Skip to main content
PLOS Digital Health logoLink to PLOS Digital Health
. 2022 Aug 15;1(8):e0000079. doi: 10.1371/journal.pdig.0000079

Artificial intelligence and machine learning in mobile apps for mental health: A scoping review

Madison Milne-Ives 1, Emma Selby 2, Becky Inkster 2,3, Ching Lam 4, Edward Meinert 1,5,6,*
Editor: Padmanesan Narasimhan7
PMCID: PMC9931284  PMID: 36812623

Abstract

Mental health conditions can have significant negative impacts on wellbeing and healthcare systems. Despite their high prevalence worldwide, there is still insufficient recognition and accessible treatments. Many mobile apps are available to the general population that aim to support mental health needs; however, there is limited evidence of their effectiveness. Mobile apps for mental health are beginning to incorporate artificial intelligence and there is a need for an overview of the state of the literature on these apps. The purpose of this scoping review is to provide an overview of the current research landscape and knowledge gaps regarding the use of artificial intelligence in mobile health apps for mental health. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) and Population, Intervention, Comparator, Outcome, and Study types (PICOS) frameworks were used to structure the review and the search. PubMed was systematically searched for randomised controlled trials and cohort studies published in English since 2014 that evaluate artificial intelligence- or machine learning-enabled mobile apps for mental health support. Two reviewers collaboratively screened references (MMI and EM), selected studies for inclusion based on the eligibility criteria and extracted the data (MMI and CL), which were synthesised in a descriptive analysis. 1,022 studies were identified in the initial search and 4 were included in the final review. The mobile apps investigated incorporated different artificial intelligence and machine learning techniques for a variety of purposes (risk prediction, classification, and personalisation) and aimed to address a wide range of mental health needs (depression, stress, and suicide risk). The studies’ characteristics also varied in terms of methods, sample size, and study duration. Overall, the studies demonstrated the feasibility of using artificial intelligence to support mental health apps, but the early stages of the research and weaknesses in the study designs highlight the need for more research into artificial intelligence- and machine learning-enabled mental health apps and stronger evidence of their effectiveness. This research is essential and urgent, considering the easy availability of these apps to a large population.

Author summary

Mental health concerns are a large burden for individuals, healthcare systems, and the economy. Although mental health concerns affect a lot of people, many find it difficult to access appropriate support. Mobile health apps are one potential way to address long wait times and a lack of mental health resources. With this review, we wanted to provide an overview of mobile health apps that are using artificial intelligence (AI) to provide some type of mental health support and to identify areas where more research is needed. We found 17 studies that evaluated an AI mental health app. There were many different uses of AI in the apps, including to provide conversational support to users, to predict moods, and to do risk assessments. However, the research was still in early stages; most of the studies had small numbers of participants and there is a need for more high-quality studies to evaluate whether the apps have significant benefits for users. This information that we have gathered will help guide the development of future studies and AI mental health apps.

Introduction

Background

Mental health conditions, such as anxiety and depression, can have significant negative impacts on a range of mental and physical wellbeing, social, and employment outcomes [1,2]. People with severe, long-term mental illness have an average of 15 years shorter life expectancies than the general population [3]. Worldwide, there is a high prevalence of mental health issues and conditions [4]; in the UK, approximately a quarter of the population is seeking mental health treatment [5]. Despite this, it is estimated that 75% of people who need mental health support do not receive it, resulting in costs to the UK economy of approximately £100 billion annually [3,6]. Globally, this cost exceeds US$1 trillion each year [7]. There is a clear need for improved means of identifying and supporting mental health conditions among the general population.

Rationale

Many mobile health apps have been developed and made available to the public to try and address this need [8]. Several systematic reviews have recently been published focusing on various aspects and outcomes of mental health apps [813]. Most of these systematic reviews found methodological issues (such as a lack of control or comparison groups or representative samples, and a high risk of bias) [9,10] and insufficient evidence of effectiveness of mental health apps for changing behaviours or improving clinical outcomes [9,11,13]. However, one meta-analysis of randomised controlled trials found a significant difference between app interventions and control conditions (but not face-to-face or computer interventions) on certain outcomes [12]. A recent review of meta-analyses also found evidence for small to medium effects of apps on quality of life and stress [8]. This suggests that there is potential for mobile apps to support mental health, although there is a need for further, high-quality research to provide evidence of effectiveness. Following standardised guidelines for study design and reporting (such as the CONSORT statement [14] and CONSORT-EHEALTH extension [15]) would improve the quality of evidence available and help determine in what contexts mental health apps could provide benefits.

Despite this need for more rigorous evaluation, mobile apps for mental health are widely available to the general public and new ones are being designed to include innovative technologies. A number of mobile apps for mental health are available in app stores that have incorporated artificial intelligence (AI) and machine learning (ML) technologies into their service [1618]. AI refers to the simulation of human intelligence in machines whereas ML allows machines to learn from data without being explicitly programmed [19]. AI/ML techniques have been widely applied in healthcare to generate insights from massive amounts of data [2022] and are increasingly being incorporated in mobile health apps [23].

None of the systematic reviews that were identified examined evidence for the use of AI in mobile apps for mental health. A search of PROSPERO for registered reviews using the keywords “mental health apps” AND “AI OR artificial intelligence OR machine learning OR chatbot” also found no records. Given the increasing use of artificial intelligence in mobile health apps, a scoping review is needed to provide an overview of the state of the literature and to summarise the strengths and weaknesses of the existing research [24]. An overview of the state of research on AI/ML-enabled mental health apps will help to inform directions for future research and provide an initial assessment of the potential of these apps.

Objectives and research questions

The primary objective of the scoping review was to assess and summarize the current state of the literature on the use of AI/ML in mobile apps for mental health. Two research questions were defined to guide the review:

  1. How are artificial intelligence and machine learning techniques incorporated into mobile apps for mental health?

  2. What are the strengths and weaknesses of the research being conducted in this field?

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR; S1 Appendix) [25] was used to structure the review. The search strategy was developed using the Population, Intervention, Comparator, Outcome, and Study types (PICOS) framework (see Table 1). No separate protocol has been published.

Table 1. PICOS framework.

Population Participants of any age with a mental health condition or who want to improve or maintain their mental health
Intervention Mobile apps using artificial intelligence (AI) or machine learning (ML) techniques to address issues relating to mental health
Comparator No comparator was required
Outcome The primary outcome was the evidence for AI-enabled mobile health apps to achieve their mental health support aims. Secondary outcomes included the strengths and weaknesses of the apps and studies.
Study types Studies (including interventional, observational, and validation studies) that evaluate at least one mobile health app that uses AI to provide mental health support.

A preliminary review of the literature was used to identify relevant MeSH terms and keywords for the search. These terms were grouped into three themes and were searched using the following search string structure: mobile applications (MeSH OR Keywords) AND mental health (MeSH OR Keywords) AND artificial intelligence (MeSH OR Keywords) (Table 2). PubMed was searched on 1 March 2021. S2 Appendix provides a list of the final search string and the number of results returned.

Table 2. Search string.

Category MeSH Keywords (in title or abstract)
Mobile Applications Cell Phone OR Telemedicine OR Mobile Applications Smartphone OR mobile phone OR mHealth OR mobile health OR “app” OR “apps” OR app-based OR mobile OR mobile application OR mobile-based OR phone-based OR smartphone-based OR medical informatics application OR tablet OR iPhone OR android OR iPad
Mental Health Mental Health OR Mental Health Services OR Mental Disorders OR Depression OR Anxiety Disorders OR Stress, Psychological OR Affect OR Mood Disorders OR Cognitive Behavioral Therapy OR Mental Health Recovery Mental health OR well-being OR wellbeing OR mental illness* OR mental disorder* OR psychological health OR stress OR anxiety OR depression OR mood OR emotion OR mental OR wellness OR distress OR affective disorder* OR psychotic disorder* OR psychiatric disorder* OR depressive OR panic OR psycho* OR trauma* OR insomnia OR sleep problem OR sleep disorder OR self-harm OR suicid* OR cognitive behavioural therapy OR cognitive behavioral therapy OR CBT OR mental health treatment* OR mental health assessment* OR therap* OR mental health service* OR psychotherapy
Artificial Intelligence / Machine Learning Artificial Intelligence OR Natural Language Processing OR Machine Learning Artificial intelligence OR AI OR conversational agent* OR chatbot OR chat bot OR machine intelligence OR intelligent support OR machine learning OR automated support OR intelligent agent* OR expert system OR neural network OR natural language processing OR algorithm OR deep learning

Inclusion criteria

The review included studies that evaluated AI/ML-enabled mobile apps that aim to provide any type of mental health support. ‘Support’ was not limited to treatment—apps aiming to identify risk, provide a means of monitoring risk factors or symptoms, or deliver education or therapeutic interventions were all eligible for inclusion. Participants of any age (children and adults) were eligible for inclusion. Any type of interventional, observational, or validation study design was eligible for inclusion as long as the study evaluated the mobile health app in question.

As the definition of mental health can be very broad, all studies of mobile apps that aimed to provide support for any mental health-related conditions or to improve well-being were included, except for substance abuse interventions. Although substance abuse disorders often co-exist with mental health conditions, mobile app interventions for substance abuse have specific aims of reducing use and were considered outside the general scope of this review [26]. Studies published since 2014 were included, because this marks the early stages of the introduction of artificial intelligence into smartphone apps. Between 2010–2014, Apple, Microsoft, Amazon, and Google all introduced AI-based voice assistants into phones and other Internet-of-Things devices [27]. Preliminary searches of PubMed also identified a significant increase in the number of retrieved publications starting in 2014, supporting the decision to use 2014 as the date cut-off.

Exclusion criteria

Studies that did not evaluate a specific mobile health app with a primary focus on providing mental health support (e.g. protocols, reviews, meta-analyses, perspectives, descriptions of design or development) were excluded. Studies of mobile apps without an artificial intelligence or machine learning component were excluded from the analysis, as were mobile health apps designed as substance abuse interventions.

Screening and article selection

The citation management software EndNote X9 was used to store the references and remove duplicates. As a large number of references were identified in the initial search, the EndNote X9 search function was used to screen them based on keywords from the search strategy (see S3 Appendix) before they were manually screened. The remaining titles and abstracts were screened by two reviewers (MMI and EM) and a full-text review was conducted by two authors to determine final eligibility (MMI and CL). The review was updated after a second screening of the retrieved studies to ensure that all of the relevant papers were included.

Data extraction

One reviewer examined the studies to extract key data (see Table 3). The data extraction table was developed based on the research questions and the PICOS framework.

Table 3. Article information and data extraction.

Article information Data to be extracted
General study information
Year of publication
Sample size
Study type
Age of participants
Digital technology
Mental health aspect supported by app
Use of artificial intelligence in app
Evaluation
Main findings
Strengths of the study
Weaknesses of the study

Data analysis and synthesis

A descriptive analysis of the data extracted from the studies was conducted and summarised to provide a scoping overview of the state of the literature and the strengths and weaknesses of research about artificially-enabled mental health support apps. Data analysis was conducted collaboratively by two researchers (MMI and CL) to apply their different areas of expertise to the extraction and interpretation of the data. Implications of the findings for future research and limitations of the review are examined in the discussion; however, in accordance with accepted standards for scoping reviews, the methodological quality and risk of bias of the studies are not examined [25]. As the aim of the review was to provide an overview of how AI and ML are being incorporated into mobile apps for mental health support, a critical appraisal of the quality of the studies describing these technologies was not considered to be within the scope of this review.

Results

Included studies

The search of PubMed retrieved 1,228 articles (see S2 Appendix). After duplicates (n = 206) were removed using EndNote X9, 1,022 articles were screened using EndNote’s keyword search. 14 articles remained after 6 rounds of screening (see S3 Appendix) and 4 articles were determined to be eligible for final inclusion upon title/abstract and full-text review. A second screening was conducted with revised keyword searches and identified 17 articles for full text review (see S3 Appendix); 2 were already included, and 13 were determined to be eligible for inclusion, resulting in a total of 17 articles included in the final review (see Fig 1).

Fig 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

Fig 1

Study characteristics

There were a large variety of study types among the 17 studies, including pilot randomised controlled trials (RCTs) [2830], observational studies [3135], model evaluations [36,37], and a qualitative study [38].

The sample sizes included in the studies ranged from 6 [39] to 354 [40], but the number analysed was often lower than the recruited sample. 12 of the 17 included studies had sample sizes smaller than 100 [2831,3335,3739,41,42]. All of the studies focused on adults.

App characteristics

The apps evaluated by the studies in this review had a range of uses of artificial intelligence. The most common uses of artificial intelligence in the mental health apps were prediction (of mood, stress, and risk) (8/17 studies) [3137,41] and natural language conversations to deliver mental health support (6/17 studies) [29,30,38,40,42,43]. In other studies, AI/ML was used to provide diagnostic decision support [39] or to personalise aspects of the app such as notification delivery [28] and recommended interventions [44].

The apps also addressed diverse mental health challenges. 6 of the 17 studies focused on depression [29,31,36,40,42,44], 3 studies each focused on predicting mood in people with mood disorders [34,35,37], predicting or helping manage stress [28,32,33], or general well-being support [30,38,43], one aimed to identify suicide risk in inpatients [41], and one provided diagnostic support from a broad spectrum of mental disorders [39].

Sensors and data collection

The three main types of data collection via apps were passive phone-based sensors, active user input, and data from connected wearables (Table 4). The most common type of data collection was self-reported data about the users’ mood or stress levels (12/17 studies).

Table 4. Sensors and data collected in included studies.

Sensor Data collected 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Phone-based (Passive) GPS Location
Accelerometer Movement/ step count
Clock Time of day
Ambient light sensor Amount of light in background
Phone activity App use data
Data usage
Wifi
Number of messages sent/received
Screen on/off timings
Number of calendar events
Average call duration
Time of phone use
Call logs
App (Active) User self-documented Journal
Mood / stress
Reminders
Safety plan steps
Wearable Accelerometer Movement/ step count
Sleep tracker Minute-level sleep data
Electrodermal Skin temperature / conductivity
Heart rate monitor Heart rate data
Ambient light sensor Brightness
Public archives Historical records Daylight time
Temperature
Precipitation

ML algorithms

Classification algorithms learn the patterns in input training data to predict the likelihood that subsequent data will fall into one of the predetermined categories [45]. The most common classification algorithm used in the included studies was a Random Forest classifier (5/17 studies, see Table 5). It is used for feature selection [41], risk-stratification of diabetic patients based on symptoms of depression [31], inferring context for depression level prediction [44], and predicting mood [34,35]. 5 of the 17 studies did not specify what machine learning algorithm was used and are thus not included in Table 5 [3840,42,43].

Table 5. Machine learning algorithms used in included studies.

Problem ML algorithm 24 25 26 27 28 29 30 31 32 33 37 40
Classification Random Forest
Naïve Bayesian classifier
Least absolute shrinkage and selection operator (LASSO)
Support Vector Machine (SVM)
K-nearest neighbours
Decision tree
Neural network techniques
Regression Hierarchical Bayesian linear regression
Boosting Adaptive boosting
Extreme gradient boosting
Scalable tree boosting
Dimensionality reduction Principal component analysis

Boosting algorithms are primarily used to reduce bias by iteratively learning weak classifiers and adding them to a final strong classifier to improve the model predictions of any given learning algorithm [46]. Only 2 out of the 17 studies reported used boosting algorithms [31,37].

Only one of the studies used a dimension reduction technique to reduce the number of features (e.g. sleep data, journal entries, mood) in order to aid further classification and improve classification reliability [41].

Study findings

The majority of the studies demonstrated feasibility of their AI/ML-enabled mental health solution. Although generally positive, the evidence gathered by the studies was preliminary. Many of the studies successfully modelled data collected by the app or associated inputs to identify behaviours or responses associated with mental health conditions [44], provide natural language support [29,30,38,40,42,43], develop risk profiles [3137,41], and deploy context-sensitive notifications [28] or interventions [44].

The evidence of the impact of these apps on mental health was more limited. 7 of the 17 studies evaluated mental health as an outcome (rather than a model input) [29,30,35,38,4244]. Two studies only reported user experiences; both found generally positive perceptions of the app in question [38,42]. Of the others, two found significant differences between app and control groups: one found a significant reduction in depression, but not anxiety, in the app group (Woebot) compared to the control group [29] and one found a significant reduction in amount and time of depressive, manic or hypomanic, and mood episodes in the app group (Circadian Rhythm for Mood) than the control group [35]. The three remaining studies observed differences associated with level of engagement: one observed a significant decrease in symptoms of depression, but only in a small subset of users who had high and prolonged adherence to the app [44], one found significant effects on well-being and stress in participants who adhered to the intervention [30], and one found higher mean improvement of mood in the high users compared to lower users [43]. This demonstrates the potential benefit of this approach, but identifies the importance of maintaining user engagement with the intervention for any potential mental health benefits.

The studies all recognized the need for further research, highlighting the early stage of the state of the literature. One study using AI/ML to send context-specific notifications found no difference between the ‘intelligent’ notifications and non-intelligent notifications [28]. This demonstrates the importance of rigorously evaluating the effectiveness of the use of AI/ML for specific purposes and intended outcomes.

Discussion

Summary of findings

Of the large number of mobile health apps for mental health [8], many apps—with high ratings and large numbers of downloads—have begun to incorporate artificial intelligence [1618]. This review shows the diversity and feasibility of the use of artificial intelligence to support mental health care in a variety of different ways. However, it also demonstrates that, so far, there is limited research that can provide evidence of the effectiveness of these apps. Only three randomised controlled trials of an AI-enabled mental health app were identified in this review [2830] and all of them were small-scale pilot RCTs, despite the availability of several highly-used AI-enabled mental health apps on the Apple App Store and Google Play (e.g. Woebot, Reflectly, Wysa, Youper). This review identifies the strengths and weaknesses in this field and highlights the need for high-quality, rigorous investigation of the AI-enabled mental health apps that are currently available and being used as well as those in development.

Strengths of AI/ML in apps

Several strengths of using AI in mental health apps were identified from these studies. Mobile devices can collect active data from participants and capture passive sensing data, providing a rich body of information for analysis and to tailor the provision of support. This application of AI/ML in real world situations provides significant data for modelling. All of the studies reviewed used data collected via mobile devices to inform AI models—for natural language analysis and output [29,30,38,40,42,43], risk stratification and prediction [31,41] or for personalising the user’s app experience [28,44]. They provided an initial demonstration of the feasibility of using AI for a wide variety of purposes to support mental health identification, risk assessment, and treatment.

Weaknesses of AI/ML app studies

Although the studies demonstrated feasibility and potential for the use of AI in mental health apps, they had a number of significant limitations. The sample sizes of the studies were relatively low, ranging from 6 [39] to 354 [40], with the latter being a retrospective descriptive study of real-world users, not recruited participants. The study duration was another weakness for several of the studies; of the 12 studies that included an intervention period, only 3 (25%) had intervention periods longer than 1 year [3335]. 5 of the 12 studies (42%) had a duration of less than one month [29,30,32,41,42].

Limitations

The main limitation of this review is that only one database was searched to identify studies for inclusion, meaning that potentially relevant studies could have been overlooked. Another limitation is that the review was not conducted by two independent reviewers. Although two reviewers collaborated on the screening and data analysis, and the PRISMA-ScR framework was used to guide the structure of the review and ensure the necessary components were addressed, there was a lack of independent validation of the screening and analysis that would have strengthened the review.

Conclusion and future research

The purpose of this scoping review was to examine and provide an overview of the state of the research about AI-enabled mobile apps for mental health. A large body of research was initially identified, but the number of randomised control trials evaluating AI/ML technologies incorporated in mental health apps was limited. The studies included in the review demonstrated the potential feasibility of incorporating AI/ML into mental health apps as well as the variety of applications of AI/ML in mental health care to provide support to individuals and an overburdened healthcare system. However, the review demonstrates a clear need for more high-quality randomised controlled trials of these apps, to evaluate whether they are actually achieving their intended purposes and providing a benefit to users. This evidence will enable more effective apps to be recommended to the public and will further demonstrate the potential of AI/ML-enabled apps to support the identification of mental health conditions and risk assessments.

Supporting information

S1 Appendix. PRISMA-ScR Checklist.

(DOCX)

S2 Appendix. Search String.

(DOCX)

S3 Appendix. Endnote search criteria.

(DOCX)

S4 Appendix. Data Extraction (first screening).

(DOCX)

S5 Appendix. Data Extraction (second screening).

(XLSX)

Data Availability

All data used in this scoping review was extracted from previously published papers and cited in the text and reference list.

Funding Statement

This research was funded by the NIHR Artificial Intelligence in Health and Care Award (grant reference number: AI_AWARD02176). The views expressed in the paper belong to the authors and not necessarily those of NIHR, the University of Plymouth, or Wysa Ltd. The funding bodies were not involved in the study design, data collection or analysis, or the writing and decision to submit the article for publication.

References

  • 1.The Improving Access to Psychological Therapies (IAPT) Pathway for People with Long-term Physical Health Conditions and Medically Unexplained Symptoms. NHS England; 2018.
  • 2.Naylor C, Parsonage M, McDaid D, Knapp M, Fossey M, Galea A. Long-term conditions and mental health: The cost of co-morbidities. The King’s Fund; 2012. [Google Scholar]
  • 3.The Five Year Forward View for Mental Health. The Mental Health Taskforce; 2016. [Google Scholar]
  • 4.Mental disorders. World Health Organisation n.d. https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed March 24, 2021).
  • 5.Adult Psychiatric Morbidity Survey: Survey of Mental Health and Wellbeing, England, 2014. NHS Digital 2016. https://digital.nhs.uk/data-and-information/publications/statistical/adult-psychiatric-morbidity-survey/adult-psychiatric-morbidity-survey-survey-of-mental-health-and-wellbeing-england-2014 (accessed March 24, 2021).
  • 6.Alonso J, Liu Z, Evans-Lacko S, Sadikova E, Sampson N, Chatterji S, et al. Treatment gap for anxiety disorders is global: Results of the World Mental Health Surveys in 21 countries. Depress Anxiety 2018;35:195–208. doi: 10.1002/da.22711 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mental health in the workplace. World Health Organisation n.d. https://www.who.int/teams/mental-health-and-substance-use/mental-health-in-the-workplace (accessed March 24, 2021).
  • 8.Lecomte T, Potvin S, Corbière M, Guay S, Samson C, Cloutier B, et al. Mobile Apps for Mental Health Issues: Meta-Review of Meta-Analyses. JMIR mHealth and uHealth 2020;8:e17458. doi: 10.2196/17458 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lui JHL, Marcus DK, Barry CT. Evidence-based apps? A review of mental health mobile applications in a psychotherapy context. Prof Psychol Res Pr 2017;48:199–210. [Google Scholar]
  • 10.Donker T, Petrie K, Proudfoot J, Clarke J, Birch M-R, Christensen H. Smartphones for smarter delivery of mental health programs: a systematic review. J Med Internet Res 2013;15:e247. doi: 10.2196/jmir.2791 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Weisel KK, Fuhrmann LM, Berking M, Baumeister H, Cuijpers P, Ebert DD. Standalone smartphone apps for mental health-a systematic review and meta-analysis. NPJ Digit Med 2019;2:118. doi: 10.1038/s41746-019-0188-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Linardon J, Cuijpers P, Carlbring P, Messer M, Fuller-Tyszkiewicz M. The efficacy of app-supported smartphone interventions for mental health problems: a meta-analysis of randomized controlled trials. World Psychiatry 2019;18:325–36. doi: 10.1002/wps.20673 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Milne-Ives M, Lam C, De Cock C, Van Velthoven MH, Meinert E. Mobile Apps for Health Behavior Change in Physical Activity, Diet, Drug and Alcohol Use, and Mental Health: Systematic Review. JMIR Mhealth Uhealth 2020;8:e17046. doi: 10.2196/17046 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 2010;340:c869–c869. doi: 10.1136/bmj.c869 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Eysenbach G CONSORT-EHEALTH Group. CONSORT-EHEALTH: improving and standardizing evaluation reports of Web-based and mobile health interventions. J Med Internet Res 2011;13:e126. doi: 10.2196/jmir.1923 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.11 AI-based mental health apps. CMB Clinical Trials 2020. https://www.cmbclinicaltrials.com/post/11-ai-based-mental-health-apps (accessed March 24, 2021).
  • 17.de Jesus A. Chatbots for Mental Health and Therapy–Comparing 5 Current Apps and Use Cases. Emerj 2018. https://emerj.com/ai-application-comparisons/chatbots-mental-health-therapy-comparing-5-current-apps-use-cases/ (accessed March 24, 2021). [Google Scholar]
  • 18.D’Alfonso S. AI in mental health. Current Opinion in Psychology 2020;36:112–7. doi: 10.1016/j.copsyc.2020.04.005 [DOI] [PubMed] [Google Scholar]
  • 19.Russell S, Norvig P. Artificial intelligence: a modern approach 2002. [Google Scholar]
  • 20.Balicer RD, Cohen-Stavi C. Advancing Healthcare Through Data-Driven Medicine and Artificial Intelligence. Healthcare and Artificial Intelligence 2020:9–15. 10.1007/978-3-030-32161-1_2. [DOI] [Google Scholar]
  • 21.Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2017;2:230–43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Chen M, Hao Y, Hwang K, Wang L, Wang L. Disease Prediction by Machine Learning Over Big Data From Healthcare Communities. IEEE Access 2017;5:8869–79. [Google Scholar]
  • 23.Sannino G, Bouguila N, De Pietro G, Celesti A. Artificial Intelligence for Mobile Health Data Analysis and Processing. Mobile Information Systems 2019;2019:1–2. [Google Scholar]
  • 24.Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol 2018;18:1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med 2018;169:467–73. doi: 10.7326/M18-0850 [DOI] [PubMed] [Google Scholar]
  • 26.Tofighi B, Chemi C, Ruiz-Valcarcel J, Hein P, Hu L. Smartphone Apps Targeting Alcohol and Illicit Substance Use: Systematic Search in in Commercial App Stores and Critical Content Analysis. JMIR mHealth and uHealth 2019;7:e11831. doi: 10.2196/11831 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Hoy MB. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med Ref Serv Q 2018;37:81–8. doi: 10.1080/02763869.2018.1404391 [DOI] [PubMed] [Google Scholar]
  • 28.Morrison LG, Hargood C, Pejovic V, Geraghty AWA, Lloyd S, Goodman N, et al. The Effect of Timing and Frequency of Push Notifications on Usage of a Smartphone-Based Stress Management Intervention: An Exploratory Trial. PLoS One 2017;12:e0169162. doi: 10.1371/journal.pone.0169162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Fitzpatrick KK, Darcy A, Vierhile M. Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment Health 2017;4:e19. doi: 10.2196/mental.7785 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ly KH, Ly A-M, Andersson G. A fully automated conversational agent for promoting mental well-being: A pilot RCT using mixed methods. Internet Interv 2017;10:39–46. doi: 10.1016/j.invent.2017.10.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Sarda A, Munuswamy S, Sarda S, Subramanian V. Using Passive Smartphone Sensing for Improved Risk Stratification of Patients With Depression and Diabetes: Cross-Sectional Observational Study. JMIR mHealth and uHealth 2019;7:e11041. doi: 10.2196/11041 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Sano A, Taylor S, McHill AW, Phillips AJ, Barger LK, Klerman E, et al. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study. J Med Internet Res 2018;20:e210. doi: 10.2196/jmir.9410 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Rozet A, Kronish IM, Schwartz JE, Davidson KW. Using Machine Learning to Derive Just-In-Time and Personalized Predictors of Stress: Observational Study Bridging the Gap Between Nomothetic and Ideographic Approaches. J Med Internet Res 2019;21:e12910. doi: 10.2196/12910 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Cho C-H, Lee T, Kim M-G, In HP, Kim L, Lee H-J. Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. J Med Internet Res 2019;21:e11029. doi: 10.2196/11029 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Cho C-H, Lee T, Lee J-B, Seo JY, Jee H-J, Son S, et al. Effectiveness of a Smartphone App With a Wearable Activity Tracker in Preventing the Recurrence of Mood Disorders: Prospective Case-Control Study. JMIR Ment Health 2020;7:e21283. doi: 10.2196/21283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Mikus A, Hoogendoorn M, Rocha A, Gama J, Ruwaard J, Riper H. Predicting short term mood developments among depressed patients using adherence and ecological momentary assessment data. Internet Interv 2018;12:105–10. doi: 10.1016/j.invent.2017.10.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Busk J, Faurholt-Jepsen M, Frost M, Bardram JE, Kessing LV, Winther O. Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments: Hierarchical Bayesian Approach. JMIR mHealth and uHealth 2020;8:e15028. doi: 10.2196/15028 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Ta V, Griffith C, Boatfield C, Wang X, Civitello M, Bader H, et al. User Experiences of Social Support From Companion Chatbots in Everyday Contexts: Thematic Analysis. J Med Internet Res 2020;22:e16235. doi: 10.2196/16235 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Jungmann SM, Klan T, Kuhn S, Jungmann F. Accuracy of a Chatbot (Ada) in the Diagnosis of Mental Disorders: Comparative Case Study With Lay and Expert Users. JMIR Formative Research 2019;3:e13863. doi: 10.2196/13863 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Dosovitsky G, Pineda BS, Jacobson NC, Chang C, Escoredo M, Bunge EL. Artificial Intelligence Chatbot for Depression: Descriptive Study of Usage. JMIR Form Res 2020;4:e17065. doi: 10.2196/17065 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Haines-Delmont A, Chahal G, Bruen AJ, Wall A, Khan CT, Sadashiv R, et al. Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study. JMIR mHealth and uHealth 2020;8:e15901. doi: 10.2196/15901 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Green EP, Lai Y, Pearson N, Rajasekharan S, Rauws M, Joerin A, et al. Expanding Access to Perinatal Depression Treatment in Kenya Through Automated Psychological Support: Development and Usability Study. JMIR Form Res 2020;4:e17895. doi: 10.2196/17895 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Inkster B, Sarda S, Subramanian V. An Empathy-Driven, Conversational Artificial Intelligence Agent (Wysa) for Digital Mental Well-Being: Real-World Data Evaluation Mixed-Methods Study. JMIR Mhealth Uhealth 2018;6:e12106. doi: 10.2196/12106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild. JMIR mHealth and uHealth 2016;4. doi: 10.2196/mhealth.5960 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Aggarwal CC. Data Classification: Algorithms and Applications. CRC Press; 2014. [Google Scholar]
  • 46.Schapire RE. A brief introduction to boosting. Ijcai, vol. 99, Citeseer; 1999, p. 1401–6. [Google Scholar]
PLOS Digit Health. doi: 10.1371/journal.pdig.0000079.r001

Decision Letter 0

Bridianne O'Dea, Liliana Laranjo

27 Jan 2022

PDIG-D-21-00085

Artificial intelligence and machine learning in mobile apps for mental health: A scoping review of randomised controlled trials and cohort studies

PLOS Digital Health

Dear Dr. Meinert,

Thank you for submitting your manuscript to PLOS Digital Health. After careful consideration, we feel that it has merit but does not fully meet PLOS Digital Health's publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please submit your revised manuscript by Mar 28 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at digitalhealth@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pdig/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

* A rebuttal letter that responds to each point raised by the editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

* A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

* An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

We look forward to receiving your revised manuscript.

Kind regards,

Bridianne O'Dea

Academic Editor

PLOS Digital Health

Journal Requirements:

1. Please provide separate figure files in .tif or .eps format only and remove any figures embedded in your manuscript file. Please ensure that all files are under our size limit of 20MB.

For more information about how to convert your figure files please see our guidelines: https://journals.plos.org/digitalhealth/s/figures

Additional Editor Comments (if provided):

Dear Edward and co-authors,

Thank you for your patience in the review of your recent submission to PLOS Digital Health for the manuscript titled "Artificial intelligence and machine learning in mobile apps for mental health: A scoping review of randomised controlled trials and cohort studies". I apologise that this may have taken longer than you expected.

We were able to secure four reviewers for your manuscript. Together, we agree that the manuscript requires major revision before we can accept for publication. A major concern is the small number of included studies, which may have been impacted by your limited search strategy. I would like to give you the opportunity to respond to the reviewers' comments prior to making a final decision on the manuscript.

Please find attached the reviewers comments.

I look forward to reading your response.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Does this manuscript meet PLOS Digital Health’s publication criteria? Is the manuscript technically sound, and do the data support the conclusions? The manuscript must describe methodologically and ethically rigorous research with conclusions that are appropriately drawn based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Partly

Reviewer #4: Yes

--------------------

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: N/A

Reviewer #2: N/A

Reviewer #3: Yes

Reviewer #4: N/A

--------------------

3. Have the authors made all data underlying the findings in their manuscript fully available (please refer to the Data Availability Statement at the start of the manuscript PDF file)?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception. The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Yes

Reviewer #4: Yes

--------------------

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS Digital Health does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Yes

Reviewer #4: Yes

--------------------

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: Thank you for conducting this scoping review. Please find below my comments and suggested edits.

1. Although included as a study limitation, please justify why only PubMed was searched for this scoping review in the methodology section.

2. Please also justify the timeframe for the search (from 2014)

Both 1 & 2 may impact the number of studies included in the review and potentially alter the findings.

3. Please justify why quality assessment was not conducted for the included studies

4. Typo on page 8, second paragraph, ‘assessed apps aiming to identify…’

5. Typo on page 10, second paragraph, ‘found no difference’

6. Why did the two reviewers collaborate instead of working independently?

Reviewer #2: This papers presents a scoping review of studies of the impact of AI

and machine learning in mental health apps. Noting the growing

prevalence and availability of mental health apps, the authors used

solid methodological approaches - namely PRISMA-ScR and PICOS - to

structure a sysetmatic review. Four papers were identified and key

aspects of those papers were exracted and compared.

This paper presents a well-thought out and a (mostly) methodologically sound

examination of a useful and important question. However, the review

as presented provides minimal insight.

The immediate reason lies in the small size of the result set. With

only four papers, it's impossible to identify any meaningul trends or

pattners. Given the small number of papers included, it would seem

imminently possible to spend a few sentences on each, leading to a

potentially richer comparison. For example, I would be interested in

learning about similarities and differences between the two depression

apps. Similarly, the findings description omits important information

about exactly what the end points where and how they were

asssessed. With four studies, these details could be discussed

explicitly.

The small number of pappers raises the possibility that the area is

still to under-developed, or the criteria are simply too small for a

scoping review. With over 1000 papers in the original set and only

four that met eligibility criteria, I am left wondering about the 997

that were excluded during the final filter. Although a scoping review

of this broader set, or some relevant subset thereof, would almost

certainly be an entirely different paper, the current paper would

likely be strengthened by some discussion of the broader landscape.

Reviewer #3: 1. How you can integrate the RCT and cohort study design in your research finding? how could you analysis ?

2. How you limit Variables for Artificial intelligence and machine learning in mobile apps? is feasible?

Reviewer #4: The review was rigorously conducted and structured according to an international reporting guideline. There is no statistical analysis in this review due to the nature of this type of study. The review helps inform the overall landscape of research about the AI/ML-enabled mobile apps for mental health which has a great relevance to the current needs. The manuscript is professionally written which makes the manuscript a pleasure to read.

--------------------

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

Do you want your identity to be public for this peer review? If you choose “no”, your identity will remain anonymous but your review may still be made public.

For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: Yes: Harry Hochheiser

Reviewer #3: No

Reviewer #4: Yes: Ho Quang Chanh

--------------------

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

Attachment

Submitted filename: PDIG-D-21-00085_review.docx

PLOS Digit Health. doi: 10.1371/journal.pdig.0000079.r003

Decision Letter 1

Liliana Laranjo

24 May 2022

PDIG-D-21-00085R1

Artificial intelligence and machine learning in mobile apps for mental health: A scoping review of randomised controlled trials and cohort studies

PLOS Digital Health

Dear Dr. Meinert,

Thank you for submitting your manuscript to PLOS Digital Health. After careful consideration, we feel that it has merit but does not fully meet PLOS Digital Health's publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please submit your revised manuscript by Jul 23 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at digitalhealth@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pdig/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

* A rebuttal letter that responds to each point raised by the editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

* A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

* An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

We look forward to receiving your revised manuscript.

Kind regards,

Liliana Laranjo

Section Editor

PLOS Digital Health

Journal Requirements:

1. Please update the completed 'Competing Interests' statement. Please declare all competing interests beginning with the statement “I have read the journal's policy and the authors of this manuscript have the following competing interests:”.

Additional Editor Comments (if provided):

Both reviewers raised concerns regarding the fact that only 4 studies were ultimately included in this scoping review. Looking at this manuscript, I also find that concerning, for a couple of reasons:

1. An important RCT seems to be missing, by Fitzpatrick 2017 (DOI: 10.2196/mental.7785) and it is not clear to me why that might be the reason from looking at the eligibility criteria.

2. The eligibility criteria are not specific enough and the authors do not define what they mean by "Mobile apps using artificial intelligence (AI) and machine learning (ML) techniques to address issues relating to mental health". How did you define AI? By including any rule-based approach it is simply impossible that only 4 articles would be included.

In addition:

3. I believe the conclusion are overstating the results: "The studies included in the review demonstrated the feasibility of incorporating AI/ML into mental health apps."

4. There is an apparent mismatch between eligible and included study designs, as a crossectional study seems to be 1 of the 4 studies included? In characterising study designs, authors should refrain from using the terms in the original papers and rather use a standardised approach (i.e. "cohort study" and "clinical pilot study" are not very informative terms).

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #2: (No Response)

Reviewer #4: All comments have been addressed

--------------------

2. Does this manuscript meet PLOS Digital Health’s publication criteria? Is the manuscript technically sound, and do the data support the conclusions? The manuscript must describe methodologically and ethically rigorous research with conclusions that are appropriately drawn based on the data presented.

Reviewer #2: Yes

Reviewer #4: Yes

--------------------

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #2: N/A

Reviewer #4: N/A

--------------------

4. Have the authors made all data underlying the findings in their manuscript fully available (please refer to the Data Availability Statement at the start of the manuscript PDF file)?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception. The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #2: Yes

Reviewer #4: Yes

--------------------

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS Digital Health does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #2: Yes

Reviewer #4: Yes

--------------------

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #2: Thanks you for acknowledging the limited insight available from a scoping review of only four papers. I appreciate the suggestion that the limited number of papers is in itself a useful insight, but this does leave me to question the overall contribution of the paper.

Reviewer #4: The authors have made great efforts in addressing the comments and clarifying the questions from the reviewers. The revised manuscript therefore becomes clearer and more informative. Albeit only four papers were included in the review, the manuscript provides a nice summary of the current research landscape of AI-enabled mobile apps for mental health. Personally, it is intriguing to see such a small number of research apps amongst a huge number of commercialised apps for mental health out there.

--------------------

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

Do you want your identity to be public for this peer review? If you choose “no”, your identity will remain anonymous but your review may still be made public.

For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #2: Yes: Harry Hochheiser

Reviewer #4: Yes: Ho Quang Chanh

--------------------

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLOS Digit Health. doi: 10.1371/journal.pdig.0000079.r005

Decision Letter 2

Padmanesan Narasimhan

22 Jun 2022

Artificial intelligence and machine learning in mobile apps for mental health: A scoping review

PDIG-D-21-00085R2

Dear Dr Meinert,

We are pleased to inform you that your manuscript 'Artificial intelligence and machine learning in mobile apps for mental health: A scoping review' has been provisionally accepted for publication in PLOS Digital Health.

Before your manuscript can be formally accepted you will need to complete some formatting changes, which you will receive in a follow-up email from a member of our team. 

Please note that your manuscript will not be scheduled for publication until you have made the required changes, so a swift response is appreciated.

IMPORTANT: The editorial review process is now complete. PLOS will only permit corrections to spelling, formatting or significant scientific errors from this point onwards. Requests for major changes, or any which affect the scientific understanding of your work, will cause delays to the publication date of your manuscript.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they'll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact digitalhealth@plos.org.

Thank you again for supporting Open Access publishing; we are looking forward to publishing your work in PLOS Digital Health.

Best regards,

Padmanesan Narasimhan, MBBS MPH PhD

Section Editor

PLOS Digital Health

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Appendix. PRISMA-ScR Checklist.

    (DOCX)

    S2 Appendix. Search String.

    (DOCX)

    S3 Appendix. Endnote search criteria.

    (DOCX)

    S4 Appendix. Data Extraction (first screening).

    (DOCX)

    S5 Appendix. Data Extraction (second screening).

    (XLSX)

    Attachment

    Submitted filename: PDIG-D-21-00085_review.docx

    Attachment

    Submitted filename: Response to Reviewers (mental health scoping rev).docx

    Attachment

    Submitted filename: Response to Reviewers (mental health scoping rev) - 2.docx

    Data Availability Statement

    All data used in this scoping review was extracted from previously published papers and cited in the text and reference list.


    Articles from PLOS Digital Health are provided here courtesy of PLOS

    RESOURCES