Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Feb 7:2023.02.07.527459. [Version 1] doi: 10.1101/2023.02.07.527459

Transient EZH2 suppression by Tazemetostat during in vitro expansion maintains T cell stemness and improves adoptive T cell therapy

Yingqin Hou, Jaroslav Zak, Yujie Shi, Isaraphorn Pratumchai, Brandon Dinner, Wenjian Wang, Ke Qin, Evan Weber, John R Teijaro, Peng Wu
PMCID: PMC9934551  PMID: 36798389

Abstract

The histone methyltransferase enhancer of zeste homolog 2 (EZH2)-mediated epigenetic regulation of T cell differentiation in acute infection has been extensively investigated. However, the role of EZH2 in T cell exhaustion remains under-explored. Here, using in vitro exhaustion models, we demonstrated that transient inhibition of EZH2 in T cells before the phenotypic onset of exhaustion with a clinically approved inhibitor, Tazemetastat, delayed their dysfunctional progression and maintained T cell stemness and polyfunctionality while having no negative impact on cell proliferation. Tazemetestat induced T cell epigenetic reprogramming and increased the expression of the self-renewing T cell transcription factor TCF1 by reducing its promoter H3K27 methylation preferentially in rapidly dividing T cells. In a murine melanoma model, T cells pre-treated with tazemetastat exhibited a superior response to anti-PD-1 blockade therapy after adoptive transfer. Collectively, these data unveil the potential of transient epigenetic reprogramming as a potential intervention to be combined with checkpoint blockade for immune therapy.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES