 | Qi et al. (2019) | ||
| MICH301493 | 0, I | Pinus ponderosa | USA | OM746343 | OM746511 | Present study | |||
| FSprP- 1 | 0, I | Pinus ponderosa | USA | L76504 | — | Vogler & Bruns (1998) | |||
| Cronartium armandii | ZP-R901 | II, III | Ribes sp. | China | OM746349 | OM746517 | Present study | ||
| HMAS45350 | 0, I | Pinus armandii | China | MZ520620 | MZ520623 | Present study | |||
| Cronartium bethelii | MICH253453 | II, III | Quercus emoryi | USA | OM746353 | OM746521 | Present study | ||
| FLAS-F-16608 | 0, I | Pinus palustris | USA | OM746355 | OM746523 | Present study | |||
| CrKor-1 | 0, I | Pinus strobus | USA | L76497 | — | Vogler & Bruns (1998) | |||
| Cronartium coleosporioides | CsSr-1 | 0, I | Pinus contorta | USA | L76500 | — | Vogler & Bruns (1998) | ||
| SHmC-9 | 0, I | Pinus contorta | USA | L76511 | — | Vogler & Bruns (1998) | |||
| SPC-21 | 0, I | Pinus contorta var. latifolia | USA | L76513 | — | Vogler & Bruns (1998) | |||
| Cronartium comandrae | HMAS24619 | II, III | Comandra richardsiana | Canada | OM746358 | OM746526 | Present study | ||
| ISC392261 | II, III | Comandra pallida | USA | OM746362 | OM746530 | Present study | |||
| MICH253330 | II, III | Comandra pallida | USA | OM746365 | OM746533 | Present study | |||
| MICH253516 | II, III | Comandra pallida | USA | OM746367 | OM746535 | Present study | |||
| MICH253517 | II, III | Comandra pallida | USA | OM746368 | OM746536 | Present study | |||
| UBC-F5867 | II, III | Comandra pallida | USA | OM746370 | OM746538 | Present study | |||
| BCpC-15 | 0, I | Pinus contorta | USA | L76477 | — | Vogler & Bruns (1998) | |||
| CPeEl-1 | 0, I | Pinus eldarica | USA | L76481 | — | Vogler & Bruns (1998) | |||
| NYBG36363 | 0, I | Pinus sp. | USA | OM746374 | OM746542 | Present study | |||
| NYBG36381 | 0, I | Pinus sp. | USA | OM746375 | OM746543 | Present study | |||
| Cronartium comptoniae | UBC-F5871 | II, III | Comptonia peregrina | USA | OM746377 | OM746545 | Present study | ||
| UBC-F5870 | II, III | Comptonia asplenitolia | USA | OM746378 | OM746546 | Present study | |||
| MICH253506 | 0, I | Pinus banksiana | Canada | OM746382 | OM746550 | Present study | |||
| Cronartium flaccidum | FLAS-F-55559 | II, III | Paeonia officinalis | Finland | OM746383 | OM746551 | Present study | ||
| HMAS37551 | II, III | Paeonia lactiflora | China | OM746389 | OM746557 | Present study | |||
| HMAS89231 | II, III | Paeonia lactiflora | China | MK208289 | MK193822 | Present study | |||
| HMAS44164 | 0, I | Pinus taiwanensis | China | MK208288 | MK193816 | Present study | |||
| Cronartium floridanum | MICH299992 | 0, I | Pinus palustris | USA | OM746408 | OM746576 | Present study | ||
| MICH300092 | 0, I | Pinus palustris | USA | OM746409 | OM746577 | Present study | |||
| Cronartium fusiforme | HMAS56356 | II, III | Quercus variabilis | China | OM746415 | OM746583 | Present study | ||
| HMAS71281 | II, III | Quercus variabilis | China | OM746416 | OM746584 | Present study | |||
| HMAS9043 | II, III | Quercus emoryii | USA | OM746418 | OM746586 | Present study | |||
| HMAS35526 | II, III | Quercus sp. | China | OM746419 | OM746587 | Present study | |||
| HMAS52087 | 0, I | Pinus silvestris | China | OM746420 | OM746588 | Present study | |||
| Cronartium keteleeriae | HMAS638 | 0, I | Keteleeria davidiana | China | OM746422 | — | Present study | ||
| HMAS11129 | 0, I | Keteleeria davidiana | China | OM746421 | OM746588 | Present study | |||
| HMAS638 | 0, I | Keteleeria davidiana | China | OM746422 | — | Present study | |||
| Cronartium occidentale | MICH253479 | II, III | Ribes gandfalii | USA | OM746429 | OM746594 | Present study | ||
| MICH253477 | II, III | Ribes odoratum | USA | OM746430 | OM746595 | Present study | |||
| MICH253481 | II, III | Ribes aureum | USA | OM746431 | OM746596 | Present study | |||
| Cronartium orientale | HMAS242642 | II, III | Quercus aquifolioides | China | OM746433 | OM746599 | Present study | ||
| HMAS77666 | II, III | Quercus liaotungensis | China | OM746435 | OM746601 | Present study | |||
| HMAS77667 | II, III | Quercus liaotungensis | China | OM746436 | OM746602 | Present study | |||
| HMAS82717 | II, III | Quercus glandulifera | China | MK208292 | MK193817 | Qi et al. (2019) | |||
| Cronartium pini | Cclone 3 | II, III | Melampyrum sp. | Finland | JF713709 | — | Kaitera et al. (2011) | ||
| Crust 1 | 0, I | Pinus sylvestris | Finland | KJ959593 | — | Kaitera et al. (2015) | |||
| Crust 2 | 0, I | Pinus sylvestris | Finland | KJ959594 | — | Kaitera et al. (2015) | |||
| Cronartium pyriforme | MICH253420 | 0, I | Pinus contorta | USA | OM746451 | OM746617 | Present study | ||
| MICH253360 | II, III | Comandra pallida | USA | OM746452 | OM746618 | Present study | |||
| Cronartium quercuum | MICH253529 | II, III | Quercus rubra | Canada | OM746455 | OM746621 | Present study | ||
| ISC395258 | II, III | Quercus imbricaria | USA | OM746461 | OM746627 | Present study | |||
| CqE9WM-FP | 0, I | Pinus banksiana | USA | JN943197 | — | Schoch et al. (2012) | |||
| 40CR-PNB-LP1 | 0, I | Pinus sp. | Canada | JN943249 | — | Schoch et al. (2012) | |||
| Cronartium ribicola | UBC-F5886 | II, III | Ribes bracteosum | USA | OM746479 | OM746645 | Present study | ||
| TSH-17009 | II, III | Ribes sativum | Japan | OM746480 | OM746646 | Present study | |||
| NYBG267056 | II, III | Ribes sp. | Canada | OM746483 | OM746649 | Present study | |||
| MICH253525 | II, III | Ribes nigrum | Romania | OM746484 | OM746650 | Present study | |||
| TSH-1094 | II, III | Pinus coronata | Japan | OM746491 | OM746657 | Present study | |||
| UBC-F5879 | 0, I | Pinus monticola | Canada | OM746492 | OM746658 | Present study | |||
| Cronartium strobilinum | 807-ISFSL-FP | 0, I | Pinus sp. | USA | JN943191 | — | Schoch et al. (2012) | ||
| G-317-HGS1-FP | 0, I | Pinus sp. | USA | JN943192 | — | Schoch et al. (2012) | |||
| Cronartium sp.1 | HMAS41544 | II, III | Saussurea bullockii | China | OM746501 | OM746667 | Present study | ||
| Cronartium sp.2 | HMAS40888 | II, III | Ribes aureum | Germany | — | OM746665 | Present study | ||
| HMAS49226 | II, III | Ribes aureum | USA | OM746500 | OM746666 | Present study | |||
| Cronartium sp.3 | CFB22250 | 0, I | Pinus banksiana | USA | DQ206982 | AY700193 | Matheny et al. (2006) | ||
| PUR N11655 | II, III | Quercus muehlenbergii | USA | KY587788 | — | Abbasi et al. (2017) | |||
| CqL-1 | II, III | Lithocarpus densiflorus | USA | L76489 | — | Vogler & Bruns (1998) | |||
| CqQ-1 | II, III | Quercus agrifolia | USA | L76490 | — | Vogler & Bruns (1998) | |||
| Cronartium sp.4 | MICH253424 | II, III | Quercus rubra | Canada | OM746457 | OM746623 | Present study | ||
| Cronartium sp.5 | HMAS244165 | 0, I | Pinus taiwanensis | China | OM746503 | — | Present study | ||
| Cronartium sp.6 | HMAS18841 | II, III | Castanea sp. | China | OM746356 | OM746524 | Present study | ||
| HMAS8970 | 0, I | Pinus ponderosa | USA | OM746357 | OM746525 | Present study | |||
| Cronartium sp.7 | HMAS242639 | II, III | Quercus mongolica | China | OM746423 | — | Present study | ||
| ZP-R7 | II, III | Quercus mongolica | China | OM746424 | OM746589 | Present study | |||
| Cronartium sp.8 | MICH301494 | II, III | Pinus murrayana | USA | OM746425 | OM746590 | Present study | ||
| Cronartium sp.9 | MICH253485 | II, III | Myrica asplenifolia | Canada | OM746427 | OM746592 | Present study | ||
| MICH253505 | II, III | Myrica gale | Canada | OM746428 | OM746593 | Present study | |||
| Cronartium sp.10 | NYBG267052 | II, III | Pinus sp. | USA | OM746443 | OM746609 | Present study | ||
| NYBG267053 | II, III | Pinus strobus | Canada | MK208298 | MK193829 | Qi et al. (2019) | |||
| NYBG267051 | II, III | Ribes nigrum | USA | MK208296 | MK193828 | Qi et al. (2019) | |||
| Cronartium sp.11 | HMAS56423 | II, III | Quercus aliena | China | OM746453 | OM746619 | Present study | ||
| HMAS74356 | II, III | Quercus aliena | China | OM746454 | OM746620 | Present study | |||
| Cronartium sp.12 | HMAS52871 | II, III | Ribes nigrum | China | OM746496 | OM746662 | Present study | ||
| HMAS172046 | II, III | Ribes nigrum | China | OM746497 | OM746663 | Present study | |||
| FLAS-F-16581 | 0, I | Pinus taeda | USA | OM746498 | OM746664 | Present study | |||
| Family incertae sedis | Quasipucciniastrum | Quasipucciniastrum agrimoniae | HMAS67301 | II, III | Agrimonia pilosa | China | MK208261 | MK193832 | Qi et al. (2019) |
| HMAS63888 | II, III | Agrimonia pilosa | China | MK208266 | MK193837 | Qi et al. (2019) | |||
| HMAS13479 | II, III | Agrimonia pilosa | China | MK208268 | MK193839 | Qi et al. (2019) | |||
| HMAS67309 | II, III | Agrimonia pilosa | China | MK208263 | MK193834 | Qi et al. (2019) | |||
| HMAS67306 | II, III | Agrimonia pilosa | China | MK208262 | MK193833 | Qi et al. (2019) | |||
| HMAS24481 | II, III | Agrimonia pilosa | China | MK208267 | MK193838 | Qi et al. (2019) | |||
| HMAS172173 | II, III | Agrimonia pilosa | China | MK208265 | MK193836 | Qi et al. (2019) | |||
| HMAS248095 | II, III | Agrimonia pilosa | China | MK208281 | MK193852 | Qi et al. (2019) | |||
| HMAS172175 | II, III | Agrimonia pilosa | China | MK208272 | MK193843 | Qi et al. (2019) | |||
| HMAS77430 | II, III | Agrimonia pilosa | China | MK208271 | MK193842 | Qi et al. (2019) | |||
| HMAS67302 | II, III | Agrimonia pilosa | China | MK208273 | MK193844 | Qi et al. (2019) | |||
| HMAS82312 | II, III | Agrimonia pilosa | China | MK208264 | MK193835 | Qi et al. (2019) | |||
| Chrysomyxaceae | Chrysomyxa | Chrysomyxa arctostaphyli | CFB22246 | II, III | ― | ― | DQ200930 | AY700192 | AFTOL-ID 442 |
| Chrysomyxa cassandrae | QFB 25019 | II, III | Chamaedaphne calyculata | Canada | GU049446 | GU049529 | Feau et al. (2011) | ||
| 813CHC-PC-LP4 | 0, I | Picea mariana | Canada | GU049450 | GU049531 | Feau et al. (2011) | |||
| Chrysomyxa chiogenis | QFB 25026 | II, III | Gaultheria hispidula | Canada | GU049452 | GU049532 | Feau et al. (2011) | ||
| 631CHS-GAH-ZM28 | II, III | Gaultheria hispidula | Canada | GU049453 | GU049533 | Feau et al. (2011) | |||
| Chrysomyxa empetri | QFB 25015 | II, III | Empetrum nigrum | Canada | GU049434 | GU049526 | Feau et al. (2011) | ||
| Chrysomyxa ledi | 4D10 | 0, I | Picea abies | Finland | HM037711 | HM037707 | Kaitera et al. (2010) | ||
| 240709 | 0, I | Picea abies | Finland | HM037708 | HM037703 | Kaitera et al. (2010) | |||
| Chrysomyxa ledicola | 195CHO_PCM_X1c | 0, I | Picea mariana | Canada | GU049417 | GU049520 | Feau et al. (2011) | ||
| 24CHO_LEG_RW1 | 0, I | Picea mariana | Canada | GU049418 | FJ666446 | Feau et al. (2011) | |||
| Chrysomyxa nagodhii | QFB 25006 | II, III | Rhododendron groenlandicum | Canada | GU049431 | GU049524 | Feau et al. (2011) | ||
| 201CH_LE_LE2 | II, III | Ledum glandulosumc | Canada | GU049427 | J666450 | Feau et al. (2011) | |||
| Chrysomyxa neoglandulosi | DAOM 229530 | II, III | Ledum glandulosumc | Canada | GU049498 | GU049550 | Feau et al. (2011) | ||
| Chrysomyxa piperiana | DAFVP 14997 | II, III | Ledum macrophyllumc | Canada | GU049497 | GU049565 | Feau et al. (2011) | ||
| Chrysomyxa purpurea | BJFC-R02299 | 0, I | Picea purpurea | Sichuan, China | NR_158401 | MW063518 | Cao et al. (2017) | ||
| BJFC-R02300 | II, III | Rhododendron oreodoxa | China | KX225402 | MW898418 | Cao et al. (2017) | |||
| BJFC-R01698 | II, III | Rhododendron oreodoxa | China | KX225401 | — | Cao et al. (2017) | |||
| BJFC-R02448 | II, III | Rhododendron oreodoxa | China | MK770362 | MK874622 | Cao et al. (2017) | |||
| BJFC-R01699 | II, III | Rhododendron oreodoxa | China | KX225405 | — | Cao et al. (2017) | |||
| HMAS55188 | 0, I | Picea purpurea | China | KX225403 | MW898421 | Yang (2015) | |||
| BJFC-R02623 | II, III | Rhododendron sp. | China | MK770364 | — | Yang (2015) | |||
| BJFC-R02302 | 0, I | Picea purpurea | China | MK770363 | MK874623 | Yang (2015) | |||
| Chrysomyxa rhododendri | DAFVP14606 | II, III | Ledum lapponicumc | Canada | GU049467 | GU049560 | Feau et al. (2011) | ||
| Chrysomyxa vaccinii | DAOM 45774 | II, III | Vaccinium parvifolium | Canada | GU049463 | GU049561 | Feau et al. (2011) | ||
| DAVFP 10115 | II, III | Vaccinium parvifolium | Canada | GU049465 | GU049562 | Feau et al. (2011) | |||
| Chrysomyxa woroninii | QFB 25025 | II, III | Ledum groenlandicum | Canada | GU049462 | GU049540 | Feau et al. (2011) | ||
| Chrysomyxa zhuoniensis | BJFC-R02733 | II, III | Rhododendron sp. | China | MK770374 | MK874636 | Yang (2015) | ||
| Rossmanomyces | Rossmanomyces monesis | DAOM 221982 | II, III | Pyrola uniflora | Canada | GU049476 | GU049547 | Feau et al. (2011) | |
| DAVFP 14528 | 0, I | Picea sitchensis | Canada | GU049479 | GU049566 | Feau et al. (2011) | |||
| Rossmanomyces pyrolae | Only DNA extraction | II, III | Pyrola asarifolia | Canada | GU049481 | GU049558 | Feau et al. (2011) | ||
| DAOM 214476 | II, III | Pyrola minor | Canada | GU049483 | GU049553 | Feau et al. (2011) | |||
| QFB 16517 | 0, I | Picea sp. | Canada | GU049484 | GU049554 | Feau et al. (2011) | |||
| Herbarium 12886 | 0, I | Picea glauca | Canada | GU049485 | GU049555 | Feau et al. (2011) | |||
| Herbarium CPP | 0, I | Picea glauca | Canada | GU049486 | GU049556 | Feau et al. (2011) | |||
| QFB 25055 | 0, I | Picea glauca | Canada | GU049487 | — | Feau et al. (2011) | |||
| QFB 25057 | II, III | Pyrola sp. | Canada | GU049489 | — | Feau et al. (2011) | |||
| 390CHP-PCG-VF1 | II, III | Pyrola sp. | Canada | — | FJ666456 | Vialle et al. (2013) | |||
| Coleosporiaceae | Coleosporium | Coleosporium asterum | BPI 879270 | II, III | Solidago sp. | USA | GU058009 | — | Dixon (unpublished) |
| RS1325 | II, III | Solidago sp. | Canada | HQ317530 | — | Beenken et al. (2017) | |||
| N43 | II, III | Kalimeris sp. | Japan | KX386012 | KX386044 | Zhao (unpublished) | |||
| Coleosporium cacaliae | LB09281 / ZT-Myc-58004 | II, III | Adenostyles aliariae | Switzerland | KY810462 | — | Beenken et al. (2017) | ||
| LB09265 / ZT-Myc-58002 | II, III | Campanula latifolia | Switzerland | KY810467 | — | Beenken et al. (2017) | |||
| Coleosporium clematidis | N81 | II, III | Clematis sp. | Japan | KX386007 | KX386039 | Zhao (unpublished) | ||
| N99 | II, III | Clematis sp. | Japan | KX386008 | KX386040 | Zhao (unpublished) | |||
| N79 | II, III | Clematis sp. | Japan | KX386010 | KX386042 | Zhao (unpublished) | |||
| Coleosporium delicatulum | BPI 877848 | II, III | Solidago sp. | USA | MF769637 | — | McTaggart et al. (2018) | ||
| BPI 871731 | II, III | Symphyotrichum novae-angliae | USA | MF769638 | — | McTaggart et al. (2018) | |||
| Coleosporium inulae | GBOL / KR-M-0024937 | 0, I | Pinus sylvestris | Germany | KY783673 | — | Beenken et al. (2017) | ||
| LB09168 / ZT-Myc-57996 | II, III | Inula salicina | Switzerland | KY810470 | — | Beenken et al. (2017) | |||
| Coleosporium montanum | BPI 877858 | II, III | Solidago sp. | USA | MF769635 | — | McTaggart et al. (2018) | ||
| BPI 877849 | II, III | Solidago sp. | USA | MF769636 | — | McTaggart et al. (2018) | |||
| WU:43601 | II, III | Symphyotrichum novae-angliae | Austria | MW284589 | — | Voglmayr (2020) | |||
| Coleosporium petasitidis | LB09254 / ZT-Myc-58000 | II, III | Petasites hybridus | Switzerland | KY810471 | — | Beenken et al. (2017) | ||
| Coleosporium phellodendri | N7 | II, III | Phellodendron amurense | Japan | KX386015 | KX386047 | Zhao (unpublished) | ||
| TSH-R8823 | II, III | Solidago sp. | Russia | KX386016 | KX386048 | Zhao et al. (2017) | |||
| Coleosporium plectranthi | N16 | II, III | Phellodendron amurense | Japan | KX386009 | KX386041 | Zhao (unpublished) | ||
| N85 | II, III | Phellodendron amurense | Japan | KX386011 | KX386043 | Zhao (unpublished) | |||
| Coleosporium plumeriae | GDPR 2-4 | II, III | Plumeria sp. | Caribbean | KF879087 | — | Beenken et al. (2017) | ||
| BPI 880744 | II, III | Plumeria sp. | — | KY764063 | — | Demers et al. (unpublished) | |||
| BPI 844177 | II, III | Plumeria sp. | Guyana | MF769645 | — | McTaggart (2018) | |||
| U50 | II, III | Plumeria rubra | Guyana | MG907225 | — | Vialle (2013) | |||
| Coleosporium senecionis | PDD-98309 | II, III | Senecio sp. | New Zealand | KJ716348 | — | Beenken et al. (2017) | ||
| Coleosporium solidaginis | BPI 863448 | II, III | Solidago sp. | USA | DQ354559 | — | Aime (2006) | ||
| BPI 877855 | II, III | Solidago sp. | USA | MF769649 | — | McTaggart et al. (2018) | |||
| BPI 877852 | II, III | Solidago sp. | USA | MF769652 | — | McTaggart et al. (2018) | |||
| Coleosporium tussilaginis | PDD 93250 | II, III | Brachyglottis huntii | New Zealand | KX985766 | — | McTaggart et al. (2018) | ||
| BPI 843412 | II, III | Senecio triangularis | USA | MF769653 | — | McTaggart et al. (2018) | |||
| MCA2389 | II, III | Sonchus sp. | USA | MG907228 | — | Vialle et al. (2018) | |||
| Coleosporium vernoniae | BPI 877867 | II, III | Elephantopus tomentosus | USA | MF769654 | — | McTaggart et al.(2017) | ||
| BPI 877869 | II, III | Vernonia sp. | USA | MF769655 | — | McTaggart et al. (2017) | |||
| Coleosporium zanthoxyli | KUS-F29608 | II, III | Zanthoxylum planispinum | South Korea | MH465095 | MH460677 | Kim (unpublished) | ||
| KUS-F25423 | II, III | Zanthoxylum planispinum | South Korea | MH465096 | MH460678 | Kim (unpublished) | |||
| Thekopsoraceae | Thekopsora | Thekopsora areolata | LR 4B | 0, I | Picea abies | Norway | DQ445892 | — | Hietala et al. (2008) |
| SPL3 5 | 0, I | Picea abies | Norway | DQ445893 | — | Fossdal et al. (unpublished) | |||
| Spl 3 5 | 0, I | Picea abies | Norway | DQ087229 | — | Hietala et al. (2008) | |||
| Thek 2 | 0, I | Picea abies | Norway | DQ087230 | — | Hietala et al. (2008) | |||
| Ru 4 | 0, I | Prunus padus | Norway | DQ087231 | — | Hietala et al. (2008) | |||
| 2_0910 | 0, I | Picea engelmannii | Finland | KJ546897 | KJ546894 | Kaitera et al. (2010) | |||
| Melampsoraceae | Ceropsora | Ceropsora weirii | 574CHW_X_MA7 | 0, I | Picea sp. | Canada | GU049473 | GU49544 | Feau et al. (2011) |
| 912CHW_PCG_BU3 | 0, I | Picea sp. | Canada | GU049474 | GU49545 | Feau et al. (2011) | |||
| Melampsora | Melampsora abietis-canadensis | 666X-TSC-SH11 | II, III | — | Canada | EU808020 | FJ666512 | Feau et al. (2009) | |
| 1399MEA-POG-USA | II, III | Populus grandidentata | USA | JN881733 | JN934918 | Vialle et al. (2013) | |||
| Melampsora aecidioides | — | II, III | Populus alba | Canada | EU808021 | FJ666510 | Feau et al. (2009) | ||
| Melampsora albertensis | BPI 0021209 | II, III | — | USA | JX416848 | JX416843 | Vialle et al. (2013) | ||
| Melampsora allii-populina | 1260MEAP-POC-HU | II, III | Populus canadensis | — | JN881728 | JN934902 | Vialle et al. (2013) | ||
| Melampsora apocyni | LYR3 | II, III | Apocynum venetum | China | KR296802 | KR296803 | Gao et al. (unpublished) | ||
| Melampsora arctica | HMAS 8629 | II, III | Salix iliensis | China | KX386083 | KX386112 | Zhao et al. (2017) | ||
| Melampsora capraearum | NYS-F-003819 | II, III | Salix caprea | Germany | KU550034 | KU550033 | Zhao et al. (2016) | ||
| Melampsora coleosporioides | HNMAP3114 | II, III | Salix reinii | Japan | KF780755 | KF780638 | Zhao et al. (2015) | ||
| Melampsora epiphylla | TSH-R12280 | II, III | Salix sachalinensis | Japan | KF780787 | KF780670 | Zhao et al. (2017) | ||
| Melampsora epitea | TNS-F-121034 | II, III | Salix viminalis | Germany | KX386070 | KX386097 | Zhao et al. (2017) | ||
| Melampsora euphorbiae | BPI 871135 | II, III | Euphorbia heterophylla | — | DQ911599 | AF426195 | Deadman et al. (unpublished) | ||
| Melampsora euphorbiae-gerardianae | BRIP 39560 | II, III | Euphorbia peplus | — | EF192199 | — | Aime et al. (unpublished) | ||
| Melampsora ferrinii | PUR N6742 | II, III | Salix babylonica | USA | KJ136570 | KJ136563 | Toome (2015) | ||
| SAG-21943/2016 | II, III | Salix sp. | Chile | KY053852 | KY053853 | Zapata (2016) | |||
| Melampsora humilis | TSH-R7650 | II, III | Salix koriyanagi | Japan | KF780812 | KF780695 | Zhao et al. (2017) | ||
| Melampsora iranica | HMAAC4055 | II, III | Salix sp. | China | MK372158 | MK372191 | Wang et al. (2020) | ||
| Melampsora kamikotica | HNMAP3186 | II, III | Chosenia arbutifolia | China | KF780760 | KF780643 | Zhao et al. (2015) | ||
| Melampsora laricis-miyabeana | TSH-R18314 | II, III | Salix reinii | Japan | KX386071 | — | Zhao et al. (2017) | ||
| Melampsora laricis-pentandrae | HNMAP3201 | II, III | Salix pentandra | China | KF780801 | KF780684 | Zhao et al. (2015c) | ||
| Melampsora larici-tremulae | PFH-99-1 | II, III | Populus tremula | — | JN881744 | JN934956 | Vialle et al. (2013) | ||
| Melampsora magnusiana | 1426MEG-CJ-DSD | II, III | Chelidonium majus | Sachsen | GQ479845 | JN934927 | Vialle et al. (2013) | ||
| Melampsora medusae f. sp. deltoidis | 98D10 | II, III | Populus euramericana | South Africa | GQ479307 | JN934962 | Vialle et al. (2013) | ||
| Melampsora medusae f. sp. tremuloides | 1028ME-LAL-LJ | II, III | Larix laricina | Canada | GQ479883 | — | Vialle et al. (2013) | ||
| Melampsora microsora | HH-53150 | II, III | Salix subfragilis | Japan | KF780834 | KF780717 | Zhao et al. (2015c) | ||
| Melampsora microspora | 97MP10a | II, III | Populus nigra | Iraq | JN881737 | JN934931 | Vialle et al. (2013) | ||
| Melampsora nujiangensis | AAH00-1 | II, III | Pinus alba | England | AY444772 | AY444786 | Pei et al. (2005) | ||
| Melampsora occidentalis | 1366MEPR-POPRURT | II, III | Populus diversifolia | China | GQ479899 | JN934938 | Vialle et al. (2013) | ||
| Melampsora rostrupii | O8ZK4 | II, III | Mercurialis annua | Italy | GQ479320 | JN934941 | Vialle et al. (2013) | ||
| Melampsora pakistanica | BA13c | II, III | Euphorbia helioscopia | Pakistan | KX237555 | KX237556 | Ali et al. (2016) | ||
| Melampsora pinitorqua | 1367MPI-PNI-FI | 0, I | Pinus sylvestris | Finland | GQ479897 | JN934973 | Vialle et al. (2013) | ||
| Melampsora populnea | PDD 98363 | II, III | Ricinus communis | New Zealand | KJ716352 | Padamsee and McKenzie (2014) | |||
| Melampsora pruinosae | 1366MEPR-POPR-UR | II, III | Populus pruinosa | Canada | GQ479898 | JN934939 | Feau et al. (2011) | ||
| Melampsora pulcherrima | O8ZK2 | II, III | Mercurialis annua | Canada | JN934940 | GQ479321 | Feau et al. (2011) | ||
| Melampsora ribesii-purpureae | HMAS62584 | II, III | Salix purpurea | China | KF780766 | KF780649 | Zhao et al. (2017) | ||
| Melampsora ribesii-viminalis | HNMAP1968 | II, III | Salix viminalis | China | KX386069 | KX386096 | Zhao et al. (2017) | ||
| Melampsora ricini | PDD 98363 | II, III | Ricinus communis | — | KJ716352 | — | Padamsee (2014) | ||
| Melampsora rostrupii | PFH08-3 | II, III | Populus alba | France | JN881752 | JN934981 | Vialle et al. (2013) | ||
| Melampsora salicis-albae | NWC-06210 | II, III | Salix alba | England | KF780757 | KF780640 | Zhao et al. (2015c) | ||
| Melampsora salicis-argyraceae | HMAS52984 | II, III | Salix argyracea | China | KF780733 | KF780616 | Zhao et al. (2015c) | ||
| Melampsora salicis-bakko | HNMAP1710 | II, III | Salix sinica | China | KC631839 | KC685596 | Zhao et al. (2015c) | ||
| Melampsora salicis-cavaleriei | HMAAC4043 | II, III | Salix serrulatifolia | China | MK277296 | MK277301 | Wang et al. (2020) | ||
| Melampsora salicis-futurae | TSH-R9620 | II, III | Salix futura | Japan | KC631860 | KC685617 | Zhao et al. (2017) | ||
| Melampsora salicis-purpureae | HMAS62584 | II, III | Salix purpurea | China | KF780766 | KF780649 | Zhao et al. (2017) | ||
| Melampsora salicis-sinicae | HNMAP1710 | II, III | Salix sinica | China | KC631839 | KC685596 | Zhao et al. (2014) | ||
| HNMAP1716 | II, III | Salix sinica | China | KC631844 | KC685601 | Zhao et al. (2015c) | |||
| Melampsora salicis-triandrae | HNMAP3181 | II, III | Salix triandra | China | KF780829 | KF780712 | Zhao et al. (2017) | ||
| Melampsora salicis-viminalis | HMAS38658 | II, III | Salix viminalis | China | KF780732 | KF780615 | Zhao et al. (2015c) | ||
| Melampsora x columbiana | sn-35 | II, III | Populus angustifolia | USA | JQ042235 | Busby et al. (2012) | |||
| Melampsora yezoensis | TSH-R1504 | II, III | Salix jessoensis | Nagano | KF780806 | KF780731 | Zhao et al. (2015) | ||
| TSH-R1507 | II, III | Salix jessoensis | Nagano | KF780832 | KF780715 | Zhao et al. (2015) | |||
| Pucciniastraceae | Melampsorella | Melampsorella caryophyllacearum | PUR 82 | II, III | Cerastium sp. | USA | — | MG907233 | Aime et al. (2018) |
| WM 1092 | 0, I | Abies alba | — | — | AF426232 | Maier et al. (2003) | |||
| Pucciniastrum | Pucciniastrum circaeae | TSH-R10187 | II, III | Circaea erubescens | Japan | AB221456 | AB221387 | Liang et al. (2006) | |
| B 2098 | II, III | Circaea lutetiana | Canada | — | AY74569 | Vialle (unpublished) | |||
| Pucciniastrum epilobii | MK697276 | II, III | Oenothera acaulis | — | MK697276 | — | Hietala et al. (2008) | ||
| Ru11 | II, III | Epilobium watsonii | Norway | DQ445907 | — | Vialle et al. (2013) | |||
| Ru6 | II, III | Epilobium angustifolium | USA | DQ445906 | — | Vialle et al. (2013) | |||
| PUR N11088 | II, III | Chamaenerion angustifolium | — | — | MW049277 | Aime & McTaggart (2021) | |||
| Pucciniastrum guttatum | PDD 91889 | II, III | Galium odoratum | New Zealand | KJ716345 | Padamsee (2014) | |||
| Pucciniastrum lanpingensis | BJFC-R00355 | 0, I | Pinus sylvestris | France | KF551225 | KF551208 | Yang et al. (2015) | ||
| Pucciniastrum minimum | LD 1081 | II, III | Vaccinium corymbosum | Mexico | — | HM439777 | Rebollar-Alviter et al. (2011) | ||
| PREM 60245 | II, III | Vaccinium corymbosum | South Africa | — | GU355675 | Yang et al. (2015) | |||
| Pucciniastrum myosotidii | PDD 93251 | II, III | Myosotidium hortensia | New Zealand | — | KJ716347 | Padamsee (2014) | ||
| Pucciniastrum nipponicum | HMBF-GS-53.1 | II, III | Galium davuricum | China | KC415792 | KC416001 | Yang et al. (2015) | ||
| HMBF-GS-54.1 | II, III | Galium aparine | China | KC415793 | KC416003 | Yang et al. (2015) | |||
| Pucciniastrum pustulatum | PDD 101572 | II, III | Epilobium chlorifolium | New Zealand | KJ698631 | — | Padamsee (2014) | ||
| Pucciniastrum rubiae | HMBF-XZ-1.1 | II, III | Rubia cordifolia | China | KC415802 | KC416009 | Yang (2015) | ||
| Pucciniastrum verruculosum | KUS-F29482 | II, III | Aster tataricus | Korea | MZ725013 | MZ724685 | Lee et al. (2021) | ||
| Nothopucciniastraceae | Nothopucciniastrum | Nothopucciniastrum actinidiae | TSH-R23801 | II, III | Actinidia arguta | Japan | AB221446 | AB221403 | Liang et al. (2006) |
| Nothopucciniastrum boehmeriae | TSH-R21289 | II, III | Boehmeria tricuspis | Japan | AB221450 | AB221393 | Liang et al. (2006) | ||
| Nothopucciniastrum corni | TSH-R4273 (IBA7671) | II, III | Clethra kuosa | Japan | AB221436 | AB221408 | Liang et al. (2006) | ||
| Nothopucciniastrum fagi | TSH-R21254 | II, III | Fagus crenata | Japan | AB221424 | AB221375 | Liang et al. (2006) | ||
| TSH-R10724 | II, III | Fagus crenata | Japan | AB221425 | AB221378 | Liang et al. (2006) | |||
| Nothopucciniastrum hikosanense | TSH-R4287 (IBA2565) | II, III | Acer rufinerva | Japan | AB221441 | AB221388 | Liang et al. (2006) | ||
| TSH-R4289 (IBA8441) | II, III | Actinidia rufinerva | Japan | AB221440 | AB221389 | Liang et al. (2006) | |||
| Nothopucciniastrum kusanoi | HH98635 | II, III | Clethra barbinervis | Japan | AB221429 | AB221400 | Liang et al. (2006) | ||
| TSH-R21252 | II, III | Clethra barbinervis | Japan | AB221430 | AB221401 | Liang et al. (2006) | |||
| Nothopucciniastrum miyabeanum | TSH-R4281 (IBA8721) | II, III | Viburnum furcatum | Japan | AB221442 | AB221394 | Liang et al. (2006) | ||
| TSH-R10202 | II, III | Viburnum furcatum | Japan | AB221443 | AB221397 | Liang et al. (2006) | |||
| Nothopucciniastrum styracinum | TSH-R t015 | II, III | Styrax japonica | Japan | AB221431 | AB221416 | Liang et al. (2006) | ||
| Nothopucciniastrum tiliae | TSH-R4294 (IBA7670) | II, III | Tilia japonica | Japan | AB221453 | AB221414 | Liang et al. (2006) | ||
| TSH-R4295 (IBA7878) | II, III | Tilia japonica | Japan | AB221454 | AB221415 | Liang et al. (2006) | |||
| Nothopucciniastrum yoshinagai | TSH-R4272 (IBA8430) | II, III | Stewartia monadelpha | Japan | AB221434 | AB221411 | Liang et al. (2006) | ||
| TSH-R4270 (IBA8404) | II, III | Stewartia monadelpha | Japan | AB221435 | AB221410 | Liang et al. (2006) | |||
| Hyalopsoraceae | Coleopuccinia | Coleopuccinia sinensis | BJFC-R02506 | II, III | Cotoneaster microphyllus | China | MF802288 | MF802285 | Cao et al. (2018) |
| BJFC-R02364 | II, III | Cotoneaster rubens | China | MF802287 | MF802284 | Cao et al. (2018) | |||
| BJFC-R02506 | II, III | Cotoneaster rubens | China | MF802286 | MF802283 | Cao et al. (2018) | |||
| Hyalopsora | Hyalopsora nodispora | PR # 40 | II, III | Adiantum capillus-veneris | Pakistan | — | MW899330 | Riaz et al. (unpublished) | |
| BPI 893262 | II, III | Adiantum capillus-veneris | USA | — | KY798373 | Demers (unpublished) | |||
| BPI 893261 | II, III | Adiantum capillus-veneris | USA | KY798372 | Demers (unpublished) | ||||
| Hyalopsora polypodii | BPI 893256 | II, III | Athyrium attenuatum | USA | — | KY798367 | Demers (unpublished) | ||
| K187058 | II, III | — | United Kingdom | MZ159483 | Gaya et al. (unpublished) | ||||
| PDD 71999 | II, III | Deparia petersenii | New Zealand | — | KJ698627 | Padamsee & McKenzie (2014) | |||
| Hyalopsora neocheilanthis | BJFC-R00590 | II, III | — | China | MK795975 | MK795969 | Liang et al. (unpublished) | ||
| Hyalopsora japonica | BJFC-R00401 | II, III | — | China | MK795974 | MK795968 | Liang et al. (unpublished) | ||
| Hyalopsora aspidiotus | PUR N4641 | II, III | — | China | — | MW049264 | Liang et al. (unpublished) | ||
| Hyalopsora sp. 1 | BJFC-R02435 | II, III | — | China | MK795976 | MK795970 | Liang et al. (unpublished) | ||
| Melampsoridium | Melampsoridium alni | H7019539 | II, III | Alnus mandshurica | Finland | KF031557 | KF031534 | McKenzie et al. (2013) | |
| Melampsoridium betulinum | ZP-R490 | II, III | Betula sp. | China | MK518946 | MK518638 | Zhao et al. (2021) | ||
| H 6035417 | II, III | Betula pubescens | Finland | KF031556 | KF031539 | McKenzie et al. (2013) | |||
| PDD 102645 | II, III | Alnus cordata | New Zealand | KF031559 | KF031544 | McKenzie et al. (2013) | |||
| Melampsoridium hiratsukanum | PDD 77191 | II, III | Alnus pubescens | Austria | KF031564 | KF031546 | McKenzie et al. (2013) | ||
| PDD 78493 | II, III | Alnus incana | Austria | KF031565 | KF031547 | McKenzie et al. (2013) | |||
| Milesinaceae | Uredinopsis | Uredinopsis osmundae | U856 | II, III | Osmunda sp. | USA | — | MG907245 | Aime et al. (2018) |
| U1188 | II, III | Athyrium sp. | USA | — | MG907244 | Aime et al. (2018) | |||
| Uredinopsis pteridis | U856 | II, III | Osmunda sp. | USA | — | KM249869 | Aime et al. (2018) | ||
| Uredinopsis filicina | U1188 | II, III | Athyrium sp. | USA | — | MG907244 | Aime et al. (2018) | ||
| BRIP 60091 | II, III | Pteridium esculentum | Australia | — | KM249869 | McTaggart et al. (2014) | |||
| Milesina | Milesina blechni | KR-M-0038519 | II, III | Struthiopteris spicant | Germany | MH908412 | MK302189 | Bubner et al. (2019) | |
| Milesina carpatica | KR-M-0043192 | II, III | Dryopteris filix-mas | Germany | MH908454 | — | Bubner et al. (2019) | ||
| Milesina exigua | KR-M-0050247 | II, III | Polystichum braunii | Austria | MH908478 | MK302211 | Bubner et al. (2019) | ||
| Milesina feurichii | KR-M-0043159 | II, III | Asplenium septentrionale | Germany | MH908476 | — | Bubner et al. (2019) | ||
| Milesina kriegeriana | KR-M-0048480 | II, III | Dryopteris dilatata | Germany | MH908452 | MK302207 | Bubner et al. (2019) | ||
| Milesina leviuscula | BRIP 58421 | II, III | Nephrolepis sp. | Viet Nam | MW049269 | KM249868 | McTaggart et al. (2014) | ||
| Milesina murariae | KR-M-0048133 | II, III | Asplenium ruta-muraria | Germany | MH908422 | MK302194 | Bubner et al. (2019) | ||
| Milesina philippinensis | BRIP 58421 | II, III | Nephrolepis sp. | Viet Nam | MW049269 | KM249868 | McTaggart et al. (2014) | ||
| Milesina polypodii | KR-M-0043190 | II, III | Polypodium vulgare | Germany | MH908415 | MK302190 | Bubner et al. (2019) | ||
| Milesina scolopendrii | KR-M-0049051 | II, III | Asplenium scolopendrium | Germany | MH908467 | MK302209 | Bubner et al. (2019) | ||
| Milesina vogesiaca | KR-M-0043187 | II, III | Polystichum aculeatum | Germany | MH908440 | MK302202 | Bubner et al. (2019) | ||
| Milesina whitei | KR-M-0050248 | II, III | Polystichum aculeatum | Germany | MH908479 | MK302212 | Bubner et al. (2019) | ||
| Milesina woodwardiana | KR-M-0049033 | II, III | Woodwardia radicans | Spain | MH908474 | — | Bubner et al. (2019) | ||
| Naohidemyces | Naohidemyces vaccinii | WM 1098 | II, III | Vaccinium uliginosum | — | — | AF426238 | Maier et al. (2003) | |
| MIN 928279 | II, III | Vaccinum sp. | USA | — | KJ698628 | Padamsee (2014) | |||
| BPI 871754 | II, III | Vaccinium ovatum | Washington, USA | — | DQ354563 | Padamsee (2014) | |||
For phylogenetic analyses, raw sequence data were aligned by BioEdit v. 7.0.9 (Hall 1999), and multiple alignments were performed with MAFFT v. 7.394 (Katoh et al. 2017). Ambiguous alignment positions were manually adjusted before the final analyses. Topologies were constructed based on maximum likelihood (ML) analyses using RAxML v. 0.95 (Stamatakis 2006). Bayesian Markov Chain Monte Carlo (MCMC) analyses were performed using MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001), and Bayesian posterior probabilities (Bpp) were calculated. In ML and Bayesian analyses, the best-fit substitution model was estimated using Modeltest v. 3.7 (Posada and Crandall 1998).
Morphological comparison
The type specimens, original descriptions, and other published descriptions of the species involved were compared with detailed morphological traits of species, genus and family from previous literature (e.g. Sydow and Sydow 1915; Kuprevich and Tranzschel 1957; Arthur 1933; Wilson and Henderson 1966; Hiratsuka et al. 1992; Cummins and Hiratsuka 2003; Liang et al. 2006 Liang 2006; Yang 2015). Different spore stages of rust fungi were designated by following Roman numerals according to Cummins and Hiratsuka (1983, 2003): spermagonia/spermatia (0), aecia/aeciospores (I), uredinia/urediniospores (II), telia/teliospores (III), and basidia/basidiospore (IV). We applied the definitions of spore stage and morphological types in the whole life cycle based on Cummins and Hiratsuka (2003).
Results
For ML and Bayesian analyses, a dataset containing selected species from 16 genera in Melampsorineae was used. Phylogenetic trees using the combined dataset yielded higher confident values for the generic level than that of the single locus tree, with 570 bp nucleotide positions for ITS and 800 bp for LSU. An overview of the inferred topology is given in Figure 1. Melampsorineae is divided into 16 well-supported clades. The monophylies of several genera in Melampsorineae, i.e. Ceropsora, Chrysomyxa, Coleopuccinia, Cronartium, Coleosporium, Hylospora, Melampsorella, Melampsoridium, Naohidemyces, Quasipucciniastrum, and Thekopsora, were confirmed, in agreement with previous studies (Aime et al. 2018; Qi et al. 2019; Zhao et al. 2020; Aime and McTaggart 2021). Pucciniastrum, the type genus of the Pucciniastraceae, was split into two different clades. The type species of Pucciniastrum, P. epilobii clustered with other nine species (i.e. P. circaeae, P. guttatum, P. lanpingensis, P. minimum, P. myosotidii, P. nipponicum, P. pustulatum, P. rubiae, and P. verruculosum) in one clade, whilst 10 other Pucciniastrum species (i.e. P. actinidiae, P. boehmeriae, P. corni, P. fagi, P. hikosanense, P. kusanoi, P. miyabeanum, P. styracinum, P. tiliae and P. yoshinagai) were in another distinct clade. Species of Milesina and Uredinopsis were found in a same clade, with the later merged into the Milesina species, forming a sister clade to M. vogesiaca.
Figure 1.

(Continued).
Figure 1.

(Continued).
Figure 1..

(Continued).
Figure 1.

Multilocus phylogenetic tree of the Melampsorineae suborder in the Pucciniales order. Support values indicated at nodes. Bayesian posterior probabilities ≤ 50% and Maximum Likelihood bootstrap (ML) ≤ 50% were indicated by dash line (–). Family and generic names are listed after each taxon.
Morphological comparison of each clade is shown in Figure 1. Morphologies in spore-producing structures (i.e. spermogonia, aecia, uredinia, telia and basidia), exhibited the strongest association with the phylogeny. Based on our morphological comparisons and phylogenetic analyses of 16 genera in Melampsorineae, ten families, including three new families, Hyalopsoraceae, Nothopucciniastraceae, Thekopsoraceae, and one new genus, Nothopucciniastrum, were proposed. These families differ from their phylogenetically allied families in their spore-producing structures (basidia, spermogonia, aecia, uredinia and telia), as shown in Figure 2. Previous studies have demonstrated that spore-producing structures were phylogenetically informative at the family level (Zhao et al. 2020, 2021; Aime and McTaggart 2021), and we have further confirmed that these characters throughout the life cycle are of great importance to facilitate natural familial delimitation, especially in the suborder Melampsorineae (Figure 3).
Figure 2.

Correlation of phylogeny and morphological criteria used of family delimitation. Dash line (–) in the phylogenetic tree indicated the family or genera lacks of one certain spore stage.
Figure 3.

Taxonomic importance of morphological characters in different spore stages during the whole life cycle in the rust fungi is illustrated. The spore-producing structures, i.e. basidia, spermogonia, aecia, uredinia and telia are indicated in red colour and bold, while the spore morphologies, i.e. basidiospores, spermatia, aeciospores, urediniospores and teliospores, are indicated in black colour and bold.
Taxonomy
Family: Chrysomyxaceae Gäum. ex Leppik, Ann. Bot. Fenn. 9: 139. 1972
Type genus
Chrysomyxa Unger, Beitr. Vergleich. Pathologie: 24. 1840.
Type species
Chrysomyxa abietis (Wallr.) Unger, Beitr. Vergleich. Pathologie: 24. 1840. Genus included in this family. Chrysomyxa and Rossmanomyces. Spermogonia Group I (type 2), subepidermal, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, subepidermal, with well-developed peridia, aeciospores catenulate, with intercalary cells, mainly verrucose. Uredinia Caeoma-type, subepidermal, erumpent, with or without inconspicuous peridia, wiitalicthout ostiolar cells, urediniospores with intercalary cells, germ pores scattered. Telia subepidermal, erumpent, teliospores aseptate, catenulate, crowded but loosely adherent, wall thin, germination occurs without dormancy. Basidia external or without basidiospores.
Notes – Chrysomyxa was previously placed in Chrysomyxaceae, Coleosporiaceae, or Melampsoraceae by different taxonomists based on various morphological criteria in teliospores (Sydow and Sydow 1915; Dietel 1928; Leppik 1972; Savile 1976). Cummins and Hiratsuka (1983) placed Chrysomyxa in Coleosporiaceae together with Coleosporium by emphasising the importance of spermogonial and teliospore’s morphologies, however, telial differences between the two genera have been clearly demonstrated (Sydow and Sydow 1915; Crane et al. 2005). Chrysomyxa was then placed in Coleosporiaceae by Aime and McTaggart (2021), along with Coleosporium, Cronartium, Quasipucciniastrum, Rossmanomyces and Thekopsora, but these genera in this broadly defined family have high morphological variations in the structures of spermogonia and telia, which had long been used as important criteria at the familial level (Cummins and Hiratsuka 2003).
The polyphyly of the family Coleosporiaceae defined by Aime and McTaggart (2021) has been revealed by our previous molecular phylogenetic analyses (Zhao et al. 2020, 2021). Our current findings further demonstrated the phylogenetic distinction of Chrysomyxa from Coleosporium, and two genera have different spermogonial, uredinial and telial morphologies (Figure 1). Furthermore, the divergence time of two genera and their median ages were in a general range of divergent time of families in Basidiomycota (Aime et al. 2018; He et al. 2019). All these findings supported the taxonomic treatments of Dietel and Neger (1900) and Leppik (1972), who placed the genus Chrysomyxa in the Chrysomyxaceae. The family name Chrysomyxaceae is therefore resurrected here. Aime and McTaggart (2021) established a new genus Rossmanomyces, which is phylogenetic allied to Chrysomyxa but differs in forming a systemic sporothallus in telia. Here we placed genera Chrysomyxa and Rossmanomyces in the family Chrysomyxaceae.
Family: Coleosporiaceae Dietel, in Engler and Prantl, Nat. Pflanzenfam., Teil. I (Leipzig) 1(1): 548. 1900, emend. P. Zhao and L. Cai
Type genus
Coleosporium Lév., Annls Sci. Nat., Bot., Sér. 3 8: 373. 1847.
Type species
Coleosporium campanulae (Pers.) Tul., Annls Sci. Nat., Bot., Sér. 42: 137. 1854.
Genus included in this family. Coleosporium.
Spermogonia Group I (type 2), subepidermal, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, with well-developed peridia, aeciospores catenulate, with intercalary cells, verrucose. Uredinia Caeoma-type, with rudimentary peridia or none, without ostiolar cells, urediniospores echinulate, with intercalary cells, mostly verrucose. Telia erumpent as low or rarely columnar cushions, gelatinous, teliospores aseptate, sessile, catenulate, in 1-layered crusts or pseudocatenulate by intrusion of young spores among older ones. Basidia internal.
Notes – Coleosporiaceae has undergone multiple taxonomic reassignments over the years based on various morphological criteria in teliospores and spermogonia (Wilson and Henderson 1966; Hiratsuka et al. 1992; Cummins and Hiratsuka 2003). Recently, Aime and Taggart (2021) included seven genera in this family, despite the fact that the spore-producing structures (i.e. spermogonia, aecia, uredinia, telia and basidia) from those genera have broad morphological variations (Figure 1). Based on phylogenetic analyses and morphological comparisons with the spore-producing structures (Figure 1), we included two genera (i.e. Chrysomyxa, Rossmanomyces) in the newly resurrected family Chrysomyxaceae. The genus Cronartium was re-classified in the family Cronartiaceae, and genus Thekopsora was classified in the new family Thekopsoraceae. Thus, Coleosporiaceae is emended with a narrower concept based on the type genus Coleosporium, which is distinctive from other families in telia with internal basidia and unicellular teliospores in 1-layered crust, wall thick and gelatinising above (Figure 1).
Family: Cronartiaceae Dietel, in Engler and Prantl, Nat. Pflanzenfam., Teil. I (Leipzig) 1(1): 548. 1900
Type genus
Cronartium Fr., Observ. Mycol. (Havniae) 1: 220. 1815.
Type species
Cronartium asclepiadeum (Willd.) Fr., Observ. Mycol. (Havniae) 1: 220. 1815.
Genera included in this family. Cronartium.
Spermogonia Group II (type 9), intracortical, indeterminate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, the peridia large and blister-like, strongly developed, rupturing widely, aeciospores catenulate, with intercalary cells, verrucose with rod-like columns. Uredinia Milesia-type, subepidermal, opening by a pore, with ostiolar cells, urediniospores borne singly, echinulate, germ pore scattered. Telia with high variations, subepidermal, erumpent, vteliospores aseptate, crowded but loosely adherent, some catenulate, thin-walled, germination occurs without dormancy. Basidia external.
Notes – Cronartium was originally placed in the family Pucciniaceae (Dietel 1897), but then classified as a member of Cronartiaceae, Coleosporiaceae, Melampsoraceae or Pucciniastraceae in different time periods based on various morphological criteria in teliospores or spermogonia (Dietel 1928; Cummins and Hiratsuka 1983, 2003; Aime and Taggart 2021). Recent molecular phylogenetic studies confirmed the placement of Cronartium in the suborder Melampsorineae (Aime 2006; Aime et al. 2018), but its relationship with several other genera, including Chrysomyxa, Coleosporium, Diaphanopellis, Quasipucciniastrum, Rossmanomyces and Thekopsora, was still uncertain (Aime and Taggart 2021). Our current results and previous phylogenetic studies of the order Pucciniales (Zhao et al. 2020, 2021) clearly revealed the phylogenetic distinction between Cronartium and the above-mentioned genera (Figure 1), and Cronartium clade differs from other families in the spore-producing structures, especially in Group II spermonogia, Milesia-type uredinia with ostiolar cells, and telia with sessile, catenulate teliospores (Figure 1). Thus, here we resurrected the family Cronartiaceae to accommodate the genus Cronartium.
Family: Hyalopsoraceae P. Zhao and L. Cai, fam. nov. – MycoBank MB842413
Etymology
Name derived from the type genus, Hyalopsora.
Type genus
Hyalopsora Magnus, Ber. Dt. Bot. Ges. 19: 582. 1902.
Type species
Hyalopsora aspidiotus (Peck) Magnus, Ber. Dt. Bot. Ges. 19: 582. 1901.
Genus included in this family. Coleopuccinia, Hyalopsora, Melampsoridium.
Spermogonia Group I (type 2 or type 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, with peridium, subepidermal, aeciospore catenulate. Uredinia Milesia-type, subepidermal, with peridium opening by a discrete pore, with ostiolar cells, urediniospores borne singly, wall colourless, echinulate, germ pores scattered or bizonate. Telia intraepidermal, not erumpent, 2 to many-celled by septa, wall colourless, teliospores aseptate, sessile, pigmented. Basidia external.
Notes – The traditionally defined Pucciniastraceae has been revealed to be polyphyletic, with members dispersed across several distant and well-supported clades (Figure 1; Aime et al. 2018; Zhao et al. 2020). Three closely related clades, representing genera Coleopuccinia, Hyalopsora and Melampsoridium, show a high morphological consistency in the spore-producing structures with each other, and they can be distinguished from phylogenetically allied families in intraepidermal telia with sessile and unicellular teliospores with intercalary cell (Figure 1). Thus, a new family Hyalopsoraceae is proposed to accommodate Coleopuccinia, Hyalopsora and Melampsoridium. Previously, Cummins and Hiratsuka (2003) considered the genus Coleopuccinia as a synonym of Gymnosporangium (Gymnosporangiaceae) based on teliospores similarities, and Cao et al. (2018) recognised the phylogenetic distinctiveness of two genera. Here we confirm its familial position in Hyalopsoraceae for the first time, and our findings further highlight the importance of the spore-producing structures for familial delimitation.
Family: Melampsoraceae Dietel, in Engler and Prantl, Nat. Pflanzenfam., Teil. I (Leipzig) 1(1): 38. 1897
Type genus
Melampsora Castagne (1843).
Type species
Melampsora euphorbiae (Ficinus and C. Schub.) Castagne, Observ. Uréd. 2: 18.1843.
Genus included in this family. Ceropsora and Melampsora.
Spermogonia Group I (type 2 or type 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Caeoma-type, subepidermal, with rudimentary or no peridia, aeciospore catenulate, with intercalary cells. Uredinia Uredo-type, subepidermal, erumpent, without ostiolar cells, with abundant capitate paraphyses, urediniospores borne singly, echinulate, germ pores scattered or bizonate. Telia subepidermal or subcuticular, not erumpent, consisting of laterally adherent teliospores in crusts one spore deep or some species with subjacent spore-like cells, teliospores aseptate, sessile, pigmented. Basidia external.
Notes – Both Ceropsora and Melampsora are distinctive from the rest families in Caeoma-type aecia, Uredo-type uredinia, and telia with sessile and unicellular teliospores (Figure 1; Sydow and Sydow 1915; Cummins and Hiratsuka 2003; Aime and Taggart 2021). Two genera constitute the family Melampsoraceae, which is confirmed to be monophyly by Tian et al. (2004), Feau et al. (2009), and Zhao et al. (2017, 2020). This family was estimated to be diverged around 12 ~ 42 MYA (median ages 31.94 MYA), within the generally acknowledged divergent time range for families of Basidiomycota (Aime et al. 2018; He et al. 2019).
Family: Milesinaceae Aime and McTaggart, Fungal Systematics and Evolution 7: 32. 2020
Genera included in this family. Milesina, Naohidemyces and Uredinopsis.
Spermogonia Group I (type 1), subepidermal, with concave hymenia, bounding structures lacking. Aecia Peridermium-type, subepidermal, erumpent, with peridia, aeciospores catenulate, verrucose. Uredinia Milesia-type, subepidermal, urediniospores mostly echinulate, borne singly. Telia intraepidermal, consisting of spores in the epidermal cells, teliospores aseptate or multiseptate, with oblique septa. Basidia external.
Notes – Milesina, Naohidemyces and Uredinopsis were classified in Pucciniastraceae based on their teliospores that are embedded in the host tissue and the Peridermium-type aecia (Cummins and Hiratsuka 1984; Cummins and Hiratsuka 2003). Phylogenetically, Milesia, Naohidemyces and Uredinopsis clustered in one phylogenetic group, and separated from Hyalopsora, Melampsorella, Melampsoridium, Pucciniastrum and Thekopsora (Figure 1). In morphology, Milesia, Naohidemyces and Uredinopsis have similar morphological features in all spore-producing structures, but clearly differentiate themselves from other families in Milesia-type uredinia without ostiolar cells and wall colourless (Figure 1). Thus, Aime and McTaggart (2021) proposed Milesinaceae to accommodate these three genera. Our results is in agreement of Aime and McTaggart (2021).
Family: Nothopucciniastraceae P. Zhao and L. Cai, fam. nov. – MycoBank MB842414
Etymology
Notho = nothus in Greek, fake, close but different; pucciniastraceae = Pucciniastraceae-like morphology.
Type genus
Nothopucciniastrum P. Zhao and L. Cai, gen. nov.
Type species
Nothopucciniastrum tiliae (Miyabe) P. Zhao and L. Cai, comb. nov.
Genera included in this family. Nothopucciniastrum.
Spermogonia Group I (type 2 and 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, or Milesia-type, with well-developed peridia, aeciospores borne singly on pedicels, verrucose. Uredinia Milesia-type, with well-developed ostiolar cells, urediniospores borne singly, verrucose. Telia subepidermal, not erumpent, consisting of laterally adherent teliospores one spore deep, teliospores sessile, aseptate or multiseptate, with vertical septa. Basidia external.
New combinations:
Nothopucciniastrum actinidiae (Hirats. f.) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum actinidiae Hirats. f., Mem. Tottori Agric. Coll. 4: 279. 1936.
Nothopucciniastrum boehmeriae ((Dietel) Syd. and P. Syd.) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum boehmeriae (Dietel) Syd. and P. Syd., Ann. Mycol. 1(1): 19. 1903.
Nothopucciniastrum corni (Dietel) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum corni Dietel, Bot. Jb. 34: 587. 1905.
Nothopucciniastrum fagi (Dietel) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum fagi G. Yamada, Bot. Mag., Tokyo 44: 280. 1930.
Nothopucciniastrum kusanoi (Dietel) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum kusanoi Dietel, Bot. Jb. 32: 629. 1903.
Nothopucciniastrum hikosanense (Hirats. f.) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum hikosanense Hirats. f., Ann. Phytopath. Soc. Japan 10: 154. 1940.
Nothopucciniastrum miyabeanum (Hirats.) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum miyabeanum Hirats., Bot. Mag., Tokyo 12: 3 (extr.). 1898.
Nothopucciniastrum styracinum (Hirats.) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum styracinum Hirats., Bot. Mag., Tokyo 12: 2 (extr.). 1898.
Nothopucciniastrum tiliae (Miyabe) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum tiliae Miyabe, in Hiratsuka, Bot. Mag., Tokyo 11: 47. 1897.
Nothopucciniastrum yoshinagae (Hirats.) P. Zhao and L. Cai, comb. nov.
Basionym. Pucciniastrum yoshinagae Hirats. f. [as “yoshinagai”], Trans. Tottori Soc. Agric. Sci. 2: 247. 1931.
Notes – The traditionally defined Pucciniastraceae with 9 genera (Cummins and Hiratsuka 1984; Cummins and Hiratsuka 2003) has been demonstrated to be highly polyphyletic (Figure 1; Aime et al. 2018; Zhao et al. 2021). Recent treatments of Pucciniastraceae have placed Milesia, Naohidemyces and Uredinopsis in Milesinaceae (Aime and McTaggart 2021), Coleopuccinia, Hyalopsora, and Melampsoridium in Hyalopsoraceae, and Thekopsora in Thekopsoraceae (this study). Furthermore, Pucciniastrum species were found to cluster in two distant clades (Figure 1). Ten species formerly classified into genus Pucciniastrum, (i.e. P. actinidiae, P. boehmeriae, P. corni, P. fagi, P. hikosanense, P. kusanoi, P. miyabeanum, P. styracinum, P. tiliae and P. yoshinagai) constituted one well-supported clade distinct from the clade of Pucciniastrum comprising the type species P. epilobii (Figure 1). This result is consistent with Qi et al. (2019), and Zhao et al. (2020). The morphological difference between these Pucciniastrum species in above two clades were discussed in Liang (2006) and Yang (2015), and those ten species different from Pucciniastrum and Melampsorella in their Milesia-type with ostiolar cells. Based on morphological and molecular evidences, we propose a new family Nothopucciniastraceae and a new genus Nothopucciniastrum to accommodate these ten species which are herein treated as new combinations. Results further emphasised the importance of uredinial morphologies for familial delimitation.
Family: Pucciniastraceae Gäum. Ex Leppik, Ann. Bot. Fenn. 9: 139. 1972, emend. P. Zhao and L. Cai
Type genus
Pucciniastrum G.H. Otth (1861).
Type species
Pucciniastrum epilobii (Pers.) G.H. Otth, Mitt. Naturf. Ges. Bern 469–496: 72. 1861.
Genera included in this family. Melampsorella and Pucciniastrum.
Spermogonia Group I (type 2 and 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, or Milesia-type, with well-developed peridia, aeciospores borne singly on pedicels, verrucose. Uredinia Milesia-type, without ostiolar cells, urediniospores borne singly, verrucose. Telia subepidermal or intraepidermal, not erumpent, consisting of laterally adherent teliospores one spore deep, teliospores sessile, aseptate or ultiseptated, with vertical septa. Basidia external.
Notes – With the segregation of Coleopuccinia, Hyalopsora, Melampsoridium silesia, Naohidemyces, Quasipucciniastrum, Thekopsora, Uredinopsis from Pucciniastraceae, we herein redefine the Pucciniastraceae with a narrower concept which include genera Melampsorella and Pucciniastrum. Pucciniastraceae is distinctive from the rest families by the absence of ostiolar cells in Milesia-type uredinia (Figure 1).
Family: Thekopsoraceae P. Zhao and L. Cai, fam. nov. – MycoBank MB842415
Etymology
Name derived from the type genus, Thekopsora.
Type genus
Thekopsora Magnus, Hedwigia 14: 123. 1875.
Type species
Thekopsora areolata (Fr.) Magnus, Sber. Gesellschaft Naturf. Freunde Berlin: 58. 1875.
Genera included in this family. Thekopsora.
Spermogonia Group I (type 2 and 3), subepidermal or subcuticular, determinate, with flat hymenia, bounding structures lacking. Aecia Peridermium-type, or Milesia-type, with well-developed peridia, aeciospores borne singly on pedicels, verrucose. Uredinia Milesia-type, with well-developed ostiolar cells with apparent spines, urediniospores borne singly, verrucose. Telia intraepidermal, not erumpent, consisting of laterally adherent teliospores one spore deep, teliospores sessile, aseptate or multiseptated, with vertical septa. Basidia external.
Notes – The Thekopsora clade, including the type of the genus, Thekopsora areolata, was phylogenetically close to Cronartium but distinct from Pucciniastrum species (Figure 1), in agreement with Aime et al. (2018). In morphology, it resembles Coleopuccinia, Hylospora, Melampsoridium, and Pucciniastrum, but differs from these genera in the aecia, uredinia and telia (Figure 1; Yang 2015). It also differs from the phylogenetically allied family Cronartiaceae in the structures of spermogonia, uredinia and telia. Thus, a new family Thekopsoraceae is proposed to accommodate the genus Thekopsora.
Discussion
Phylogenetic reappraisal of rust families and genera
To date, more than 7 800 rust species have been described in 289 genera in Pucciniales (Laundon 1965; Kirk et al. 2008). Cummins and Hiratsuka (2003) in their monograph “Illustrated Genera of Rust Fungi” included 120 holomorphic genera and 13 asexual typified genera, in which most genera are traditionally morphologically defined. At the family level, since the first system proposed by Dietel (1897), different mycologists have classified 289 recognised genera into 2–14 families mainly based on morphological characters in spermogonia and teliospores (Arthur 1907, 1934; Kuprevich and Tranzschel 1957; Wilson and Henderson 1966; Azbukina 1972; Cummins and Hiratsuka 1984; Buriticá 1991; Hiratsuka et al. 1992; Cummins and Hiratsuka 2003). Although urediniologists have generally accepted Cummins and Hiratsuka (2003)’s taxonomy system, subsequent studies have found numerous inconsistencies between this system and the molecular phylogeny (Wingfield et al. 2004; Aime 2006; Aime et al. 2018; Zhao et al. 2020). A definite family level resolution has not been obtained due to the lack of a comprehensive molecular phylogenetic study within the order Pucciniales. In our previous studies on the whole order, we proposed four new families based on extensive phylogenetic and morphological comparisons, and also recognised inconsistencies between morphologically-defined families in Melampsorineae suborder and their molecular phylogenetic relationships (Zhao et al. 2020, 2021). Thus, we conducted phylogenetic studies of 16 genera in the Melampsorineae suborder, and confirmed boundaries at the familial and generic level. Traditional morphology-defined families such as Coleosporiaceae, Chrysomyxaceae, and Melampsoraceae have been shown to be monophyletic with the core of species around the type (Figure 1). Pucciniastraceae has been found to be polyphyletic and its traditional members scattered in numerous discrete lineages. This family has been redefined by emphasising the importance of traditional taxonomic criteria used by Cummins and Hiratsuka (2003) and Aime and McTaggart (2021). In this study, we further emphasised several newly recognised criteria for familial delineation, i.e. the structures of uredinia and telia, including the colour of urediniospores, the existence of peridia in uredinia and telia, the existence of ostiolar cells in uredinia and their ornamentations. Our phylogenetic studies further emphasised that morphologies throughout their life cycles, especially the uredinial and aecial morphologies, are of great diagnostic value in delineating at the familial and generic level.
Importance of applying early diverged characters in higher rank taxonomy
Hitherto, classification of the rust fungi at species, generic and family levels relies on morphological features of different spores and spore-producing structures in different stages throughout the life cycles. Spore morphologies, such as basidiospores, spermatia, aeciospores, urediniospores and teliospores, as well as spore-producing structures like basidia, spermogonia, aecia, uredinia and telia, were hitherto not seriously investigated to see if they are phylogenetically significant at particular taxonomic levels.
Our previous and current studies on the phylogeny of Pucciniales, particularly those in the Melampsorineae, have revealed that morphological characters, especially spore-producing structures throughout the whole life cycle, such as basidia spermogonia, aecia, uredinia and telia, were phylogenetically more informative at higher taxonomic ranks (family level). By contrast, spore morphologies such as basidiospores, spermatia, aeciospores, urediniospores and teliospores, were phylogenetically more informative at lower taxonomic rank (species level) (Tian et al. 2004; Crane et al. 2005; Feau et al. 2009, Beenken 2014, 2017; Zhao et al. 2015, 2017). These spore-producing structures represent early diverged morphological characters, while spore morphologies have already been proved to be recently diverged characters by our continuous investigations (Figure 1; Zhao et al. 2020, 2021). Our findings were further supported by the successive evolutionary process of rust fungi, because the structures of basidia, spermogonia, aecia, uredinia and telia might be directly influenced at early adaptation stages of rust fungi when they shifted from ferns to conifers and angiosperms (Leppik 1965). Based on these findings, taxonomic significance of morphological features in different spore stages throughout the whole life cycle in the rust fungi is proposed as shown in Figure 4. It is quite obvious that the polyphylies of many traditionally defined genera and families were resulted from the inappropriate use of recently diverged characters (particularly morphology of teliospores) at higher level taxonomy, and the use of the early diverged characters at lower-level taxonomy. Apparently these recently diverged characters have evolved more than once in different lineages during the evolutionary process.
Among the early diverged characters, the structures of spermogonia and telia have long been employed for classification at the family level, but the structures of aecia and uredinia have long been overlooked at higher taxonomic ranks (Hiratsuka and Cummins 1963; Hiratsuka and Hiratsuka 1980; Cummins and Hiratsuka 1983, 2003). Our studies indicated the importance of aecia and uredinia morphology for higher level classification, especially differences in spore ontogeny, hymenium shape, position in host tissues, presence of intercalary cells and paraphyses. Until now, fourteen different morphological types in aecial and uredinial structure have been recognised (Kenny 1970; Sato and Sato 1985). These morphological variations appear to be very useful criteria at family and generic level taxonomy in rust fungi.
Acknowledgements
We express our gratitude to curators in CUP, FLAS, HMAS, HKAS, ISC, MICH, NYBG, NYS, TSH and UBC for providing specimens for our taxonomic studies.
Funding Statement
This work was financially supported by the National Nature Science Foundation of China [31725001 and 31670017], and Biological Resources Programme, Chinese Academy of Sciences [KFJ-BRP-009].
Disclosure statement
No potential conflict of interest was reported by the author(s).
References
- Abbasi M. AimeMC, EamvijarnA, CreswellTC, Ruhl GE, Wright S.. 2017. First report of Cronartium rust disease on chinquapin oak. Plant Dis. Doi: 10.1094/PDIS-05-16-0757-PDN [DOI] [Google Scholar]
- Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begerow D, Sampaio JP, et al. 2006. An overview of the higher-level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia. 98:896–905. doi: 10.1080/15572536.2006.11832619. [DOI] [PubMed] [Google Scholar]
- Aime MC. 2006. Toward resolving family-level relationships in rust fungi. Uredinales. Mycoscience. 47:112–122. doi: 10.1007/S10267-006-0281-0. [DOI] [Google Scholar]
- Aime MC, Bell CD, Wilson AW. 2018. Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Stud Mycol. 89:143–152. doi: 10.1016/j.simyco.2018.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aime MC, McTaggart AR. 2021. A higher-rank classification for rust fungi, with notes on genera. Fungal Syst Evol. 7:21–47. doi: 10.3114/fuse.2021.07.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ali B, Sohail Y, Toome-Heller M, Mumtaz AS. 2016. Melampsora pakistanica sp. nov., a new rust fungus on Euphorbia helioscopia (Sun spurge) from Pakistan. Mycol Pro. 15:1285–1292. doi: 10.1007/s11557-016-1244-2. [DOI] [Google Scholar]
- Arthur JC. 1907. New genera of Uredinales. J Mycol. 13:28–32. doi: 10.2307/3752462. [DOI] [Google Scholar]
- Arthur JC. 1933. New genera and species of Uredinales. Bull Torrey Bot Club. 60:475–476. doi: 10.2307/2480584. [DOI] [Google Scholar]
- Arthur JC. 1934. Manual of the rusts in United States and Canada. Lafayette (Indiana): Purdue Research Foundation. [Google Scholar]
- Azbukina Z. 1972. Rust fungi of Far East. Lec. Komarovianae. Komarov Read. Vladivost. 19:15–62. [Google Scholar]
- Beenken L, Zoller S, Berndt R. 2012. Rust fungi on Annonaceae II: the genus Dasyspora Berk. and M. A. Curtis. Mycologia. 104:659–681. doi: 10.3852/11-068. [DOI] [PubMed] [Google Scholar]
- Beenken L. 2014. Pucciniales on Annona (Annonaceae), with special focus on the genus Phakopsora. Mycol Prog. 13:791–809. [Google Scholar]
- Beenken L, Wood W. 2015. Puccorchidium and Sphenorchidium, two new genera of Pucciniales on Annonaceae related to Puccinia psidii and the genus Dasyspora. Mycol Prog. 14:49. doi: 10.1007/s11557-015-1073-8. [DOI] [Google Scholar]
- Beenken L 2017. Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa. 1:53–61. [Google Scholar]
- Beenken L. 2017. Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa. 1: 53–61. [Google Scholar]
- Bubner B, Buchheit R, Friedrich F, Kummer V, Scholler M. 2019. Species identification of European forest pathogens of the genus Milesina (Pucciniales) using urediniospore morphology and molecular barcoding including M. woodwardiana sp. nov. Mycokeys. 48:1–40. doi: 10.3897/mycokeys.48.30350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busby PE, Aime MC, Newcombe G.. 2012. Foliar pathogens of Populus angustifolia are consistent with a hypothesis of Beringian migration into North America. Fungal Biol. 116 (7): 792–801. [DOI] [PubMed] [Google Scholar]
- Buriticá CP. 1991. Familias del orden Uredinales con ciclo de vida completamente reducido. Rev Acad Colombiana Ciencias Exactas Físicas Naturales. 18:131–148. [Google Scholar]
- Cao J, Tian CM, Liang YM, You CJ. 2017. A new rust species of Diaphanopellis on Rhododendron oreodoxa from Southern China. Phytotaxa. 309:55–65. doi: 10.11646/phytotaxa.309.1.5. [DOI] [Google Scholar]
- Cao B, Tao SQ, Tian CM, Liang YM. 2018. Coleopuccinia in China and its relationship to Gymnosporangium. Phytotaxa. 347:235–242. doi: 10.11646/phytotaxa.347.3.4. [DOI] [Google Scholar]
- Crane PE, Yamaoka Y, Engkhaninum J, Kakishima M. 2005. Caeoma tsukubaense n. sp., a rhododendron rust fungus of Japan and southern Asia, and its relationship to Chrysomyxa rhododendri. Mycoscience. 46:143–147. doi: 10.1007/S10267-004-0228-2. [DOI] [Google Scholar]
- Cummins GB 1971. The rust fungi of cereals, grasses, and bamboos. New York, USA: Springer. [Google Scholar]
- Cummins GB, Hiratsuka Y. 1983. Illustrated genera of rust fungi. 2nd ed. St Paul (Minnesota): American Phytopathological Society Press. [Google Scholar]
- Cummins GB, Hiratsuka Y. 2003. Illustrated genera of rust fungi. 3rd ed. St Paul (Minnesota): American Phytopathological Society Press. [Google Scholar]
- Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietel P. 1897. Uredinales. In: Engler A, Prantl K, editors. Die Natürlichen Pflanzenfamilien. Vol. I. Leipzig (Germany): Engelmann; p. 24–81. [Google Scholar]
- Dietel P, Neger FW. 1900. Uredinaceae chilensis III. Botanische Jahrbücher Systematik Pflanzengeschichte Pflanzengeographie. 27:1–16. [Google Scholar]
- Dietel P. 1928. Uredinales. In: Engler A, Prantl K, editors. Die Natürlichen Pflanzenfamilien. Vol. II. Leipzig (Germany): Engelmann; p. 24–98. [Google Scholar]
- Feau N, Vialle A, Allaire M, Tanguay P, Joly DL, Frey P, Callan BE, Hamelin RC. 2009. Fungal pathogen mis-identifications: a case study with DNA barcodes on Melampsora rusts of aspen and white poplar. Mycol Res. 113:713–724. doi: 10.1016/j.mycres.2009.02.007. [DOI] [PubMed] [Google Scholar]
- Feau N, Vialle A, Allaire M, Maier M, Hamelin RC. 2011. DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia. 103:1250–1266. doi: 10.3852/10-426. [DOI] [PubMed] [Google Scholar]
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95–98. [Google Scholar]
- He MQ, et al. 2019. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 99:105–367. [Google Scholar]
- Hibbett D, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res. 111:509–547. doi: 10.1016/j.mycres.2007.03.004. [DOI] [PubMed] [Google Scholar]
- Hiratsuka N 1955. Uredinological studies. Tokyo, Japan: Kasai Publishing Co. [Google Scholar]
- Hiratsuka Y, Cummins GB. 1963. Morphology of the spermogonia of the rust fungi. Mycologia. 55:487–507. [Google Scholar]
- Hiratsuka N, Sato S. 1982. Morphology and taxonomy of rust fungi. In: Scott K, Chakravorty A, editors. The Rust Fungi. New York, USA: Academic Press; pp. 1–36. [Google Scholar]
- Hiratsuka N, Sato S, Katsuya K, et al. 1992. The rust flora of Japan. Tsukuba Shuppankai, Tsukuba, Japan. [Google Scholar]
- Hietala AM, Solheim H, Fossdal CG.. Real-time PCR-based monitoring of DNA pools in the tri-trophic interaction between Norway spruce, the rust Thekopsora areolata, and an opportunistic ascomycetous Phomopsis sp. Phytopathology. 98(1): 51–58. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck JP, Ronquist F. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics. 17:754–755. [DOI] [PubMed] [Google Scholar]
- Kaitera J, Tillman-Sutela E, Kauppi A. 2010. Chrysomyxa ledi, a new rust fungus sporulating in cone scales of Picea abies in Finland. Scand J Forest Res. 26:202–207. doi: 10.1080/02827581.2010.488657. [DOI] [Google Scholar]
- Kaitera J, Hantul J, Nevalainen S. 2011. Distribution and frequency of Cronartium flaccidum on Melampyrum spp. in permanent sample plots in Finland. Scand J Forest Res. 26:413–420. doi: 10.1080/02827581.2011.579153. [DOI] [Google Scholar]
- Kaitera J, Hiltunen R, Hantula J.. 2015. Cronartium rust sporulation on hemiparasitic plants. Plant Pathol. 64: 738–747. [Google Scholar]
- Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. doi: 10.1093/bib/bbx108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenny MJ. 1970. Comparative morphology of the uredinia of the rust fungi [Ph.D. Dissertation]. Lafayette (Indiana): Purdue University. [Google Scholar]
- Kirk PM, Cannon PF, Minter DW, Stalpers J. 2008. Dictionary of the fungi. 10th ed. Wallingford (UK): CABI [Google Scholar]
- Kuprevich VF, Tranzschel VG. 1957. Rust fungi. I. Family Melampsoraceae. In: Savich VP, editor. Cryptogamic plants of the USSR. Vol. 4. Komarova (Russia): Botanicheskogo Instituta; p. 1–518. [Google Scholar]
- Laundon GF. 1965. The generic names of Uredinales. Mycol Pap. 99:1–24. [Google Scholar]
- Leppik EE. 1965. Some viewpoints on the phylogeny of rust fungi. V. Evolution of biological specialization. Mycologia. 57:6–22. [Google Scholar]
- Leppik EE. 1972. Evolutionary specialization of rust fungi (Uredinales) on the Leguminosae. Ann Bot Fenn. 9:135–148. [Google Scholar]
- Lee JS, Lee CK, Choi YJ, Shin HD.. Pucciniastrum verruculosum causing rust disease on Aster tataricus in Korea. New Dis Rep. 44(1): e12036. [Google Scholar]
- Liang YM, Tian CM, Kakishima M. 2006. Phylogenetic relationships on 14 morphologically similar species of Pucciniastrum in Japan based on rDNA sequence data. Mycoscience. 47:137–144. doi: 10.1007/S10267-006-0284-X. [DOI] [Google Scholar]
- Liang YM. 2006. Taxonomic evaluation of morphologically similar species of Pucciniastrum in Japan based on comparative analyses of molecular phylogeny and morphology [Ph.D. thesis]. Tsukuba (Japan): University of Tsukuba. [Google Scholar]
- Maier W, Begerow D, Weiss M, Oberwinkler F. 2003. Phylogeny of the rust fungi: an approach using nuclear large subunit ribosomal DNA sequences. Can J Bot. 81:12–23. doi: 10.1139/b02-113. [DOI] [Google Scholar]
- Matheny PB, Gossmann JA, Zalar P, Arun Kumar TK, Hibbett DS. 2006. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Bot. 84:1794–1805. doi: 10.1139/b06-128. [DOI] [Google Scholar]
- McTaggart AR, Aime MC.. 2018. The species of Coleosporium (Pucciniales) on Solidago in North America. Fungal Biol. 122(8): 800—809. [DOI] [PubMed] [Google Scholar]
- McKenzie EHC, Padamsee M, Dick M.. 2013. First report of rust on Alnus in New Zealand is Melampsoridium betulinum, not M. hiratsukanum. Plant Pathol Quar. 3(2): 59–65. [Google Scholar]
- Ono Y, Buriticá P, Hennen JF. 1992. Delimitation of Phakopsora, Physopella and Cerotelium and their species on Leguminosae. Mycol Res. 96:825–850. [Google Scholar]
- Padamsee M, McKenzie EHC. 2014. A new species of rust fungus on the New Zealand endemic plant Myosotidium from the isolated Chatham Islands. Phytotaxa. 174:223–230. doi: 10.11646/phytotaxa.174.4.3. [DOI] [Google Scholar]
- Padamsee M, McKenzie EHC.. A new species of rust fungus on the New Zealand endemic plant, Myosotidium, from the isolated Chatham Islands . Phytotaxa. 174 (3), 223–230. [Google Scholar]
- Plowright CB 1889. A monograph of the British Uredineae and Ustilagineae, with an account of their biology including the methods of observing the germination of their spores and of their experimental culture. London, UK: Paul, Trench & Co. [Google Scholar]
- Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics. 14:817–818. [DOI] [PubMed] [Google Scholar]
- Qi XH, Cai L, Zhao P. 2019. Quasipucciniastrum agrimoniae, gen. et sp. nov. on Agrimonia (Rosaceae) from China. Mycology. 10(3):141–150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rebollar-Alviter A, Minnis AM, Dixon LJ, Castlebury LA, Ramirez-Mendoza MR, Silva-Rojas HV, Valdovinos-Ponce G.. 2011. First report of leaf rust of blueberry caused by Thekopsora minima in Mexico. Plant Dis. 95(6): 772. [DOI] [PubMed] [Google Scholar]
- Sato T, Sato S. 1985. Morphology of aecia of the rust fungi. Trans B Mycol Soc. 85:223–238. doi: 10.1016/S0007-1536(85)80185-6. [DOI] [Google Scholar]
- Savile DBO. 1976. Evolution of the rust fungi. Uredinales as reflected by their ecological problems. Evol Biol. 9:173–120. [Google Scholar]
- Schoch et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 109(16): 6241–6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22:2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
- Sydow P, Sydow H. 1915. Monographia Uredinearum. III: Melampsoraceae, Zaghouaniaceae, Coleosporiaceae. Leipzig (Berlin, Germany): Borntraeger. [Google Scholar]
- Tian CM, Shang YZ, Zhuang JY, Wang Q, Kakishima M. 2004. Morphological and molecular phylogenetic analysis of Melampsora species on poplars in China. Mycoscience. 45:56–66. doi: 10.1007/S10267-003-0150-Z. [DOI] [Google Scholar]
- Toome M, Aime MC.. 2014. Reassessment of rust fungi on weeping willows in the Americas and description of Melampsora ferrinii sp. nov. Plant Path. 64: 216–224. [Google Scholar]
- Vialle A, Feau N, Frey P, Bernier L, Hamelin RC. 2013. Phylogenetic species recognition reveals host-specific lineages among poplar rust fungi. Mol Phylogenet Evol. 66:628–644. doi: 10.1016/j.ympev.2012.10.021. [DOI] [PubMed] [Google Scholar]
- Vogler DR, Bruns TD. 1998. Phylogenetic relationships among the pine stem rust fungi (Cronartium and Peridermium spp.). Mycologia. 90:244–257. doi: 10.1080/00275514.1998.12026904. [DOI] [Google Scholar]
- Voglmayr H, Krisai-Greilhuber I, Kirisits T. 2020. First report of Coleosporium montanum on Symphyotrichum in Austria and Europe. New Dis Rep. 42:24–24. doi: 10.5197/j.2044-0588.2020.042.024. [DOI] [Google Scholar]
- Wang LL, Li KM, Liu Y, Tian CM. 2020. Melampsora salicis-michelsonii sp. nov. on Salix michelsonii and Melampsora salicis-cavaleriei on Salix serrulatifolia from China. Phytotaxa. 435:280–292. doi: 10.11646/phytotaxa.435.4.2. [DOI] [Google Scholar]
- Webster J, Weber RWS. 2007. Introduction to fungi. 3rd ed. Cambridge (UK): Cambridge University Press. [Google Scholar]
- Wilson M, Henderson DM. 1966. The British rust fungi. Cambridge (UK): Cambridge University Press. [Google Scholar]
- Wingfield BD, Ericson L, Szaro T, Burdor JJ. 2004. Phylogenetic patterns in the Uredinales. Australas Plant Pathol. 33:327–335. doi: 10.1071/AP04020. [DOI] [Google Scholar]
- Yang T. 2015. Phylogenetic and taxonomic studies of Pucciniastrum s.l [Ph.D. thesis]. Beijing (China): Beijing Forestry University. [Google Scholar]
- Yang T, Tian CM, Lu HY, Liang YM, Kakishima M. 2015. Two new rust fungi of Thekopsora on Cornus (Cornaceae) from western China. Mycoscience. 56:461–469. doi: 10.1016/j.myc.2015.02.001. [DOI] [Google Scholar]
- Zapata M. 2016. First report of Melampsora ferrinii causing willow leaf rust in Chile. New Dis Rep. 34:25–25. doi: 10.5197/j.2044-0588.2016.034.025. [DOI] [Google Scholar]
- Zhao P, Tian CM, Yao YJ, Wang Q, Kakishima M, Yamaoka Y. 2014. Melampsora salicis-sinicae (Melampsoraceae, Pucciniales), a new rust fungus found on willows in China. Mycoscience. 55:390–399. doi: 10.1016/j.myc.2013.12.005. [DOI] [Google Scholar]
- Zhao P, Wang QH, Tian CM, Yamaoka Y, Kakishima M, Papp T. 2015. Integrating a numerical taxonomic method and molecular phylogeny for species delimitation of Melampsora species. Melampsoraceae, Pucciniales on willows in China. PLoS One. 17:e0144883. doi: 10.1371/journal.pone.0144883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao P, Kakishima M, Wang Q, Cai L. 2016. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants. Sci Rep. 6:29339. doi: 10.1038/srep29339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao P, Kakishima M, Wang Q, Cai L. 2017. Resolving the Melampsora epitea complex. Mycologia. 109:391–407. doi: 10.1080/00275514.2017.1326791. [DOI] [PubMed] [Google Scholar]
- Zhao P, Qi XH, Crous PW, Duan WJ, Cai L. 2020. Gymnosporangium species on Malus: species delineation, diversity and host alternation. Persoonia. 45:68–100. doi: 10.3767/persoonia.2020.45.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao P, Zhang ZF, Hu DM, Phurbu D, Gafforov Y, Cai L, Gafforov Y, Cai L. 2021. Contribution to rust flora in China I, tremendous diversity from natural reserves and parks. Fungal Divers. 110:1–58. doi: 10.1007/s13225-021-00482-w. [DOI] [Google Scholar]
